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Abstract: Breast cancer poses a substantial health challenge for women globally. Recently, there has
been a notable increase in scholarly attention regarding polyphenols, primarily attributed to not only
the adverse effects associated with conventional treatments but also their immune-preventive impacts.
Polyphenols, nature-derived substances present in vegetation, including fruits and vegetables, have
received considerable attention in various fields of science due to their probable wellness merits,
particularly in the treatment and hindrance of cancer. This review focuses on the immunomodulatory
effects of polyphenols in breast cancer, emphasizing their capacity to influence the reaction of adaptive
and innate immune cells within the tumor-associated environment. Polyphenols are implicated
in the modulation of inflammation, the enhancement of antioxidant defenses, the promotion of
epigenetic modifications, and the support of immune functions. Additionally, these compounds
have been shown to influence the activity of critical immune cells, including macrophages and T
cells. By targeting pathways involved in immune evasion, polyphenols may augment the capacity
of the defensive system to detect and eliminate tumors. The findings suggest that incorporating
polyphenol-rich foods into the diet could offer a promising, collaborative (integrative) approach to
classical breast cancer remedial procedures by regulating how the defense mechanism interacts with
the disease.
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1. Introduction

Breast cancer ranks among the top causes of cancer fatalities globally, with increasing
incidence rates despite advancements in treatment [1,2]. This shift in focus toward preven-
tion highlights the potential role of dietary interventions [3]. One such promising avenue is
polyphenols, present in vegetable-derived products, which are associated with a myriad
of health advantages, particularly in reducing cancer risk, owing to their antioxidant and
inflammatory-suppressive qualities [3–5]. Beyond these well-established features, polyphe-
nols can also influence the human body’s defense system and epigenetic regulation [6].
Polyphenols offer the potential for primary prevention by reducing the risk before the
cancer develops [7]. They achieve this by modulating the molecular pathways associated
with carcinogenesis and reversing epigenetic alterations, such as histone methylation and
acetylation, DNA methylation, and microRNA expression [5–9].

Polyphenols, by modulating key modifications that influence tumor development,
offer a potential approach for preventing breast cancer initiation and progression [10].
For instance, epigallocatechin gallate (EGCG), resveratrol, and curcumin have been thor-
oughly investigated for their remarkable potential in combating cancer. EGCG has been
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indicated to alleviate the development of breast cancer, induce apoptosis, and inhibit
tumorigenesis [7,9,11,12]. Similarly, the influence of resveratrol and curcumin on epigenetic
mechanisms and various signaling pathways, including those responsible for inflammation,
cell survival, and metastasis implicated in the pathogenesis of breast cancer, has been
extensively examined in the scientific literature [13]. Additionally, the immunomodulatory
effects of polyphenols may enhance the body’s natural immune defenses, creating an envi-
ronment that hinders tumor formation and progression [3,14]. In recent years, research has
increasingly focused on understanding the connection between diet and cancer prevention,
with particular interest in plant-derived compounds [13]. Polyphenols, among the most
abundant classes of phytochemicals in human diets, have drawn significant attention due
to their potential restorative impact across distinct types of cancers, including breast can-
cer [13]. These compounds are categorized into flavonoids, phenolic acids, lignans, and
stilbenes, with notable examples being EGCG, resveratrol, curcumin, and quercetin [3,9–11].
The ability of these polyphenols to modulate both tumor cells and the tumor milieu, mainly
through the defense system, opens new avenues for their integration into cancer therapy.

This review aims to fill a critical gap in understanding how polyphenols may con-
tribute to breast cancer prevention through their immunomodulatory and epigenetic effects.
By synthesizing available preclinical and clinical evidence, this analysis will provide in-
sights that could inform future research and therapeutic strategies focused on dietary
polyphenols as preventive agents.

2. Materials and Methods

Identification of multiple empirical and review articles was conducted through PubMed
and Google Scholar databases. The search utilized a range of keywords, including “breast
cancer”, “immunomodulatory effects of dietary polyphenols”, “dietary polyphenols”, “epi-
genetic effects of dietary polyphenols”, “dietary polyphenols in breast cancer”, and “breast
cancer therapies”. Comprehensive searches for relevant research and review references
were performed on PubMed. Descriptive statistical analyses and meta-analyses were
not conducted.

