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Abstract: The integration of machine learning (ML) into material manufacturing has driven advance-
ments in optimizing biopolymer production processes. ML techniques, applied across various stages
of biopolymer production, enable the analysis of complex data generated throughout production,
identifying patterns and insights not easily observed through traditional methods. As sustainable
alternatives to petrochemical-based plastics, biopolymers present unique challenges due to their
reliance on variable bio-based feedstocks and complex processing conditions. This review system-
atically summarizes the current applications of ML techniques in biopolymer production, aiming
to provide a comprehensive reference for future research while highlighting the potential of ML to
enhance efficiency, reduce costs, and improve product quality. This review also shows the role of
ML algorithms, including supervised, unsupervised, and deep learning algorithms, in optimizing
biopolymer manufacturing processes.
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1. Introduction

Biopolymers have garnered significant attention as sustainable alternatives to petroleum-
based plastics due to their biodegradability and reduced environmental impact [1]. With the
increasing awareness of environmental issues, industries are actively seeking ways to re-
duce plastic waste [2,3], and biopolymers have emerged as a key solution [4]. They are
derived from renewable biological sources such as plants [5], algae [6], and microorgan-
isms [7], offering a promising path to reduce the reliance on fossil fuels and mitigate the
growing problem of plastic pollution. Their biodegradability is an advantage, as it ensures
that these materials can break down into non-toxic components in the environment, con-
tributing to a more sustainable and circular economy. As a result, biopolymers are finding
expanding applications across various sectors, such as packaging [8], agriculture [9], auto-
motive [10], textiles [11], and biomedical fields [12], where environmental sustainability
and product performance are equally important.

The growing demand for biopolymers [13,14] has prompted the need for efficient, scal-
able manufacturing processes. However, the production of biopolymers presents several
challenges that need to be addressed to fully capitalize on their potential. The manufac-
turing process involves complex biochemical reactions, including fermentation [15–23],
polymerization [7,24–32], and extraction [33–42], which are highly sensitive to variations
in raw material quality, environmental conditions, and process parameters. Even minor
fluctuations in temperature [43–47], pH levels [48–52], or nutrient concentrations [9,53–56]
during fermentation can significantly affect the yield and properties of the final product.
Similarly, inconsistencies in raw materials [57–61]—such as variations in the composition
of feedstocks or impurities—can disrupt polymerization and extraction processes, leading
to inefficiencies, increased waste, and deviations from desired product specifications.
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These fluctuations not only pose challenges for maintaining consistent product quality
but also hinder scalability, as small-scale optimization techniques often fail to account for the
variability encountered in large-scale operations [62]. Furthermore, the growing emphasis
on sustainability compounds these challenges. Manufacturers must ensure that fluctuations
do not compromise the eco-friendliness of the process, requiring continuous monitoring,
precise control systems, and innovations in workflow optimization to minimize resource
consumption, reduce emissions, and manage waste effectively [63–72]. Balancing these
technical and environmental demands is crucial to achieving both production efficiency
and long-term sustainability goals.

Machine learning (ML) offers promising solutions to these challenges by enabling
real-time data processing [73], predictive modeling [74], and optimization of production
workflows [75]. The integration of ML in biopolymer manufacturing can facilitate more
precise control over the various stages of production, improving the consistency and quality
of the final product. ML-driven predictive models can anticipate potential variations in raw
material quality or environmental conditions [76,77], allowing manufacturers to adjust their
processes proactively to maintain efficiency and sustainability. Moreover, ML can help to
optimize energy consumption [78], reduce waste [79], and streamline logistics [80], further
enhancing the overall sustainability of biopolymer production. ML algorithms, for instance,
can analyze vast datasets from production lines to identify patterns and suggest process
improvements, while ML-powered sensors [81] can monitor real-time performance metrics
to ensure optimal operating conditions. A keyword map (Figure 1) was created using
VOSviewer to analyze the scientific literature on the application of ML in biopolymers.
This visualization highlights key topics, research directions, and their interconnections,
providing insights into current trends and promising areas of study.
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Figure 1. Keyword map from articles on the application of ML in biopolymers.

ML has already made a significant impact in fields such as materials science and chem-
ical engineering, and its transformative potential in biopolymers is becoming increasingly
evident. For example, in materials science, ML has been used to predict material proper-
ties [82–84,84–90], optimize the design of alloys [84,90–98], and accelerate the discovery of
novel materials [99–108]. Building on tools like ab initio calculations, density functional
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theory (DFT), and quantum chemistry databases, ML integrates computational and ex-
perimental approaches, facilitating breakthroughs in catalyst design, energy materials,
and drug discovery [109].

The application of ML to biopolymers faces several challenges. Data quality and
availability are key issues, as biopolymer systems involve complex variables and often
suffer from sparse, noisy, or incomplete datasets, leading to overfitting or unreliable
predictions [72,110–114]. Additionally, the nonlinear and multifactorial nature of biopoly-
mer processes (e.g., fermentation, polymerization, extraction) complicates modeling with
existing ML algorithms, which may assume simpler linear relationships [115–118]. Inter-
pretability [119–128] is another challenge, as many ML models, especially deep learning,
are seen as “black boxes”, making it difficult to understand the reasons behind predictions.
This lack of transparency hinders trust and limits adoption in industrial settings where
clear explanations are essential. ML models also struggle with scalability and generaliza-
tion [128–137]; those trained on small-scale data often fail to perform well in larger, more
variable real-world environments, restricting their broader application. Finally, the compu-
tational requirements [138–147] of advanced ML models can be a barrier for researchers
and small manufacturers lacking access to high-performance computing resources, further
complicating real-time model deployment in biopolymer production.

