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Abstract: Background: Polyphenol is considered to exert a favorable impact on cardiovascular health.
Methods: To summarize the role of polyphenol antioxidant supplements in cardiovascular disease,
we searched for randomized controlled trials up to 10th November 2024 that reported estimates of
the effects of polyphenol antioxidant supplements on cardiometabolic risk factors. Results: Of the
17,126 participants in the 281 studies, weighted mean differences [95% confidence intervals] were
derived for the intervention condition utilizing random effects modeling. Our results suggest that
multiple polyphenol supplements improved cardiovascular risk markers in the overall population.
For example, catechin supplementation decreased systolic (−1.56 [−2.75, −0.37] mmHg) and dias-
tolic blood pressure (−0.95 [−1.69, −0.20] mmHg), anthocyanin supplementation improved multiple
blood lipid profiles, and curcumin supplementation benefited indicators of glucose metabolism.
Conclusions: Our meta-analysis provides comprehensive evidence that antioxidant polyphenol
supplementation can have beneficial effects on various cardiometabolic risk factors in the general
population. The observed improvements in blood pressure, lipid profile, and glycemic status support
the potential role of these supplements in cardiovascular health promotion. However, the hetero-
geneity among studies indicates that more research is needed to fully understand the optimal use
of different polyphenols. Future research should concentrate on conducting a greater number of
well-designed randomized controlled trials over extended periods of time to evaluate the long-term
impact on cardiovascular endpoints and to ascertain the optimal doses and durations of antioxi-
dant polyphenol supplementation. Furthermore, additional research is required to gain a deeper
understanding of the underlying mechanisms responsible for these cardioprotective effects.

Keywords: antioxidant polyphenol; cardiovascular disease; meta-analysis

1. Introduction

A substantial proportion of mortality and morbidity related to cardiovascular diseases
(CVD) and type 2 diabetes (T2D) can be attributed to suboptimal dietary patterns [1–3].
Adequate consumption of fruits and vegetables constitutes a vital part of a healthy diet
regime. It has been calculated that diets deficient in fruits and vegetables account for 1.5–4%
of the global disease burden [4–6]. The Dietary Guidelines for Americans (2020–2025)
recommend for citizens to increase their fruit and vegetable intake as a means of reducing
the risk of CVD [7,8]. In addition to vegetables and fruits, beverages such as tea, cocoa, and
coffee have also been linked to a reduced risk of CVD [9–11]. A common feature of these
foods is that they all include an abundance of antioxidant polyphenols.

Polyphenols, which are phytochemicals or secondary plant compounds, are non-
essential plant nutrients existing in plants and algae. In these organisms, they serve as a
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natural defense mechanism against UV radiation, inflammation, and consumption by her-
bivores [12]. Polyphenols are usually classified as flavonoids and non-flavonoids, with the
flavonoids commonly found in foods being anthocyanins, flavanols, flavonoids, phenolic
acids, isoflavones, flavanones, and astragals [12,13]. Flavonoids exhibit a range of biological
activities, including antioxidant, anti-inflammatory, anticancer, and cardiovascular protec-
tive effects. Their antioxidant properties are closely related to their structural features, with
the presence of multiple hydroxyl groups enhancing their antioxidant potential. Addition-
ally, flavonoids have been shown to have a variety of pharmacological effects, including
antidepressant, anti-tumor, and anti-osteoporosis properties [12,13]. Non-flavonoids en-
compass a range of compounds, including phenolic acids, particularly hydroxybenzoic acid
and cinnamic acid, which have been demonstrated to possess biological activity [14,15].

Epidemiological studies have demonstrated that the risk of CVD is reduced by 46 per-
cent in individuals who consume a diet rich in polyphenols [16,17]. Furthermore, studies
have demonstrated that polyphenols facilitate the enhancement of endothelial function,
the prevention of aberrant platelet aggregation, the reduction of inflammation, and the
improvement of plasma lipid profiles, all of which contribute to the promotion of cardio-
vascular health. However, the precise mechanisms through which polyphenols exert these
effects remain to be fully elucidated [18,19].

Despite the existing evidence suggesting the potential benefits of polyphenols on car-
diovascular health, there are still significant inconsistencies in the literature. This is of great
clinical importance to gain a deeper understanding of the impact of antioxidant polyphenol
supplementation on cardiometabolic risk factors. If proven effective, polyphenol supple-
ments could represent a relatively inexpensive and accessible preventive or adjunctive
treatment option for cardiovascular diseases. The objective of our review was to synthesize
the available evidence in a more comprehensive and systematic manner, with the aim of ad-
dressing the aforementioned uncertainties and providing a more definitive understanding
of the role of antioxidant polyphenol supplementation in cardiovascular health.