3. Breast Cancer

Breast cancer is a widespread form of cancer in women worldwide, with both its
occurrence and mortality rates recently increasing [15]. In accordance with the latest
estimates released by the International Agency for Research on Cancer (IARC), the year
2022 witnessed reports of approximately 20 million new instances of cancer, along with
9.7 million fatalities [16]. Breast cancer ranked as the second predominant type of cancer,
representing 11.6% of all new cancer cases globally [16]. Breast cancer can be classified into
different subtypes based on molecular features, hormone receptor status, and histological
patterns (Figure 1). The molecular subtypes of breast cancers are Luminal, Her2-enriched,
basal-like, and Claudin-low breast cancers [17,18]. Luminal breast cancers account for
60–70% of all breast cancer types in economically advanced countries [19]. Luminal breast
cancer is divided into two subtypes: Luminal A, which has a slower growth rate and better
prognosis, and Luminal B, which has a faster growth rate and worse prognosis [15,20–22].
Luminal A breast cancers are characterized by the absence of HER2 and the presence of
either an ER or a PR [23]. These cancers typically manifest in the mammary duct epithelium.
In comparison, Luminal B breast cancers are estrogen receptor positive and may be PR
negative and/or HER2 positive [15,17,20,22].
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Figure 1. Breast cancer and its subtypes. (A) Molecular classification. (B) Hormone receptor status 
classification. (C) Histological classification. Created in BioRender. Lab, T. (2024) https://BioRen-
der.com/u39p454 (accessed on 4 November 2024). HER2-enriched breast cancer carries a high risk 
of recurrence and neoplastic dissemination [24–27]. Approximately no more than three out of 
twenty breast cancer subtypes are classified as HER2 positive [24,26]. HER2-enriched breast cancers 
have HER2 expression while lacking ER and PR [26,27]. Basal-like breast cancer constitutes around 
one-fifteenth to one-fifth of all breast cancer incidences and lacks the expression of any HR [13,26–
28]. This results in TNBC being the most aggressive and metastatic subtype, with a higher likelihood 
of early relapse and poor prognosis [13,27,28]. TNBC comprises six well-defined subtypes: basal-
like 1 (BL1), basal-like 2 (BL2), immunomodulatory (IM), luminal androgen receptor (LAR), mesen-
chymal (M), and mesenchymal stem-like (MSL) [15,29–33]. Claudin-low breast cancer (CLBC) is dis-
tinguished by reduced tight junction proteins such as Claudins 3 and 7 and adhesion proteins 
[15,34,35]. CLBC represents 7–14% of all aggressive breast cancers and is connected to a low survival 
rate, as these tumors typically test negative for ER, PR, and HER2 [15,34,35]. The hormone receptor 
status can further categorize breast cancers based on hormone receptor expression (HR+), such as 
ER- and PR-positive breast cancers [26,28,36]. Ductal carcinoma in situ (DCIS), lobular carcinoma in 
situ (LCIS), Invasive Ductal Carcinoma (IDC), and Invasive Lobular Carcinoma (ILC) are histologi-
cal characteristics of breast cancer subtypes [23,26,34–36]. 

4. Immune System Regulation in Breast Cancer 
The immune system is a sophisticated network that aids the body in defending 

against diseases. The management of the defense mechanism in breast cancer is also a 
complicated progression impacted by the defensive system’s cells and cancer cells and the 
surrounding microenvironment, which encompasses cancer and stromal cells, an extra-
cellular matrix (ECM), signaling molecules, blood vessels, and hypoxic regions [26,37–39]. 
Cancer-associated fibroblasts are the primary cell type in the microenvironment [37,38,40]. 
In addition, it comprises a diverse array of immune cells (Figure 2), including lympho-
cytes, macrophages, myeloid-derived stromal cells, and cytokines [37,41,42]. 

Figure 1. Breast cancer and its subtypes. (A) Molecular classification. (B) Hormone receptor
status classification. (C) Histological classification. Created in BioRender. Lab, T. (2024) https:
//BioRender.com/u39p454 (accessed on 4 November 2024). HER2-enriched breast cancer carries
a high risk of recurrence and neoplastic dissemination [24–27]. Approximately no more than three
out of twenty breast cancer subtypes are classified as HER2 positive [24,26]. HER2-enriched breast
cancers have HER2 expression while lacking ER and PR [26,27]. Basal-like breast cancer constitutes
around one-fifteenth to one-fifth of all breast cancer incidences and lacks the expression of any
HR [13,26–28]. This results in TNBC being the most aggressive and metastatic subtype, with a
higher likelihood of early relapse and poor prognosis [13,27,28]. TNBC comprises six well-defined
subtypes: basal-like 1 (BL1), basal-like 2 (BL2), immunomodulatory (IM), luminal androgen receptor
(LAR), mesenchymal (M), and mesenchymal stem-like (MSL) [15,29–33]. Claudin-low breast cancer
(CLBC) is distinguished by reduced tight junction proteins such as Claudins 3 and 7 and adhesion
proteins [15,34,35]. CLBC represents 7–14% of all aggressive breast cancers and is connected to
a low survival rate, as these tumors typically test negative for ER, PR, and HER2 [15,34,35]. The
hormone receptor status can further categorize breast cancers based on hormone receptor expression
(HR+), such as ER- and PR-positive breast cancers [26,28,36]. Ductal carcinoma in situ (DCIS), lobular
carcinoma in situ (LCIS), Invasive Ductal Carcinoma (IDC), and Invasive Lobular Carcinoma (ILC)
are histological characteristics of breast cancer subtypes [23,26,34–36].

4. Immune System Regulation in Breast Cancer

The immune system is a sophisticated network that aids the body in defending against
diseases. The management of the defense mechanism in breast cancer is also a com-
plicated progression impacted by the defensive system’s cells and cancer cells and the
surrounding microenvironment, which encompasses cancer and stromal cells, an extra-
cellular matrix (ECM), signaling molecules, blood vessels, and hypoxic regions [26,37–39].
Cancer-associated fibroblasts are the primary cell type in the microenvironment [37,38,40].
In addition, it comprises a diverse array of immune cells (Figure 2), including lymphocytes,
macrophages, myeloid-derived stromal cells, and cytokines [37,41,42].
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Figure 2. The diversity of immune system cells in the cancer-associated environment of breast cancer 
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ber 2024). 