Recent reviews on biopolymers and the application of ML underscore the growing
need for innovative approaches to address challenges associated with variable feedstock
properties and complex manufacturing processes. These studies highlight the potential of
ML to optimize key production stages, enhance sustainability, and improve the quality of
final products across various industries.

In tissue engineering, significant advancements over the past 30 years have positioned
additive manufacturing (AM) as a tool for replacing and regenerating injured tissues. AM,
particularly 3D printing, is recognized as an effective method for synthesizing conducting
polymer-based materials in applications such as flexible electronics, bioelectronics, and en-
ergy storage [148]. Das et al. [149] focus on gelatin methacryloyl (GelMA) as a versatile
biomaterial for 3D bioprinting, discussing strategies to optimize its rheological, mechanical,
and biophysical properties. Their review also explores the potential integration of artificial
intelligence (AI) and ML to predict printability and functionality for clinically relevant
applications, emphasizing the transformative role of computational tools in advancing
tissue engineering solutions.

Similarly, the rising global prevalence of diabetes calls for innovative solutions,
with hydrogel-based systems emerging as promising alternatives for non-invasive di-
agnosis, management, and treatment. Rahmani et al. [150] review the potential of hy-
drogels, their integration with Internet of Things (IoT) and ML technologies, and their
role in advancing personalized and proactive diabetes care. These technologies offer new
opportunities to improve patient outcomes through continuous monitoring and tailored
therapeutic approaches.

In the food industry, consumer demand for safe and high-quality meat has driven the
development of anthocyanin-based materials for real-time freshness monitoring.
Xiong et al. [151] review recent advances in anthocyanin-based films, hydrogels, aero-
gels, and colorimetric sensor arrays. Their work highlights the potential of these materials
to provide intuitive color signals indicating spoilage, while also addressing challenges
related to sensitivity, stability, and integration with technologies like smartphones and ML
for enhanced performance.

Furthermore, the integration of ML with algae-derived biopolymers, such as alginate
and carrageenan, is transforming 3D printing by enabling sustainable and efficient additive
manufacturing processes. Bin et al. [152] discuss advancements and challenges in this field,
emphasizing ML’s role in optimizing material selection, predictive modeling, and quality
control. Their findings demonstrate how the combination of ML and algae-based biopoly-
mers can enhance mechanical properties and expand applications, particularly in areas
such as bone tissue engineering.
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The existing reviews highlight ML’s potential in biopolymer applications but overlook
its specific role in optimizing manufacturing processes. A focused review is needed
to address how ML can tackle challenges like feedstock variability, process efficiency,
and product quality in biopolymer production.

This review aims to provide an overview of ML’s applications in the biopolymer
manufacturing industry, outlining the potential of various ML techniques in improving pro-
duction efficiency and sustainability. It explores key ML methodologies such as supervised
and unsupervised learning, and how they are being utilized to address specific challenges
in biopolymer production. Additionally, the review considers the future outlook of ML
in the biopolymer industry, examining the potential for further innovations that could
drive cost reductions, enhance material properties, and facilitate the development of new,
advanced biopolymers that meet the demands of an evolving global market. To provide a
clear structure, this review is organized as follows. It begins with an overview of biopoly-
mer manufacturing (Section 2), covering key stages such as feedstock selection (Section 2.1),
fermentation (Section 2.2), polymerization and extraction (Section 2.3), and quality control
with post-processing techniques (Section 2.4). The discussion then shifts to the role of ML
techniques in process optimization (Section 3), detailing approaches such as supervised
learning (Section 3.1), unsupervised learning (Section 3.2), and neural networks with deep
learning applications (Section 3.3). Challenges associated with integrating ML into biopoly-
mer research are outlined in Section 4, followed by an exploration of future directions for
advancing ML-driven solutions in this field (Section 5).

2. Overview of Biopolymer Manufacturing

Biopolymers are polymers derived from natural sources, including plants [153,154],
animals [155,156], and microorganisms [7,157]. Unlike conventional petroleum-based plas-
tics, biopolymers are sourced from renewable materials [158–160], which makes them
highly attractive in the push for sustainable materials. They are biodegradable or com-
postable in many cases, reducing environmental impact and waste accumulation. Common
types of biopolymers include polyhydroxyalkanoates (PHAs) [161,162], polylactic acid
(PLA) [163,164], and starch-based polymers, each with unique properties suitable for var-
ious industrial applications. For instance, PHAs are microbial biopolymers that can be
customized for diverse applications, while PLA, derived from fermented plant sugars, is
widely used in packaging due to its favorable mechanical properties and biodegradability.
Starch-based polymers, produced from plant-based starch, are often employed in food
packaging and agricultural films.

ML is increasingly applied in biopolymer manufacturing to optimize the design, syn-
thesis, and processing of biopolymers across various industries. By analyzing complex
datasets, ML techniques can predict and enhance the functional properties of biopolymers,
such as biodegradability, mechanical strength, and stability, enabling more efficient pro-
duction processes, material selection, and product customization for applications in food,
pharmaceuticals, packaging, and biomedical fields.