To pool the available evidence regarding the role of antioxidant polyphenol supple-
mentation in advancing cardiovascular health, a systematic review and meta-analysis was
conducted that included all available randomized controlled trials of antioxidant polyphe-
nol supplementation and its effect on CVD risk factors. This comprehensive approach
provides a more holistic view of the potential benefits of antioxidant polyphenols as a class
of compounds. The impetus behind conducting this review was to provide evidence-based
recommendations that could potentially be translated into clinical practice and public
health strategies, with the aim of improving cardiovascular health outcomes.

2. Methods

Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
guidelines [20], the study protocol was entered into the International Registry of Systematic
Reviews (PROSPERO: CRD420245555557405). Ethical approval for each of the included
randomized trials was granted by the corresponding institutional review board.

2.1. Search Strategy

RCTs published up to 10th November 2024 were searched in the PubMed, Web
of Science, and Embase databases. The following terms were used in the systematic
search: (“polyphenol” OR “flavonoid” OR “flavone” OR “flavanone” OR “flavanol” OR
“Isoflavone” OR “isoflavonoid” OR “anthocyanin” OR “proanthocyanidin” OR “lignans”
OR “enterolignan” OR “curcumin” OR “catechin” OR “silymarin” OR “kaempferol” OR
“quercetin” OR “resveratrol” OR “genistein” OR “secoisolariciresinol” OR “myricetin” OR
“lariciresinol” OR “pinoresinol” OR “tamarixetin” OR “apigenin” OR “polyphenolacid”
OR “pycnogenol” OR “epicatechin” OR “Epigallocatechin gallate” OR “EGCG” OR “Hes-
peridin” OR “gallic acid” OR “chlorogenic acid” OR “cinnamic acid” OR “caffeic acid” OR
“ferulic acid” OR “coumaric acid” OR “erucic acid”) AND (“Blood glucose” OR “Blood
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sugar” OR “glycemic” OR “Blood lipids” OR “triglyceride” OR “cholesterol” OR “Blood
pressure”).

2.2. Eligibility and Ineligibility Criteria

The extended analysis encompassed an assessment of how supplementing with an-
tioxidant functional lipids impacted various health parameters. These included cardio-
vascular measures (systolic blood pressure [SBP] and diastolic blood pressure [DBP]),
blood lipid profiles (total cholesterol [TC], high-density lipoprotein cholesterol [HDL-C],
low-density lipoprotein cholesterol [LDL-C], and triglycerides [TG]), and indicators of
glucose metabolism (fasting blood glucose [FBG], hemoglobin [A1C], and fasting blood
insulin [FBI]).

We excluded trials lacking randomization, pertinent cardiovascular metabolic out-
comes, placebo or matched controls, or mean alterations and standard deviations (SD).
Furthermore, studies whose intervention duration was less than one week or in which
participants at baseline had a major cardiovascular disease, psychiatric disorder, or any
other serious medical condition were excluded.

2.3. Selection of Study

Two reviewers conducted a comprehensive and meticulous examination of the existing
literature to ensure the accuracy and completeness of the review. Subsequently, the review-
ers undertook a comprehensive examination of each article. The titles and abstracts were
then examined in accordance with a set of pre-established criteria to determine which ones
warranted a more comprehensive analysis. A third reviewer was then engaged to examine
the selected studies in detail. This reviewer sought to identify any errors or inconsistencies
that might have been overlooked in the initial review. If any issues were identified, the third
reviewer facilitated panel discussions. All three reviewers engaged in detailed discussions
and shared their opinions. The discussions were guided by the predefined criteria to reach
a consensus on including or excluding each study.

2.4. Extraction of Data

The extraction of data from selected studies encompassed the lead author’s name,
publication date, study population location, research design, characteristic of partici-
pants (participants’ number, average age, sex, and physical condition), substance of
the intervention, control, dose of the intervention, and duration of the intervention.
SDchange = square root [(SDbaseline

2 + SDendpoint
2)/2] was calculated to estimate the SD

of the mean variance if there were no reported SD values for the mean difference between
baseline cardiac risk factors and the endpoint [21]. When the outcome data was presented as
a graph, WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/, version 4.8, accessed
on 1 January 2024) was used to estimate the values.