Figure 2. The diversity of immune system cells in the cancer-associated environment of breast
cancer [43–71]. Created in BioRender. Lab, T. (2024) https://BioRender.com/s56n309 (accessed on
4 November 2024).
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5. Breast Cancer Treatment Types

Breast cancer (BC) treatment necessitates a multidisciplinary approach due to its
various subtypes. There are numerous conventional and innovative treatment methods
available, including surgery, radiation therapy, chemotherapy, hormone therapy, and
immunotherapies [72]. These treatments can be used individually or in combination to
address breast cancer. For early-stage invasive breast cancer, surgery and mastectomy are
often preferred as they boast an 85–95% success rate in preventing tumor recurrence [72,73].
Radiotherapy plays a crucial role in the comprehensive treatment of breast cancer, and
it is frequently utilized in conjunction with surgical intervention and chemotherapy to
diminish the likelihood of disease recurrence, particularly subsequent to breast-conserving
surgery or mastectomy [74,75]. Chemotherapy is a standard treatment method for breast
cancer, incorporating the administration of drugs to eliminate cancer cells [72,76]. Its
applicability across various stages of breast cancer underscores its diverse therapeutic
purposes, tailored to individual cases, and it reduces the risk of recurrence of breast
cancer to only 30% [72,76,77]. Hormone therapy serves as a fundamental treatment for
hormone receptor-positive breast cancers, where cancer cells proliferate in response to
estrogen or progesterone [78–80]. This therapeutic approach operates by either obstructing
these hormones or diminishing their levels to decelerate or halt cancer progression [79–81].
Immunotherapy has garnered significant attention due to its potential to harness the
body’s defense system to develop innovative therapeutic strategies [82,83]. Adoptive cell
therapies (e.g., CAR-T cell therapy), vaccines (e.g., Personalized Peptide Vaccine), cytokine
therapies (e.g., anti-IL-1β), monoclonal antibodies (e.g., Herceptin and Pertuzumab), and
immune checkpoint (e.g., PD-1 and CTLA4) blockade represent foundational forms of
immunotherapy [72,82–89].

Different breast cancer treatment modalities have distinct advantages and limitations
depending on the breast cancer subtype. However, immunotherapy has been favored
over traditional therapies in recent years for several reasons. Unlike chemotherapy or
radiotherapy, which targets cancerous and healthy cells, immunotherapy harnesses the
body’s immune system to selectively attack cancer cells, resulting in fewer side effects
overall [84,90]. Although immunotherapy may have defense system-related side effects,
they are generally less severe than those associated with chemotherapy or radiation [89,90].
Immunotherapy has also shown significant success in treating aggressive forms of breast
cancer, such as TNBC, which is typically less responsive to hormonal or targeted thera-
pies [91]. The efficacy of immunotherapy in the treatment of various subtypes of TNBC
is known to vary, highlighting the ongoing need for safe and effective methods for both
prevention and treatment [90,92–95]. This challenge has sparked growing interest in com-
plementary approaches, such as dietary interventions rich in polyphenols, to enhance
treatment outcomes [94,95].

6. Polyphenols and Their Importance

Polyphenols represent a wide range of natural substances found in plant-derived
foods. They are known for their antioxidant impacts and have garnered significant atten-
tion due to their potential health advantages [96–98]. Structurally, polyphenols contain
multiple phenol units, which play a key role in their biological activity [96,99]. These com-
pounds are abundant in fruits, vegetables, tea, coffee, wine, spices, and whole grains [99].
Due to their wide availability in plant-based diets, polyphenols have become a central
focus in nutritional research, particularly concerning disease prevention and health promo-
tion [99]. Polyphenols (Figure 3) can be classified into four categories according to their
chemical structure.
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Flavonoids: This is the largest group of polyphenols, accounting for over half of
all dietary polyphenols. The basic framework is made up of two aromatic rings con-
nected by three carbons. Berries, citrus, oranges, onions, tea, and red wines are all rich
in flavonoids [100,101]. Subclasses of flavonoids include flavanols (e.g., quercetin and
catechins in green tea) and anthocyanins (e.g., pigments in berries) [102].

Phenolic Acids: These compounds contain a benzene ring with hydroxyl and carboxyl
groups and are prevalent in foods like coffee, whole grains, and certain fruits [103]. They
include caffeic acid and ferulic acid, both famous for their anti-cancer and inflammatory
properties [103].

Stilbenes: While less common than flavonoids with two interconnected benzene rings,
stilbenes such as resveratrol (found in grapes, red wine, and berries) are highlighted for the
potential significance of their role in promoting longevity and cancer prevention [104,105].

Lignans: Found in seeds, particularly flaxseeds, as well as whole grains and vegetables,
lignans are phytoestrogens that are believed to contribute to hormone-related cancer
prevention [106].

7. Dietary Polyphenols and Their Impact on Immune System

Dietary polyphenols have been shown to impact multiple aspects of immune function,
providing a means to restore or enhance anti-tumor immunity [107–109]. For instance,
EGCG, a green tea polyphenol, is highlighted for its ability to constrain the rapid growth of
cancer cells and promote apoptosis [110]. Beyond its direct effects on cancer cells, EGCG
modulates immune responses by boosting the activity of cytotoxic T cells and natural
killer cells, key players in targeting and killing cancer cells [109,111,112]. Additionally,
EGCG has been shown to downregulate immunosuppressive regulatory T cells (Tregs) and
myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment, thereby
restoring an environment conducive to immune-mediated tumor destruction [112,113].