The production process of biopolymers typically involves several key stages that
require careful control and optimization to ensure the quality and sustainability of the
final product.

2.1. Feedstock Selection

The use of traditional food-based feedstocks like corn starch [165] or sugarcane [166]
has been widely adopted due to their high availability and consistent quality, making
them suitable for the large-scale production of biopolymers such as polylactic acid (PLA).
However, these feedstocks can compete with food crops for arable land and water resources,
raising concerns about their impact on food security and land use [167]. This has led to
an increased interest in using non-food biomass as an alternative, including agricultural
residues (such as corn stover, wheat straw, or rice husks), forestry waste, and industrial
by-products. These materials offer a more sustainable option, as they do not compete
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directly with food production and often represent waste streams that would otherwise go
unused or be disposed of.

Using non-food biomass can reduce the overall environmental impact of biopolymer
production [168]. For instance, agricultural residues that are left over after crop harvest-
ing, such as straw or husks, can be collected and processed into valuable feedstocks for
biopolymer production without requiring additional land or resources [169]. Similarly,
industrial by-products, such as lignin from paper production or glycerol from biodiesel
manufacturing, can be repurposed, reducing waste and improving the circularity of in-
dustrial processes [170]. This not only minimizes the carbon footprint associated with
raw material extraction but also enhances the sustainability of biopolymer production by
diverting waste from landfills or incineration.

However, the quality of these alternative feedstocks can vary significantly due to
factors such as geographic location [171], climate [39], and farming practices [64]. For ex-
ample, agricultural residues from different regions or seasons may have different moisture
content, fiber composition, or levels of impurities, all of which can affect the efficiency of
fermentation and polymerization processes [172]. Climate conditions such as drought or
excessive rainfall can also alter the chemical composition of plants, leading to fluctuations
in the availability of sugars or starches that are essential for biopolymer production [173].
In regions with inconsistent farming practices or where crop management varies, the feed-
stock may require additional pretreatment steps, such as cleaning or fractionation, to ensure
it meets the quality standards necessary for biopolymer synthesis [174].

Furthermore, the supply chain logistics of sourcing feedstock from agricultural waste
or non-food biomass can be complex [175]. Collecting, transporting, and storing large
quantities of biomass often present logistical challenges due to the bulkiness and sea-
sonal availability of these materials. In some cases, the energy required to process and
transport low-density biomass can offset the environmental benefits of using renewable
feedstocks [176]. To address these challenges, advancements in biorefining technologies are
being developed to improve the conversion efficiency of various feedstocks into polymer
precursors and optimize the overall sustainability of the production process [177]. Figure 2
is a visual representation of the key factors related to biopolymer feedstock selection and
sustainability consideration.

2.2. Fermentation

In the fermentation stage, microorganisms such as bacteria [178], yeast [179], or fungi [180]
convert renewable feedstocks into polymer precursors, which are the building blocks of
biopolymers. This bioconversion process is highly dependent on the metabolic capabilities
of the selected microorganisms and the specific fermentation conditions. The microor-
ganisms used in fermentation act as biocatalysts, breaking down the feedstock—typically
composed of sugars, starches, or lipids—into simpler molecules such as organic acids or
alcohols. These precursor molecules are then used in subsequent steps to produce various
biopolymers [181,182].

For example, in the production of polylactic acid (PLA), specific strains of lactic acid
bacteria (e.g., Lactobacillus spp.) are employed to ferment sugars derived from feedstocks
such as corn, sugarcane, or other carbohydrates [183]. During fermentation, these bac-
teria metabolize the sugars and convert them into lactic acid, a key precursor for PLA
production [183]. Once lactic acid is produced, it undergoes polymerization to form
PLA, a biodegradable thermoplastic that is widely used in packaging, disposable cutlery,
and biomedical applications.

Similarly, polyhydroxyalkanoates (PHAs) are another class of biopolymers produced
through microbial fermentation. In PHA production, bacteria such as Cupriavidus neca-
tor or Ralstonia eutropha are typically used to ferment sugars, lipids, or other organic
substrates [184–186]. Under conditions of nutrient limitation (such as nitrogen or phos-
phorus deficiency), these bacteria accumulate PHAs intracellularly as carbon and energy
storage compounds. The PHAs are then harvested from the bacterial cells and processed
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into biodegradable plastics with a range of applications, from packaging materials to
medical devices.
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Figure 2. Biopolymer feedstock selection and sustainability considerations.

The selection of the microorganism strain is perhaps the most important factor in fer-
mentation. Different strains have varying metabolic pathways, growth rates, and tolerance
to environmental conditions. For instance, some bacterial strains may be more efficient at
converting specific feedstocks into lactic acid or PHAs, while others may be more resistant
to by-products that could inhibit fermentation [187]. Genetic engineering and synthetic
biological techniques have also enabled the development of engineered microbial strains
with enhanced fermentation capabilities [188]. These engineered strains can exhibit higher
productivity, increased substrate versatility, and reduced by-product formation, all of which
contribute to a more efficient fermentation process.