2.5. Assessment of Quality

Included trials were assessed for risk of bias according to the recommendations of the
Cochrane Collaboration Handbook [22], including six aspects: bias in selection involves
creating a random sequence and hiding the allocation; bias toward performance involves
blinding participants and staff; disclosure bias involves blinding outcome evaluations; bias
due to attrition involves incomplete outcome data; bias in reporting involves voluntary
reporting; and other biases are present.

To assess the quality of evidence, researchers employed the GRADE (Grading of Rec-
ommendations, Assessment, Development, and Evaluation) approach. This method classi-
fies evidence quality into four levels: high, moderate, low, or very low [23]. Initial GRADE
quality scores defaulted to high before being downgraded according to prespecified do-
mains, including risk of bias (more than 20%), inconsistency (I2 > 50% and Pheterogeneity < 0.1),
indirectness (limitations to the generalization of the results), imprecision (overlap of the
95% confidence interval (CI) with the smallest significant difference, i.e., blood pressure

https://automeris.io/WebPlotDigitizer/
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of 2 mmHg [24], blood lipids of 0.1 mol/L [25], A1C of 0.5% [26], FBG of 0.56 mmol/L or
10 mg/dL [27], and FBI of 5 pmol/L [28]), and bias in publications (strong proof in the
effects of small studies).

2.6. Statistical Analysis

Each study was compared using the mean differences and standard deviations for spe-
cific cardiometabolic risk variables between the intervention and control groups. Effect sizes
were assessed according to the Cochrane guidelines [21]. Effects sizes for cardiometabolic
risk factors were generated from random effects models presented as weighted mean
differences and 95% CIs. I2 statistics were used to estimate heterogeneity among the in-
cluded studies. Significance of variance was assigned at p < 0.05, with I2 > 50% indicating
evidence of significant variance [29]. Subgroup analyses were conducted in accordance
with the varying levels of cardiometabolic health observed among the trial participants.
Egger’s regression-based assay and eye inspection of funnel plots were used to evaluate the
likelihood of publication bias (p < 0.05 shows publication bias [30]). To evaluate the impact
of specific research upon the aggregate effect size, sensitivity analyses were performed by
excluding one study at a time [31]. The software RevMan (version 5.4) and the software
Stata/SE (version 17.0) were used in all of the statistical analyses.

3. Results
3.1. The Process of Selecting Studies for Inclusion and the Characteristics of the Studies

Figure 1 shows a flow diagram of the recruitment process in this study. Altogether,
3683 articles were retrieved through an exhaustive search. Among the remaining
1132 unduplicated articles, 543 articles were defined as irrelevant based on titles and
abstracts, while 589 articles were assessed for relevance. Studies without randomization
(n = 102) or pertinent outcomes (n = 129), with a short intervention duration (n = 45), or
including participants with severe disorders (n = 89) were excluded, resulting in 224 articles
(284 studies) left for data extraction for further analysis. The characteristics of the included
trials are outlined in the Supplementary Materials for readers’ convenience.
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Figure 1. A flow chart illustrating the selection process for studies included in the study.
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A total of 284 studies with, altogether, 17,613 participants aged between 18 and
75 years (median age: 52.2 years) were included in the current analysis. The included
studies were performed on participants who took anthocyanins (n = 43), catechin (n = 42),
chlorogenic acid (n = 27), curcumin (n = 24), flavanol (n = 27), flavonoid (n = 13), gallic acid
(n = 7), genistein (n = 11), hesperidin (n = 7), isoflavone (n = 32), quercetin (n = 19), and
resveratrol (n = 30).

3.2. The Impact of Antioxidant Polyphenol Supplementation on Blood Pressure

To validate how antioxidant polyphenol supplementation affects blood pressure
191 relevant RCTs involving 10,703 participants were incorporated (Figure 2). In the
total population, supplementation with catechin (SBP: −1.56 [−2.75, −0.37] mmHg; DBP:
−0.95 [−1.69, −0.20] mmHg), genistein (SBP: −10.02 [−11.55, −8.49] mmHg; DBP: −9.13
[−12.80, −5.46] mmHg), and resveratrol (SBP: −3.25 [−6.03, −0.48] mmHg; DBP: −2.32
[−4.07, −0.57] mmHg) significantly improved both SBP and DBP. Curcumin (SBP: −1.42
[−2.56, −0.28] mmHg), flavanol (SBP: −1.47 [−2.89, −0.06] mmHg), and quercetin (SBP:
−1.38 [−2.63, −0.13] mmHg) supplementation significantly decreased SBP in the total
population. Additionally, flavonoid supplementation significantly improved DBP (−1.68
[−3.34, −0.03] mmHg).Nutrients 2024, 16, x FOR PEER REVIEW 6 of 16 