Curcumin, another well-known polyphenol from turmeric, exerts immunomodulatory effects
by targeting a variety of immune pathways [112,114]. It can inhibit inflammation-stimulating im-
mune modulators such as IL-6 and TNF-α, which are often elevated in patients with cancer
and contribute to a chronic inflammatory state that promotes tumor growth [112,115,116].
Curcumin also elevates NK and dendritic cells’ activity, facilitating a more robust anti-
tumor immune response. Furthermore, its ability to modulate immune checkpoints, such
as programmed cell death protein 1 (PD-1), positions it as a favorable phytochemical

https://BioRender.com/q91l231
https://BioRender.com/q91l231


Nutrients 2024, 16, 4143 7 of 26

for potential synergistic application in conjunction with immune checkpoint inhibitors in
treating breast cancer [117,118].

Resveratrol, found in grapes and red wine, has also shown significant immunomodula-
tory potential. It has been reported to suppress the expression of programmed death-ligand
1 (PD-L1) in breast cancer cells, thereby reducing T cell exhaustion and promoting protec-
tion against tumor formation [119]. Resveratrol also influences the polarization of TAMs
from a tumor-promoting M2 phenotype to a tumoricidal M1 phenotype, creating a more
hostile environment for breast cancer cells [120,121].

The anti-inflammatory effects of quercetin, a flavonoid found in many fruits and
vegetables, contribute to its immunomodulatory potential in breast cancer [122]. Quercetin
can inhibit the formation of immune mediators that induce inflammation, like IL-1β and
IL-8, which contribute to a tumor-promoting inflammatory environment [123]. By reducing
this inflammation, quercetin may help to tip the balance in favor of an anti-tumor immune
response [124].

8. Role of Polyphenols in Regulating the Immune System

Polyphenols are well known for their antioxidant properties, but their role in immune
system regulation has gained increasing attention in recent years [3,125]. Polyphenols mod-
ulate immune responses through several mechanisms, affecting diverse aspects of immune
function by interacting with specific receptors on various defense system cells [3,109]. Their
immunomodulatory properties can contribute to the prevention and treatment of a range
of diseases, including breast cancer [126].

8.1. Modulation of Immune Cells

Polyphenols exert their effects by influencing assorted defensive cells, such as T
cells, B cells, NK cells, macrophages, and dendritic cells [3]. These immune cells possess
specific recognition units that interact with polyphenols. For example, EGCG binds to
the ZAP-70 receptor, whereas resveratrol links to the Sp1 receptor on different immune
cell types. This receptor–ligand correspondence initiates signaling cascades that promote
apoptosis and immune responses, such as increasing the activity of cytotoxic T cells and
NK cells [3,121,127–129]. In addition, polyphenols help balance the immune system by
stimulating the diversification of M1 macrophages (pro-inflammatory and anti-tumor) over
M2 macrophages (associated with tumor growth and immune suppression) [130]. This shift
in macrophage activity can enhance immunological monitoring and the body’s capacity to
fight tumors.

8.2. Regulation of Inflammatory Responses

Chronic inflammation is a major driver of many diseases, including cancer [131].
Polyphenols play a crucial role in modulating the inflammatory response, primarily by
affecting the production of cytokines—small signaling proteins that regulate immune and
inflammatory responses [128]. Polyphenols like curcumin (from turmeric) and quercetin
(from fruits and vegetables) reduce the secretion of cytokines driving inflammation, such as
TNF-α, IL-6, and IL-1β, related to prolonged inflammation response and tumor
progression [132,133].

At the same time, polyphenols promote the generation of interleukin-10, an inflam-
matory mediator, which helps mitigate excessive immune responses and prevent tissue
damage [134,135]. This ability to regulate the balance of inflammatory driving and pre-
vent cytokines helps maintain immune homeostasis and prevents the immune system
from becoming more activated, which can lead to autoimmune disorders or chronic
inflammation [3,135].

8.3. Immune Checkpoint Regulation

Cancer cells often evade detection and elimination by the immune system by exploiting
immune checkpoints, which are regulatory molecules expressed on immune cells that need
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to be activated or deactivated to start an immune response [136,137]. Polyphenols, such as
genistein (from soy) and resveratrol, govern these immune checkpoints [136]. For example,
they can inhibit the PD-1/PD-L1 pathway, a mechanism through which cancerous cells
subdue T cell activity, thereby helping the body’s defense system recognize and counteract
tumor cells more effectively [62].

PD-1 is a transmembrane binding site on immune cells, including helper and cytotoxic
T cells and NK cells [138–141]. The expression of PD-1 on T cells is governed by several
pathways, including HIF-1α, NF-κB, PI3K/AKT/mTOR, and JAK/STAT [136,139,142]. Its
ligand, PD-L1, is often overproduced in cancer cells, facilitating immune evasion [143].
The presence of PD-L1 in tumors is governed by the MAPK pathway, HIF-1α, and epi-
genetic mechanisms such as histone deacetylation, along with the JAK/STAT, Wnt, and
PI3K/AKT/mTOR pathways [136,139]. Polyphenols have the potential to inhibit these
pathways, reducing PD-L1 levels in cancer cells and enhancing T cell activation, which
improves the recognition of cancer cells.

8.4. Regulation of T Cells and B Cells

Polyphenols exert significant impacts on the adaptive defense system by modulating
lymphocytes’ activity. They are known to enhance the proliferation of B and T cells
while concurrently suppressing the function of regulatory T cells and specific subsets of
T helper cells, including Th9 and Th17 [3]. For example, resveratrol and curcumin can
promote a Th1-type response, which is essential for anti-tumor immunity, while reducing
the overactivation of Th2-type responses associated with allergic reactions and immune
suppression [144]. Polyphenols also aid in the production of antibodies that are crucial for
targeting pathogens and cancer cells by enhancing B cell function [111].