The composition and quality of the feedstock used in fermentation affect the efficiency
of microbial activity [189]. Feedstocks rich in fermentable sugars, such as glucose, fructose,
or sucrose, are often preferred for high-yield lactic acid or PHA production. However,
feedstocks can vary in their composition, particularly when derived from agricultural
residues or industrial by-products [190]. Complex feedstocks may contain inhibitors such
as lignin, phenolic compounds, or heavy metals, which can slow down microbial growth
or reduce the yield of polymer precursors [191]. To address these challenges, pretreatment
processes such as enzymatic hydrolysis, acid or alkali treatments, or steam explosion
may be required to break down complex biomass into fermentable sugars, enhancing the
efficiency of fermentation [192].

The fermentation environment impacts the determination of the productivity of mi-
croorganisms. Maintaining optimal conditions for temperature [193], pH [194], and oxygen
levels (in the case of aerobic fermentation) is essential for maximizing microbial growth
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and metabolic activity [195]. Each microorganism strain has a specific range of temperature
and pH where it performs optimally. For instance, the Lactobacillus species used in lactic
acid production typically thrive at moderately acidic pH values (around pH 5–6) and tem-
peratures ranging from 30 to 40 °C [196,197]. Deviations from these optimal conditions can
slow down fermentation, reduce yields, or lead to the formation of unwanted by-products
such as acetic acid or ethanol. In some cases, the process may need to be aerobic [198]
(with oxygen) or anaerobic [199] (without oxygen), depending on the metabolic pathway of
the microorganism. Therefore, precise control over these variables is crucial for achieving
efficient biopolymer precursor production.

The duration of fermentation also affects the final yield of polymer precursors. Longer
fermentation times may lead to higher yields but can increase operational costs and energy
consumption [200]. Conversely, shorter fermentation times can reduce costs but may result
in lower yields if microbial growth and metabolism are not fully optimized [201]. Batch,
fed-batch, and continuous fermentation processes are commonly used to balance yield
and efficiency. In a batch fermentation, the feedstock is added at the beginning, and the
process runs until completion [202]. Fed-batch fermentation allows for the gradual addition
of feedstock, enabling better control over microbial growth and product formation [203].
Continuous fermentation, on the other hand, enables the constant input of feedstock and
removal of products, allowing for more consistent yields and higher productivity over
time [204].

During fermentation, unwanted by-products can form due to suboptimal condi-
tions or microbial metabolic pathways [205]. These by-products, such as acetic acid,
ethanol, or hydrogen sulfide, can inhibit microbial growth, lower the yield of polymer
precursors, and increase the need for costly purification steps. By optimizing the fer-
mentation conditions—such as adjusting nutrient concentrations, pH levels, or oxygen
availability—manufacturers can minimize by-product formation and improve the effi-
ciency of precursor production. The metabolic engineering of microorganisms is also
being used to reprogram metabolic pathways, reducing the production of by-products
and improving the conversion efficiency of feedstock into biopolymer precursors [206].

Given the complexity of microbial fermentation, maintaining optimal conditions is
crucial for maximizing the yield of polymer precursors and minimizing the formation of
by-products. Advances in bioprocess monitoring and control technologies are helping
to improve the precision of fermentation processes. For instance, real-time sensors and
monitoring systems can track variables such as temperature, pH, oxygen levels, and mi-
crobial growth rates [207]. These systems are increasingly integrated with ML algorithms,
which can analyze large datasets in real-time and predict optimal conditions for maximiz-
ing yield. ML can also adjust fermentation parameters dynamically based on real-time
data, improving process stability and ensuring a consistent production of high-quality
polymer precursors [208]. Figure 3 is a visual representation of the key factors influencing
fermentation in biopolymer production.

2.3. Polymerization and Extraction

After the production of polymer precursors via fermentation, the next stage in biopoly-
mer manufacturing involves polymerization and extraction. These processes transform
the monomeric precursors, such as lactic acid or hydroxyalkanoates, into long-chain poly-
mers that exhibit the desired mechanical and thermal properties [184]. The choice of
polymerization method, extraction techniques, and subsequent purification affects the final
properties of the biopolymer, as well as the overall sustainability and cost-effectiveness of
the manufacturing process [209–211].

Polymerization is the chemical process by which monomer molecules are joined to
form long-chain polymers [212–214]. In biopolymer production, this step can involve
different techniques depending on the specific biopolymer being synthesized. The two
primary methods for polymerizing biopolymers like polylactic acid (PLA) [215–217] and
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polyhydroxyalkanoates (PHAs) [218–220] are chemical polymerization and microbial syn-
thesis, respectively.

Fermentation Process

Microorganism Selection
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pH Level Optimization

Oxygen Level

Nutrient Availability

fungibacteria yeast

lipidssugars starches
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(C6H10O5)n
Temperature Control

рН

Figure 3. Key factors influencing fermentation in biopolymer production.

In the production of polylactic acids (PLAs), the precursor lactic acid undergoes
two main types of polymerization.

Lactic acid monomers are linked together via condensation reactions, during which
water is released as a by-product [221]. This method is typically used for creating low-
to-medium-molecular-weight PLAs. However, it is often less efficient for achieving high-
molecular-weight polymers, which are needed for certain applications that require greater
mechanical strength.