 

 

 

 

 
 

Figure 2. The objective of this study is to investigate the effects of antioxidant polyphenol supplemen-
tation on blood pressure. I2 considers whether the value of between-study heterogeneity is significant;
a the rating was reduced due to the presence of imprecise elements; b the rating was reduced due
to inconsistency.
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3.3. The Impact of Antioxidant Polyphenol Supplementation on Blood Lipids

To evaluate how antioxidant polyphenol supplementation affects blood lipids, 221 rel-
evant RCTs comprising 14,076 participants were included (Figure 3). Across the entire
population, anthocyanin supplementation significantly improved all blood lipid profiles,
including LDL-C (−0.18 [−0.31, −0.06] mmol/L), HDL-C (0.18 [0.12, 0.25] mmol/L), TC
(−0.18 [−0.33, −0.02] mmol/L), and TG (−0.47 [−0.70, −0.24] mmol/L). Chlorogenic acid
supplementation significantly decreased LDL-C (−0.24 [−0.38, −0.11] mmol/L), TC (−0.39
[−0.62, −0.16] mmol/L), and TG (−0.10 [−0.15, −0.04] mmol/L). Flavonoid supplementa-
tion significantly improved LDL-C (−0.32 [−0.61, −0.04] mmol/L), HDL-C (0.15 [0.02, 0.29]
mmol/L), and TG (−0.70 [−1.37, −0.03] mmol/L). Genistein supplementation significantly
decreased LDL-C (−0.43 [−0.81, −0.04] mmol/L) and TC (−0.22 [−0.35, −0.08] mmol/L).
Additionally, curcumin (0.39 [0.22, 0.56] mmol/L) and flavanol (0.09 [0.04, 0.13] mmol/L)
supplementation significantly improved HDL-C in the total population.
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3.4. The Impact of Antioxidant Polyphenol Supplementation on Glycemic Status

There were 164 relevant RCTs, comprising 10,961 participants, to estimate how an-
tioxidant polyphenol supplementation affects glycemic status (Figure 4). In the total
population, curcumin supplementation significantly improved all glycemic parameters,
including FBG (−0.43 [−0.68, −0.19] mmolL), FBI (−10.14 [−14.13, −6.14] pmol/L), and
A1C (−0.49 [−0.83, −0.14]%). Chlorogenic acid (FBG: −0.16 [−0.27, −0.06] mmol/L; FBI:
−5.36 [−9.62, −1.10] pmol/L), flavanol (FBG: −0.17 [−0.30, −0.03] mmol/L; FBI: −14.86
[−21.02, −8.71] pmol/L), and genistein (FBG: −0.44 [−0.52, −0.37] mmol/L; FBI: −11.61
[−15.40, −7.82] pmol/L) supplementation significantly improved FBG and FBI. Catechin
supplementation significantly decreased FBG (−0.10 [−0.18, −0.03] mmol/L) and A1C
(−0.12 [−0.23, −0.02]%). As well, quercetin (−8.09 [−15.53, −0.66] pmol/L) and resver-
atrol (−2.84 [−5.61, −0.06] pmol/L) supplementation significantly decreased FBI, while
anthocyanin (−0.09 [−0.17, −0.02] mmol/L) supplementation significantly improved FBG
in the total population.
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3.5. The Impact of Antioxidant Polyphenol Supplementation on Participants with Varying
Cardiometabolic Health Statuses