9. Synergistic Potential with Conventional Therapies

The immunomodulatory properties of dietary polyphenols suggest that they could be
used in conjunction with conventional cancer therapies [125,145–148]. Chemotherapy and
radiotherapy, while effective at killing tumor cells, often induce immunosuppressive effects,
which can limit their long-term efficacy [149]. Polyphenols have the potential to enhance
immune function, which could help mitigate the adverse effects associated with various
conditions. Although conventional treatments can also impact healthy cells, polyphenols
demonstrate the capacity to improve these outcomes due to their antioxidant properties,
thereby reducing the side effects that traditional therapies may impose on the defense
system. Furthermore, the integration of polyphenols with immunotherapeutic approaches,
such as immune checkpoint inhibitors, may yield a synergistic effect by augmenting the
activity of immune cells and overcoming the immune resistance mechanisms utilized by
breast cancer cells [150,151].

10. Epigenetic Regulation by Polyphenols in Cancer Immunomodulation

Beyond their direct interactions with immune cells, polyphenols can modulate im-
mune responses at the epigenetic level [111,152,153]. Epigenetic modifications, including
histone methylation, acetylation, and DNA methylation, are pivotal in regulating gene
expression [152,154,155]. Aberrant epigenetic changes are a hallmark of cancer, including
in breast cancer, where they can silence tumor suppressor genes and activate oncogenes [9].
Dietary polyphenols have been shown to reverse these modifications, thereby restoring
normal cellular functions and immune responses [156–158].

For example, EGCG has been reported to inhibit DNA methyltransferases (DNMTs),
enzymes that add methyl groups to DNA, and silence gene expression [159,160]. By inhibit-
ing DNMTs, EGCG can reactivate tumor suppressor genes and advocate the immune sys-
tem’s ability to dispose of breast cancer cells [160,161]. Similarly, curcumin has been shown
to modulate histone acetylation, thereby facilitating the reactivation of immune-related
genes that had been silenced in the tumor microenvironment. Furthermore, curcumin
influences the PD-1/PD-L1 immune checkpoint [9,162]. Moreover, resveratrol has been
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demonstrated to inhibit histone acetylation while regulating microRNAs, enhancing T cell
activation, and reducing tumor progression. Quercetin monitors histone acetylation and
modulates the subtype switching of macrophages.

11. Specific Polyphenols Used in Breast Cancer Treatment

As shown in Table 1, EGCG, resveratrol, curcumin, quercetin, genistein, apigenin,
and pterostilbene are commonly researched polyphenols for the primary prevention and
management of breast cancer [163–192].

Table 1. Common polyphenols used in breast cancer treatment.

Name Their Importance Epigenetic Effects Immunomodulatory Effects Found In

Epigallocatechin
gallate (EGCG)

Strong antioxidant and
anti-inflammatory properties
and potential anti-cancer
properties; inhibition of tumor
cell proliferation [163,164]

DNA methylation
inhibition, histone
modification, miRNA
expression changes [165]

It enhances cytotoxic T cell
function, inhibits Tregs, and
increases macrophages. It also
reduces inflammation and
suppresses NF-kB signaling
[166].

Green tea, white tea [167]
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Table 1. Cont.

Name Their Importance Epigenetic Effects Immunomodulatory Effects Found In

Pterostilbene

Antioxidant and
anti-inflammatory properties;
potential anti-cancer properties;
modulates lipid
metabolism [190]

Modulates histone
acetylation and DNA
methylation, affects
miRNA profiles [191]

It suppresses macrophage
activity and promotes
dendritic cells’ maturation and
has an antigen-presenting
function [192].

Blueberries, grapes,
heartwood of Pterocarpus
marsupium [190]
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EGCG (Figure 4) is a natural polyphenol, the most abundant catechin in green tea, 
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alloproteinases (MMPs), which play a crucial role in the progression and dissemination of 
tumors [194]. Furthermore, it exhibits anti-angiogenic properties by downregulating 
VEGF expression, thereby repressing new blood vessel generation that supplies tumors 
[195]. Preclinical studies have demonstrated that EGCG sensitizes breast cancer cells to 
conventional therapies, such as tamoxifen and trastuzumab, suggesting its potential as an 
adjunctive treatment [196,197]. 
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ences multiple pathways, reducing cell proliferation and promoting apoptosis by inhibiting the 
PI3K/AKT pathway and activating tumor suppressor proteins like p53, leading to Bax activation 

11.1. Epigallocatechin-3-Gallate (EGCG)

EGCG (Figure 4) is a natural polyphenol, the most abundant catechin in green tea,
and has been extensively studied for its anti-cancer properties, particularly in breast cancer.
Its effects on cancer cells include inhibiting cell proliferation, inducing apoptosis, and
modulating multiple signaling pathways, such as PI3K/Akt and MAPK [193]. EGCG has
been shown to inhibit EGFR or ErBb1 and 2, which are often found to be overexpressed in
breast cancer [193]. EGCG has also been shown to inhibit the expression of matrix metal-
loproteinases (MMPs), which play a crucial role in the progression and dissemination of
tumors [194]. Furthermore, it exhibits anti-angiogenic properties by downregulating VEGF
expression, thereby repressing new blood vessel generation that supplies tumors [195]. Pre-
clinical studies have demonstrated that EGCG sensitizes breast cancer cells to conventional
therapies, such as tamoxifen and trastuzumab, suggesting its potential as an adjunctive
treatment [196,197].
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Resveratrol (Figure 5), a stilbene found in grapes, berries, and peanuts, has gained 

significant attention for its chemo-preventive and healing impacts in resistance to breast 
cancer [149,198]. The mechanisms of resveratrol include inducing programmed cell death, 
inhibiting cell proliferation, and suppressing the growth of estrogen receptor (ER)-posi-
tive breast cancer by downregulating ERα signaling [199]. Resveratrol has been shown to 