To produce higher-quality PLAs, the lactic acid is first converted into lactide, a cyclic
dimer, which then undergoes ring-opening polymerization. In this process, a catalyst (often
a metal-based catalyst) initiates the opening of the lactide ring, allowing it to polymerize
into long PLA chains. ROP is the preferred method for producing high-molecular-weight
PLAs due to its ability to create strong, durable polymers with controlled molecular
architecture [222,223]. The temperature, catalyst type, and reaction time must be carefully
optimized to achieve the desired polymer properties, such as molecular weight, crystallinity,
and thermal stability.

Unlike PLAs, polyhydroxyalkanoates (PHAs) are synthesized directly by microor-
ganisms through a biological polymerization process. In nutrient-limited conditions (e.g.,
limited nitrogen or phosphorus), certain bacterial strains such as Cupriavidus necator
or Ralstonia eutropha store carbon and energy in the form of intracellular PHA gran-
ules [224]. These granules, consisting of long-chain PHA polymers, are stored inside the
bacterial cells as reserve materials. The composition and properties of the PHA polymer
can vary depending on the microorganism and the carbon source used in fermentation.
For instance, the production of poly(3-hydroxybutyrate) (PHB), the most common PHA,
is optimized by adjusting the feedstock and fermentation conditions [225]. After micro-
bial synthesis, the PHA polymer needs to be extracted from the cells through physical or
chemical processes.

Once the polymerization stage is complete, the next challenge is to extract the biopoly-
mer from the reaction medium or, in the case of PHAs, from the microbial cells them-
selves [226]. Extraction techniques vary depending on the biopolymer and production
process, but the goals are to isolate the polymer with high purity and ensure that its
properties are not degraded during extraction [35].
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For PLAs, the polymerized material needs to be separated from the reaction medium
and any residual catalyst [227]. This is typically performed using filtration, precipitation,
or solvent-based methods, depending on the production scale and the intended use of
the PLA. The extracted PLA is then purified to remove any unreacted monomers or by-
products. For commercial-scale production, processes such as melt filtration or solvent
precipitation are often employed to produce high-purity PLA granules. After purification,
the polymer is typically dried to remove any moisture, which can degrade the polymer
during storage or further processing [228,229].

For PHAs, the extraction process is more complex because the polymer is stored inside
microbial cells [219]. Several methods can be used for extracting PHAs. Organic solvents
like chloroform, acetone, or methylene chloride can be used to dissolve the PHA granules
from the bacterial cells [230]. This is a widely used method, but it can be energy-intensive
and may involve toxic solvents, raising concerns about environmental safety and waste
disposal. Another method involves the mechanical disruption of the bacterial cells, using
techniques such as high-pressure homogenization, sonication, or bead milling, to physically
break open the cells and release the PHA granules [35,231,232]. Once released, the PHA is
recovered using filtration or centrifugation. More environmentally friendly methods in-
volve enzymatic degradation of the non-PHA cellular components [233], or aqueous-based
extraction [234], where the cell material is solubilized in water under specific conditions,
leaving the PHA granules intact. These methods are still being optimized for industrial-
scale applications but offer the advantage of reducing the need for toxic solvents.

Once extracted, the biopolymers undergo purification to remove impurities, unreacted
monomers, residual solvents, and other by-products that could affect their performance
or safety [26]. The specific purification methods depend on the type of polymer and the
extraction process used. For example, PLA purification often involves solvent evaporation
or crystallization techniques, while PHA purification may require additional washing and
drying steps to remove residual bacterial cell fragments or solvents [235].

The purified polymers may then undergo post-processing to tailor their physical
properties for specific applications [236]. This can include adjusting their molecular weight,
crystallinity, or blending with other additives to enhance properties such as flexibility,
impact resistance, or thermal stability. For instance, PLA might be blended with plasti-
cizers to improve its flexibility for use in packaging, while PHAs might be blended with
other biopolymers to enhance their durability for use in medical devices or agricultural
films [237,238].

The extraction and purification steps in biopolymer production are often energy-
intensive, involving processes like solvent evaporation, filtration, and drying, which require
energy inputs [239]. For example, Kavitake et al. [240] focused on the extraction, purifica-
tion, and characterization of an exopolysaccharide (EPS) from Enterococcus hirae OL616073,
a strain isolated from Indian fermented food. The EPS was purified using ion exchange
and size exclusion chromatography, yielding two major fractions with molecular masses of
7.7× 104 and 6.5× 104 Da. Structural analysis by FTIR, HPTLC, GC-MS, and NMR revealed
that the EPS is a homopolysaccharide composed of glucose with α-(1 → 6) and α-(1 → 3)
glycosidic linkages. The EPS demonstrated excellent physico-functional properties, includ-
ing high water solubility, oil holding capacity, emulsifying activity, and shear-thinning
rheology. These findings suggest that this EPS could be a promising functional biopoly-
mer for applications in the food and pharmaceutical industries. If not carefully managed,
these processes can offset the environmental benefits of using renewable feedstocks and
biodegradable materials. The use of organic solvents in extraction, in particular, poses
environmental challenges due to the potential for solvent emissions, hazardous waste,
and energy consumption in solvent recovery or disposal.