Antioxidant polyphenol supplementation subgroup analysis was carried out among
participants with diverse cardiometabolic health conditions (Figure 5). Among a healthy pop-
ulation, antioxidant polyphenol supplementation significantly bettered DBP (−0.68 [−1.33,
−0.03] mmHg), HDL-C (0.07 [0.02, 0.11] mmol/L), TG (−0.13 [−0.22, −0.03] mmol/L),
FBG (−0.14 [−0.24, −0.04] mmol/L), and FBI (−6.01 [−9.19, −2.83] pmol/L). For partic-
ipants with pre-diabetes or T2D, antioxidant polyphenol supplementation significantly
improved SBP (−4.54 [−7.14, −1.93] mmHg), HDL-C (0.13 [0.06, 0.19] mmol/L), TC
(−0.32 [−0.49, −0.15] mmol/L), TG (−0.32 [−0.53, −0.12] mmol/L), FBG (−0.43 [−0.62,
−0.24] mmol/L), and A1C (−0.19 [−0.35, −0.03]%). For hypertensive participants, an-
tioxidant polyphenol supplementation improved blood pressure, including SBP (−2.37
[−3.65, −1.09] mmHg) and DBP (−1.13 [−1.92, −0.32] mmHg). For dyslipidemia partici-
pants, antioxidant polyphenol supplementations improved LDL-C (−0.52 [−0.85, −0.19]
mmol/L), HDL-C (0.12 [0.03, 0.20] mmol/L), and TC (−0.47 [−0.83, −0.10] mmol/L).
For participants who were overweight or obese, antioxidant polyphenol supplementation
improved TC (−0.18 [−0.33, −0.02] mmol/L), TG (−0.09 [−0.18, −0.00] mmol/L), FBG
(−0.06 [−0.11, −0.02] mmol/L), and FBI (−1.67 [−3.19, −0.16] pmol/L). For participants
with metabolic syndrome, antioxidant polyphenol supplementation improved all lipid pro-
files, including LDL-C (−0.23 [−0.40, −0.05] mmol/L), HDL-C (0.03 [0.00, 0.06] mmol/L),
TC (−0.17 [−0.32, −0.02] mmol/L), and TG (−0.17 [−0.30, −0.03] mmol/L). Lastly, an-
tioxidant polyphenol supplementation improved SBP (−0.85 [−1.68, −0.02] mmHg) in
postmenopausal women.
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Figure 5. The aim of this study is to investigate the impacts of antioxidant polyphenol supplemen-
tation on participants with different cardiometabolic health conditions. A subgroup analysis was
conducted to examine the effects of antioxidant polyphenol supplementation in two distinct groups:
(1) individuals with optimal cardiometabolic health and (2) individuals with pre-type 2 diabetes
(T2D) or T2D, along with those with hypertension, dyslipidemia, or metabolic syndrome, as well as
those who are overweight or obese or postmenopausal women.

4. Discussion

The point of this study was to comprehensively analyze and select suitable antioxidant
polyphenol supplements for optimizing cardiometabolic health (Figure 6). The findings
indicate that a number of polyphenols, including genistein, anthocyanin, catechin, chloro-
genic acid, curcumin, flavanol, flavonoid, resveratrol, and quercetin, have the potential
to significantly enhance the management of cardiovascular disease risk factors, such as
elevated blood pressure, dyslipidemia, and impaired glucose metabolism, across the gen-
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eral population. The findings indicated that antioxidant polyphenol supplementation was
beneficial for participants with varying levels of cardiovascular disease risk. Our findings
align with those of other meta-analyses, which have also identified the cardiometabolic im-
provement effects of anthocyanin [32], catechin [33,34], curcumin [35], chlorogenic acid [36],
flavanol [9], genistein [37], quercetin [38], and resveratrol [39].

Figure 6

Decreased Increased Unchanged

Figure 6. Antioxidant polyphenol supplementation for cardiometabolic health: An evidence-
based map.

Polyphenols offer several cardiovascular benefits, and these can be primarily attributed
to a range of remarkable properties they possess. Among these are their antioxidant, anti-
inflammatory, hypotensive, antihyperlipidemic, and hypoglycemic characteristics. The
antioxidant property of polyphenols, which has been widely reported, plays a crucial role
in cardiovascular health. This antioxidant ability is closely associated with the presence of
hydroxyl groups within polyphenols’ molecular structure. These hydroxyl groups are of
particular significance because they can be readily oxidized. When this oxidation occurs, it
leads to the formation of the corresponding O-quinone. This chemical transformation is
fundamental to the antioxidant mechanism of polyphenols and is directly related to their
ability to counteract oxidative stress in the cardiovascular system, thereby contributing
to the system’s overall health and proper functioning [14]. The transformation acts as
an effective scavenger of reactive oxygen species. It operates based on the principle of
entrapping free radicals within stable chemical complexes. By doing so, it halts the free
radicals in their tracks and successfully averts any further reactions that these highly reac-
tive species could initiate. This process is of great significance, as the unchecked reactions
of reactive oxygen species can cause extensive damage to cells and tissues within the body,
especially in the context of cardiovascular health, where such damage can have far-reaching
consequences [40,41]. Beyond being able to suppress oxidative stress, polyphenols likewise
practice indirect antioxidant effects through nuclear factor erythroid-associated transcrip-
tion factor 2 (NFAT2) activation. The endogenous antioxidant system is stimulated by this
process and may also be responsible for the maintenance of cellular redox homeostasis by
polyphenols [41,42].