Figure 4. The common impacts of EGCG (epigallocatechin gallate) in breast cancer. EGCG influences
multiple pathways, reducing cell proliferation and promoting apoptosis by inhibiting the PI3K/AKT
pathway and activating tumor suppressor proteins like p53, leading to Bax activation and BCL-2
suppression. EGCG blocks the Wnt/β-catenin and MAPK pathways, reducing COX-2 levels and
consequently lowering inflammation. It also suppresses matrix metalloproteinases (MMPs), pre-
venting extracellular matrix degradation and angiogenesis. Created in BioRender. Lab, T. (2024)
https://BioRender.com/e47a401 (accessed on 4 November 2024).
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11.2. Resveratrol

Resveratrol (Figure 5), a stilbene found in grapes, berries, and peanuts, has gained
significant attention for its chemo-preventive and healing impacts in resistance to breast
cancer [149,198]. The mechanisms of resveratrol include inducing programmed cell death,
inhibiting cell proliferation, and suppressing the growth of estrogen receptor (ER)-positive
breast cancer by downregulating ERα signaling [199]. Resveratrol has been shown to
inhibit metastasis in TNBC cell lines by altering the TGF-β1-induced epithelial matrix
transformation, thus providing promising primary prevention options for these types of
cancers that have no cure except for chemotherapies. Moreover, resveratrol influences
multiple molecular pathways, including the NF-κB and STAT3 pathways, which are crucial
for cancer cell survival and proliferation [200,201]. In TNBC, resveratrol has shown the
ability to reduce tumor growth by modulating the expression of oncogenic microRNAs and
increasing tumor suppressor genes. Its capacity to penetrate the blood–brain barrier hints
at its potential to help prevent the spread of breast cancer to the brain, which is a frequent
issue in the advanced stages of the disease [202].
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Figure 5. The immunomodulatory effects of resveratrol on cancer and inflammation. Resveratrol im-
pacts several signaling pathways and immune cells, contributing to anti-cancer and anti-inflammatory
actions. Resveratrol alters cancer hallmarks by suppressing inflammatory mediators while promoting
IL-10 production through the inhibition of the PI3K/AKT pathway. This influences tumor-infiltrating
immune cells, such as cytotoxic T cells, dendritic cells, Tregs, and tumor-associated macrophages,
enhancing immune response against tumors. It reduces TNF-α, impacting IL-2 and IL-10 levels, thus
modifying immune and inflammatory responses within the tumor microenvironment. Created in
BioRender. Lab, T. (2024) https://BioRender.com/e44e698 (accessed on 4 November 2024).

11.3. Curcumin

Curcumin, a key polyphenol (Figure 6) found in turmeric (Curcuma longa), is well
recognized for its anti-inflammatory and anti-cancer properties. In breast cancer, it targets
multiple signaling pathways, such as PI3K/Akt/mTOR and Wnt/β-catenin, which play
pivotal roles in tumor development and progression [203,204]. Curcumin promotes apop-
tosis in cancer cells by activating caspase enzymes and downregulating anti-apoptotic pro-
teins like Bcl-2 and Bcl-xL [205]. Moreover, it inhibits the epithelial–mesenchymal transition
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(EMT), a critical process involved in cancer metastasis [206]. Its anti-inflammatory effects
are particularly relevant in breast cancer as chronic inflammation is strongly linked to
tumor growth [207]. Additionally, curcumin enhances the effectiveness of chemotherapy
and helps combat drug resistance in breast cancer cells [207,208].
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tivity, quercetin significantly influences immune modulation, contributing to its tumor-
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eliminate cancer cells by activating cytotoxic T cells and regulating T-helper cell responses 
to ensure immune homeostasis. Quercetin also modulates macrophage activity, suppress-
ing the pro-inflammatory M1 phenotype and reducing the secretion of inflammatory cy-
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Figure 6. Important effects of curcumin on breast cancer. Curcumin suppresses Wnt and MAPK
pathways, along with epithelial–mesenchymal transition (EMT) in the tumor microenvironment,
histone acetylation, angiogenesis, and T-regulatory cells, which play significant roles in cancer
development. In contrast, curcumin activates dendritic cells, which promotes the secretion of IL-12
and activates cytotoxic T cells. Furthermore, curcumin stimulates macrophages, cytotoxic T cells, and
natural killer (NK) cells, leading to the activation of T helper cells and the increased apoptosis of tumor
cells. Notably, curcumin also reduces PD-1 expression on T cells, thereby enhancing the immune
response against tumor cells. Created in BioRender. Lab, T. (2024) https://BioRender.com/w77n343
(accessed on 4 November 2024).