To ensure that the environmental advantages of biopolymers are maintained, manu-
facturers are focusing on developing more energy-efficient and environmentally friendly
extraction methods. For example, there is growing interest in using supercritical CO2
extraction as an alternative to organic solvents [241,242]. Supercritical CO2 is a non-toxic,



Polymers 2024, 16, 3368 10 of 45

non-flammable solvent that can be used at relatively low temperatures, reducing energy
consumption and eliminating hazardous solvent waste [243]. The extraction of rare and
precious metals from waste is becoming essential as mineral resources deplete, with super-
critical CO2 extraction emerging as a promising, eco-friendly solution. Supercritical CO2
has unique properties, such as liquid-like solubility and gas-like mass transfer, allowing
it to penetrate porous materials and extract metals effectively [244]. This method can be
optimized by adjusting temperature and pressure to selectively dissolve and recover target
metals while reducing unwanted by-products and solvent waste. Studies demonstrate high
efficiency in extracting metals like copper, lead, and rare earth elements using supercrit-
ical CO2 combined with modifiers. Compared to conventional hydrometallurgical and
pyrometallurgical methods, supercritical CO2 offers enhanced sustainability and purity.
By improving process parameters and integrating advanced techniques, this technology
has the potential to revolutionize waste recycling and metal recovery. Similarly, advances
in biorefining technologies aim to integrate biopolymer production with other bio-based
processes to minimize energy use and maximize resource efficiency [245]. Figure 4 is a
diagram illustrating the stages and key steps involved in polymerization and extraction
during biopolymer production.

Polymerization Process

                                                   Polylactic Acid

 produced by bacteria

Batch FermentationPolymerization Method Selection:

Chemical Polymerization

E.g., Ring -Opening                       
Polymerization

Suitable for PLA 

Microbial Synthesis

E.g., Polyhydroxyalkanoates produced by bacteria
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Catalyst Type Temperature Control

Reaction Time Optimization
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Figure 4. Stages and key steps involved in polymerization and extraction during biopolymer production.

2.4. Quality Control and Post-Processing

After the polymerization stage, biopolymers undergo quality control to ensure that
they meet the desired specifications for mechanical strength, thermal stability, and biodegrad-
ability [55,246]. Any inconsistencies in the polymer’s properties—such as molecular
weight, crystallinity, or impurity levels—can affect the final product’s usability, dura-
bility, and biodegradability [247]. Quality control typically involves testing for mechanical
properties, thermal stability, molecular weight, purity, and crystallinity. For example, me-
chanical strength is tested through tensile tests to ensure that the material can withstand
the required stress for applications like packaging or automotive components [248,249].
Thermal stability, tested using differential scanning calorimetry (DSC) or thermogravimet-
ric analysis (TGA), ensures that the polymer can endure temperature variations without
degrading [250,251]. Molecular weight and purity are evaluated using techniques like
gel permeation chromatography (GPC) or nuclear magnetic resonance (NMR), while crys-
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tallinity, which affects the polymer’s flexibility and transparency, is assessed using X-ray
diffraction (XRD) or scanning electron microscopy (SEM) [252].

Biodegradability is a defining feature of biopolymers, and thorough testing ensures com-
pliance with environmental standards such as ASTM D6400 [253–255] or EN 13432 [256,257].
These tests simulate industrial composting conditions to confirm that the material breaks
down within a specified time frame and does not leave toxic residues. Ensuring biodegrad-
ability under the right conditions is crucial, especially for products marketed as compostable
or environmentally friendly.

After passing quality control, biopolymers often undergo post-processing to en-
hance their properties for specific applications. Post-processing may include blending
the biopolymer with additives such as plasticizers, which improve flexibility [258], or UV
stabilizers [259], which protects the material from degradation when exposed to sunlight.
For example, PLA is often brittle, so it is commonly blended with plasticizers like glycerol
or oligomers to make it more flexible for use in packaging films [238]. PHAs, which are
more thermally stable, might require impact modifiers to improve their toughness for
applications like medical devices or textiles.

In addition to additives, biopolymers can be blended with other polymers, including
both biopolymers and conventional plastics, to optimize their properties [209]. For example,
blending a PLA with polycaprolactone (PCL) or polybutylene adipate-co-terephthalate
(PBAT) improves its flexibility and biodegradability [260,261]. Surface treatments, such as
plasma treatment or corona discharge, may be applied to enhance adhesion, printability,
or barrier performance, making the material more suitable for packaging or medical
applications. In medical contexts, surface treatments can also enhance biocompatibility,
ensuring that the polymer is safe for use in implants or drug delivery systems.

Thermal and mechanical post-processing methods are also employed to further modify
the polymer’s properties. Thermal treatments, such as annealing, can increase crystallinity
in polymers like PLA, improving heat resistance and mechanical strength [262]. Techniques
like extrusion, injection molding, and 3D printing are used to shape biopolymers into
final products. During these processes, temperature and processing conditions must be
carefully controlled to prevent polymer degradation. For instance, in injection molding,
the temperature needs to be optimized to avoid thermal degradation, while blown film
extrusion is often used for creating biodegradable packaging films [263].