The anti-inflammatory properties of polyphenols are closely associated with oxidative
stress and the regulation of cellular redox homeostasis [43]. The anti-inflammatory activity
of polyphenols is mediated through several mechanisms, most of which involve suppres-
sion of the nuclear factor κB light chain enhancer in stimulated B cells. This minimizes
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the creation of pro-inflammatory mediators [44] and inhibits adhesion molecule expres-
sion [45], thus impacting monocyte chemotaxis in inflamed tissues. Polyphenols have
also been demonstrated to enhance blood flow-mediated dilation within human subjects,
despite their effective dose being considerably higher than that typically observed in di-
etary studies [46]. In vitro studies [47] and human studies [48] indicate that the mechanism
by which polyphenols enhance blood flow-mediated dilation may be associated with an
increase in nitric oxide synthase activity, which mediates vasodilatory effects and influences
the renin–angiotensin system [49]. It is hypothesized that these effects contribute to the
lowering of blood pressure, which is another mechanism by which polyphenols exert a
cardioprotective effect.

Polyphenols possess a unique chemical structure and set of characteristics, which
enables them to regulate cholesterol metabolism. This is achieved through the activation of
the peroxisome proliferator-activated receptor-γ pathway, which in turn up-regulates the
expression of HDL-associated farnesyl transferase paraoxonase 1 and increases its secretion.
This process serves to prevent the peroxidation of LDL and HDL, while facilitating the
efflux of cholesterol [50]. Furthermore, polyphenols diminish exogenous TG uptake by
inhibiting pancreatic lipase activity, reduce fatty acid synthesis by decreasing fatty acid
synthetase activity, and regulate cholesterol synthesis and efflux by modulating the sterol
regulatory element binding protein gene and peroxisome proliferator-activated receptor
α, thereby influencing blood lipid levels [51]. Polyphenols have been demonstrated to
inhibit alpha-amylase and alpha-glucosidase, thereby inhibiting glucose uptake by sodium-
dependent glucose transporter protein 1 in the gut. Additionally, they have been shown
to stimulate insulin secretion and reduce hepatic glucose output [52]. Moreover, polyphe-
nols facilitate insulin-dependent glucose uptake, stimulate the action of 5’-adenosine
monophosphate-activated protein kinase, and alter the microbiome, collectively regulating
glucose levels [53].

Study Limitations

Multiple limitations should be noted while analyzing and interpreting the results of
this meta-analysis. First, due to insufficient antioxidant-related randomized controlled
trials, some antioxidant polyphenol supplements were not included in the present study.
Second, evidence regarding improvements in the incidence of cardiovascular outcome
events and T2D was absent in this study, making it inconclusive as to whether antioxidant
polyphenol supplementation would also improve the incidence on these events. Third,
several inconsistencies exist between our results and previous meta-analyses due to varying
inclusion criteria. Fourth, notwithstanding the exclusion of trials involving interventional
periods of inadequate duration (i.e., less than one week), heterogeneity among eligible
studies was high due to limited numbers and sample sizes, variability in the intervention
duration between studies, the broad time frame of the studies, and low-quality evidence
for some of the heat-treated trials.

5. Conclusions

In conclusion, antioxidant polyphenol supplementation has been shown to benefit a
range of cardiometabolic risk factors, including blood pressure, lipid profiles in the blood,
and indicators of glucose metabolism, across the general population. The administration
of antioxidant polyphenol supplements was observed to exert a range of beneficial effects
on cardiovascular risk factors, irrespective of the participants’ underlying cardiometabolic
health status. The findings we reported spotlight the significance of antioxidant polyphenol
diversity and the necessity of balancing the benefits and risks for promoting and main-
taining cardiovascular health. It is recommended that future research should focus on
conducting more high-quality randomized controlled trials with longer follow-up peri-
ods. This will facilitate the evaluation of the long-term effects of antioxidant polyphenol
supplementation on cardiovascular outcomes, including the incidence of CVD and T2D.
Furthermore, studies should investigate the optimal doses and durations of supplemen-
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tation for different polyphenols, with the aim of maximizing their beneficial effects while
minimizing potential risks. Further investigations into underlying mechanisms of action
are also warranted, with the objective of better understanding how these polyphenols
exert their cardioprotective effects at the molecular and cellular levels. This knowledge
could lead to the development of more targeted and effective intervention strategies for
cardiovascular health.
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