11.4. Quercetin

Quercetin, a flavonoid (Figure 7) abundantly present in apples, onions, and citrus
fruits, exhibits potent oncolytic outcomes in breast cancer via multiple molecular and
cellular mechanisms [209]. It promotes apoptosis in breast cancer cells by upregulat-
ing pro-apoptotic proteins such as Bax and activating caspases while simultaneously
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reducing the levels of apoptosis-preventing proteins like Bcl-2 [210]. Beyond its direct
anti-cancer activity, quercetin significantly influences immune modulation, contributing
to its tumor-suppressive properties [3,211]. It enhances the immune system’s capacity to
target and eliminate cancer cells by activating cytotoxic T cells and regulating T-helper
cell responses to ensure immune homeostasis. Quercetin also modulates macrophage
activity, suppressing the pro-inflammatory M1 phenotype and reducing the secretion of
inflammatory cytokines such as TNF-α and IL-6, which are frequently elevated in tumor
microenvironments [212]. Concurrently, it promotes a shift towards the M2 macrophage
phenotype, fostering tissue repair and anti-inflammatory effects [133,213]. Furthermore,
quercetin enhances the cytotoxic function of natural killer (NK) cells, strengthening their
ability to directly target and destroy tumor cells [214]. The dual role of quercetin in immune
regulation and tumor suppression underscores its potential as a multifaceted agent for the
prevention and treatment of breast cancer.
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Figure 7. Diverse effects of quercetin on breast cancer. Quercetin effectively inhibits the PI3K pathway,
angiogenesis, DNA methylation, and the activity of myeloid-derived suppressor cells (MDSCs),
which typically suppress the functions of dendritic cells (DCs), macrophages, and T-regulatory cells.
Additionally, quercetin promotes the secretion of IL-10 and enhances histone acetylation. It also
activates T helper cells, natural killer (NK) cells, and monocytes, contributing to a more robust
immune response. Created in BioRender. Lab, T. (2024) https://BioRender.com/i98p170 (accessed
on 4 November 2024).
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11.5. Genistein

Genistein, a prominent soy-derived isoflavone, has gained considerable attention
for its role in breast cancer prevention and treatment [215]. Studies suggest that Asian
women consuming soy-rich diets have a lower incidence or occurrence of breast can-
cer [216]. In ER-positive breast cancer, genistein inhibits cell proliferation by compet-
ing with endogenous estrogens for ER binding, thereby reducing estrogen-driven tu-
mor growth [217]. Additionally, genistein inhibits tyrosine kinase activity, affecting key
signaling pathways such as PI3K/Akt and MAPK. This includes suppressing protein levels
like MEK5 (mitogen-activated protein kinase 5) and ERK5 (extracellular signal-regulated
kinase 5), [218–220], which are essential for cancer cell survival, consistent with cell growth
inhibition and the induction of apoptosis [221,222]. Genistein induces apoptosis primarily
through caspase activation, the modulation of endoplasmic reticulum stress regulators, and
an increase in the Bax/Bcl-2 ratio. Other proposed mechanisms include proteasome activity
inhibition, the downregulation of the anti-apoptotic protein survivin, and the suppression
of angiogenesis and tumor progression in breast cancer [223]. Finally, studies also indicate
that genistein enhances the efficacy of chemotherapeutic agents like tamoxifen, making it a
potential adjunctive therapy in breast cancer treatment [224].

11.6. Apigenin

Apigenin, a flavone present in parsley, celery, and chamomile, has demonstrated
promising anti-cancer properties in breast cancer research [225]. It exerts its effects by
inducing cell cycle arrest at the G2/M phase and triggering apoptosis through caspase-3
activation while downregulating anti-apoptotic proteins such as Bcl-2 [226]. Beyond
its pro-apoptotic activity, apigenin inhibits metastasis by reducing the expression of
matrix metalloproteinases (MMPs) and suppressing epithelial–mesenchymal transition
(EMT) [227,228]. Additionally, it mitigates inflammation within the tumor microenviron-
ment by inhibiting the NF-κB pathway, a critical regulator of inflammation-driven tumor
progression [229,230]. Notably, apigenin enhances the vulnerability of breast cancer cells to
radiation and chemotherapy, highlighting its feasibility as a complementary therapeutic
agent [231].

11.7. Pterostilbene

Pterostilbene, a naturally occurring demethylated derivative of resveratrol, is found in
blueberries and grapes. It has shown potential in breast cancer therapy through its strong
cancer-preventive features, including the inhibition of cell proliferation, the induction of
apoptosis, and the suppression of metastasis [232,233]. Notably, pterostilbene influences
key molecular pathways such as PI3K/Akt and JAK/STAT, which are essential for the
survival and growth of cancer cells [234]. In triple-negative breast cancer (TNBC) models,
pterostilbene has been shown to impede tumor growth and metastasis by reducing the
expression of oncogenic signaling molecules, including MMPs and VEGF [235,236]. Fur-
thermore, its antioxidant properties alleviate oxidative stress in cancer cells, amplifying its
therapeutic potential [192].

12. Discussion

Polyphenols constitute an assortment of naturally occurring nutrients common in
plant-based foods and have attracted considerable interest due to their multifaceted bioac-
tive properties [3,237]. These compounds are recognized for their antioxidant capabilities,
anti-inflammatory effects, the modulation of estrogen activity, the inhibition of carcinogenic
pathways, epigenetic modifications, and their roles in inhibiting angiogenesis and cellular
migration [3,5,97,238–241]. Additionally, polyphenols function as immunomodulators and
are readily accessible through dietary sources [12,98,242–244].

The potential of polyphenols as a primary preventive strategy for breast cancer is
particularly noteworthy given their immunomodulatory effects. Breast cancer is regarded as
one of the less immune-inducing cancer types; thus, enhancing the immune response within
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the tumor microenvironment may be advantageous for preventing disease onset [241,242].
Based on our comprehensive review of the existing literature, polyphenols may serve as
promising therapeutic agents for the treatment of various subtypes of breast cancer.