Fungal pathogens are a significant threat to agricultural crops, reducing both the
quantity and quality of yields. Usmanova et al. [264] developed innovative seed-coating
formulations using biopolymers [209,265], such as polyhydroxyalkanoate (PHA) and pul-
lulan, along with beneficial microorganisms for enhanced plant protection. The microbial
strains used (e.g., Pseudomonas flavescens and Bacillus aerophilus) demonstrated key agricul-
tural properties, including phytohormone production, antifungal activity, and salt tolerance.
Pullulan, synthesized by Aureobasidium pullulans C7, exhibited ideal viscosity characteristics
for seed coating, transitioning from Newtonian to pseudoplastic behavior at higher con-
centrations. Seed coatings combining microbial inoculants and polymers improved barley
growth under phytopathogenic stress, enhancing germination rates, root and stem lengths,
and photosynthetic pigment content. This approach highlights the potential of biopolymers
and microbial strains to mitigate crop losses and promote sustainable agriculture.

Lastly, ensuring the environmental performance of biopolymers through biodegrad-
ability testing and regulatory compliance is crucial. Products must pass standardized tests,
such as ISO 17088 [254,256,266] or ASTM D6400 [267–269], to ensure they decompose safely
in industrial composting environments. These tests assess the rate of degradation, environ-
mental safety, and the material’s ability to disintegrate under specific conditions. The goal is
to confirm that biopolymers do not leave harmful residues and degrade within the expected
time frames, reinforcing their role as sustainable alternatives to petroleum-based plastics.

The complexity and variability of raw materials, combined with fluctuating environ-
mental and operational conditions, require a robust system for process monitoring and
optimization. Traditional process control methods may struggle to keep up with these
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dynamic factors, leading to inconsistencies in product quality or inefficiencies in production.
ML techniques can analyze vast amounts of data generated throughout the production
process, enabling real-time monitoring and control.

For example, ML algorithms can be trained to predict the outcomes of fermentation
based on the feedstock’s composition, environmental conditions, and microorganism
strains, allowing for more precise control of the process [270,271]. Similarly, ML-driven
predictive models can forecast fluctuations in raw material quality or identify optimal
processing parameters for polymerization and extraction, ensuring consistent quality
and minimizing waste [272,273]. Additionally, ML can enable the development of smart
manufacturing systems that automatically adjust processing conditions in real-time to
maximize efficiency and product performance, reducing the need for manual intervention.

In the realm of quality control, ML-powered systems can detect defects or inconsis-
tencies in the biopolymer’s properties early in the production process, allowing for timely
corrections before the final product is manufactured [274]. This can improve yield and
reduce resource consumption, making the entire production process more sustainable.
Moreover, ML can assist in optimizing the supply chain by predicting demand, optimiz-
ing inventory management, and minimizing transportation costs, further enhancing the
sustainability of biopolymer manufacturing.

Biopolymer-bound soil composites (BSCs) are innovative, cement-free construction
materials utilizing binders like starch, protein, and lignin. While they offer sustainable
alternatives for diverse applications [275], their production presents challenges such as
internal defects, improper mixing, and compaction issues. Traditional quality control
methods, like vision or acoustic techniques, are often inefficient, as they focus on isolated
issues and cannot monitor the unique strength gain process during desiccation. To address
these gaps, the BioSys system, suggested by Miao et al. [276], employs vibration-based,
non-destructive testing to evaluate BSC quality through impulse hammer-generated signals
and accelerometer-recorded responses. BioSys utilizes ML models, achieving up to 99%
accuracy in detecting defects, 100% accuracy in identifying improper compaction, and a 5%
mean absolute percentage error (MAPE) in predicting strength gain. This system’s ability to
simultaneously detect multiple defects, monitor compaction, and assess desiccation makes
it a powerful tool for scaling the sustainable production of high-quality BSC materials.

Figure 5 is a diagram illustrating the stages and key steps involved in quality control
during biopolymer production.

Biopolymer Manufacturing
Quality Control & Post-Processing

Mechanical Strength Thermal Stability

Biodegradability & Compostability Molecular Weight & Purity

Crystallinity & Surface Morphology

Tensile Strength
Impact Resistance

Elasticity

Melting Point
Glass Transition Temperature

Heat Resistance

ASTM/ISO Testing
Decomposition Rate

Environmental Safety
Gel Permeation Chromatography

Impurity Detection

X-ray Diffraction
Scanning Electron Microscopy

Figure 5. Quality control during biopolymer production.
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3. ML Techniques in Process Optimization

The integration of ML techniques in process optimization offers transformative po-
tential for the manufacturing industry, particularly in the realm of biopolymer production.
ML-driven tools enable a more precise control over production parameters, real-time ad-
justments, and better quality assurance. Below, we explore several ML methodologies that
are driving innovations in this field.

ML is extensively utilized in process industries due to its ability to analyze vast
datasets and make data-driven predictions. For biopolymer manufacturing, ML can be
used for monitoring fermentation conditions, predicting product yields, and optimizing
complex multi-step processes like extraction and purification [277]. The ability of ML
models to continuously learn from production data makes them a vital tool for improving
efficiency, minimizing waste, and ensuring consistent product quality [278].

3.1. Supervised Learning

Supervised learning [279–282] is particularly useful in biopolymer production because
it leverages labeled datasets to train models that can predict future outcomes. Figure 6
presents key supervised learning methods that assist in various aspects of biopolymer
production, including predicting yields, molecular weight, and other characteristics of the
final product.