Empirical studies indicate that polyphenols can modulate the activity of several im-
mune cell types within the breast cancer tumor microenvironment [134,145]. For instance,
epigallocatechin gallate (EGCG) has been demonstrated to activate natural killer (NK)
cells and induce cytotoxic T cells, thereby promoting anti-tumor activity [109,111,112].
Similarly, pterostilbene has been shown to facilitate the transition of macrophages from
the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype [245]. This
phenotypic shift is instrumental in mitigating chronic inflammation and fostering tissue
repair, resulting in a more balanced immune response that is less susceptible to excessive
inflammatory damage. Moreover, polyphenols generally downregulate regulatory T cell
(Treg) expression within the tumor microenvironment, thereby counteracting immune
suppression [3]. Cancer cells frequently evade immune surveillance through mechanisms
that involve checkpoint inhibitors such as PD-1 [137]. However, polyphenols, including
genistein (derived from soy) and resveratrol, have been found to modulate these immune
checkpoints by inhibiting the PD-1/PD-L1 pathway [136,139,246]. This modulation en-
hances the immune system’s ability to recognize and effectively target tumor cells.

Current therapeutic modalities for breast cancer, including immunotherapy and
chemotherapy, primarily focus on the treatment or reduction in cancerous cells. These
approaches often lead to numerous undesirable outcomes, such as significant autoim-
mune reactions impacting the skin, liver, lungs, and other organs [137,247]. Additionally,
the high costs associated with immunotherapy and the requirement for frequent clinical
administration constrain its applicability as a widespread preventive measure. Notably,
these conventional treatments do not emphasize cancer prevention at the initial stages.
In contrast, polyphenols are naturally present in various dietary sources and can be con-
sumed regularly without necessitating medical supervision [248]. The long-term intake of
polyphenol-rich foods has been linked to minimal side effects, thus rendering them suitable
for strategies aimed at the primary prevention of breast cancer [249].

13. Conclusions

To enhance the effectiveness of immunotherapy and polyphenols for specific breast
cancer subtypes, particularly triple-negative breast cancer (TNBC), researchers are ex-
amining combination treatments that pair immunotherapy drugs with polyphenols or
integrate various polyphenolic compounds. However, polyphenols can interact with
certain medications and foods due to their distinct composition, potentially leading to
adverse effects [134]. Moreover, their low absorption and fast elimination from the body
present challenges for their use as therapeutic agents in clinical practice, underscoring the
need for further research in this area [98,134]. Future investigations should continue to
explore how polyphenols contribute to cancer prevention and their potential synergistic
effects alongside other preventive strategies, such as lifestyle modifications and targeted
therapies [125,145–148].
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Abbreviations

Akt Protein Kinase B
Bax BCL2-Associated X (Apoptosis Regulator)
BC Breast Cancer
Bcl-2 B Cell Lymphoma Protein 2
Bcl-xl B Cell Lymphoma-Extra Large
BL1 Basal-Like 1
BL2 Basal-Like 2
CAFs Cancer-Associated Fibroblasts
CAR-T Chimeric Antigen Receptor T cells
CDK4 Cyclin-Dependent Kinase 4
CLBC Claudin-Low Breast Cancer
CTLs Cytotoxic T lymphocytes
CTLA4 Cytotoxic T Lymphocyte-Associated Protein 4
DC Dendritic Cells
DCIS Ductal Carcinoma In Situ
ECM Extracellular Matrix
EGCG Epigallocatechin Gallate
ER Estrogen Receptor
ER+ Estrogen Receptor-Positive
EMT Epithelial–Mesenchymal Transition
HER2 Human Epidermal Growth Factor 2
HER2+ Human Epidermal Growth Factor 2-Positive
HR Hormone Receptor
HR+ Hormone Receptor-Positive
HIF-1α Hypoxia-Inducible Factor 1-Alpha
JAK/STAT Janus Kinase–Signal Transducer and Activator of Transcription
IDC Invasive Ductal Carcinoma
ILC Invasive Lobular Carcinoma
IM Immunomodulatory
LAR Luminal Androgen Receptor
LCIS Lobular Carcinoma In Situ
M Mesenchymal
M1 M1-Type Macrophage
M2 M2-Type Macrophage
MAPK Mitogen-Activated Protein Kinase
MDSCs Myeloid-Derived Suppressor Cells
MEK5 Mitogen-Activated Protein Kinase 5
MSL Mesenchymal Stem-Like
MMP Matrix Metalloproteinase
mTOR Mammalian Target of Rapamycin
NFκB Nuclear Factor Kappa B
NK Cells Natural Killer Cells
PD-1 Programmed Cell Death Protein 1
PD-L1 Programmed Death-Ligand 1
PI3K Phosphoinositide 3-Kinase
PR Progesterone Receptor
PR+ Progesterone Receptor-Positive
Sp1 Transcription Factor-Specific Protein 1
STAT3 Signal Transducer and Activator of Transcription 3
TAMs Tumor-Associated Macrophages
Th1 Type 1 T Helper
Th2 Type 2 T Helper
Th9 Type 9 T Helper
Th17 Type 17 T Helper
TME Tumor Microenvironment
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TNBC Triple-Negative Breast Cancer
Tregs Regulatory T Cells
VEGF Vascular Endothelial Growth Factor
ZAP-70 Zeta Chain-Associated 70kDa Protein Receptor
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