Supervised Learning Methods
for Biopolymer Production

Linear Regression Decision Trees

Random Forest Support Vector Machines

Neural Networks K-Nearest Neighbors

Gradient Boosting Logistic Regression

Bayesian Networks

Elastic Net

Predict yield
Molecular weight

Decision-making
Optimize conditions

Improve accuracy
Reduce overfitting

Classify outcomes
Handle complex data

Predict complex
non-linear processes

Real-time adjustments
Compare scenarios

Model complex
relationships

Classify success/failure
Binary outcomes

Model dependencies
Predict probabilities

Manage correlations
Prevent overfitting

Figure 6. Overview of supervised learning methods applied in biopolymer production.

In biopolymer processes, this technique can forecast fermentation yields, molecu-
lar weight distribution, or viscosity of the final product based on key input parameters
such as temperature, pH, feedstock composition, or microbial strain. For instance, pre-
dictive models trained on historical data can be employed to recommend adjustments
to fermentation conditions in real-time, ensuring optimal performance under varying
environmental conditions.

Moman et al. [283] addressed the computational prediction of ligand–biopolymer
affinities, emphasizing ML’s role in modern drug discovery. Their work proposes using a
nonparametric model of effective radii of atom descriptors, computable for the entire Peri-
odic Table, which, when integrated with MLalgorithms, provides competitive predictive
performance. The research involved querying the Protein Data Bank (PDB) [284–286] for rel-
evant protein–ligand structures, converting affinity data into a usable format, and cleaning
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PDB files through automated scripts. The dataset was split into training (60%), validation
(20%), and testing (20%) sets across multiple random splits to enhance robustness. ML mod-
els, specifically RandomForestClassifier [287,288] and RandomForestRegressor [289,290]
from Scikit-learn, were utilized for classification and regression tasks. The final structure–
activity database comprises 4703 biopolymer–ligand complexes, forming a valuable re-
source for predicting ligand affinities.

Biodegradable starch films are promising options for food packaging. Kathuria et al. [291]
suggested using the k-Nearest Neighbor [292,293] (KNN) algorithm to classify these films
based on parameters such as thickness, water vapor permeability (WVP), tensile strength
(TS), and transparency. Twelve films from various botanical starch sources were produced
via the casting method, resulting in a database of thirty-six samples. The 5% cassava starch
formulation emerged as the best, with WVP 1.21 × 10−10 g · m−1 · s−1 · Pa−1, TS 2.34 MPa,
thickness 0.193 mm, and water activity (Aw) 0.408. The KNN and principal component
analysis effectively classified and selected optimal biodegradable starch films.

The automotive industry seeks cost-effective, renewable materials. Bejagam et al. [294]
explored the use of wheat straw as a filler in polypropylene for automotive applications,
aiming to meet mechanical property standards set by conventional fillers like glass fiber.
Biocomposites [295–297] were created by varying the weight percentages of wheat straw
and polypropylene through extrusion. The molded products underwent mechanical testing.
Predictive models for the biocomposite properties were developed using Polynomial
Regression, ANNs, and Support Vector Machines (SVMs). Results indicated that SVMs
yielded the best predictive model, followed by ANNs and polynomial regression.

Xing et al. [298] compared an ANN [299,300] and an SVM [301–303] for predicting
the molecular weight of polycaprolactone (PCL) synthesized via enzymatic catalysis.
The study optimized synthesis parameters using a D-optimal design and employed
ML techniques to predict the output molecular weight of biopolymers. The biocom-
posites were created by varying the weight percentages of ϵ-caprolactone and toluene,
with mechanical testing performed on the molded products. Both the ANN and SVM
were evaluated for prediction accuracy and the SVM was revealed to be the supe-
rior method in this context. Experimental data collection involved temperature, time,
monomer/solvent ratios, and mixing speed, demonstrating the SVM’s effectiveness in
handling the polymerization problem’s characteristics.

Pullulan is a biodegradable hydrogel biopolymer with applications in food, medicine,
and cosmetics. Saber et al. [304] utilized the endophytic fungus Aureobasidium pullulans (ac-
cession number OP924554) for pullulan biosynthesis [305–307]. The fermentation process
was optimized using Taguchi’s approach [308–310] and a decision tree [311–313] learning
algorithm, which identified key variables affecting pullulan production. The decision
tree model successfully reduced sucrose content by 33% without compromising pullulan
yield. Optimal nutritional conditions were established as sucrose (60 or 40 g/L), K2HPO4
(6.0 g/L), NaCl (1.5 g/L), MgSO4 (0.3 g/L), and yeast extract (1.0 g/L) at pH 5.5, with a
short incubation time of 48 h, achieving a pullulan yield of 7.23%. The structure of pul-
lulan was confirmed through FT-IR [314–316] and 1H-NMR [317–319] spectroscopy. This
study marked the first application of Taguchi and decision tree methodologies for opti-
mizing pullulan production, paving the way for further research on using ML to enhance
fermentation processes.

Berger et al. [320] evaluated the conversion of orange peels into biodegradable poly-
mers using a decision tree method to identify optimal production variables. The study
analyzed factors such as the particle size of orange peel powder, starch types, cooling
methods, and dehydration processes. The decision tree approach allowed for the efficient
organization and analysis of these variables, leading to the identification of optimal con-
ditions: a particle size of 250 µm, a 100% corn starch ratio, cooling at room temperature,
and effective dehydration. The use of a decision tree model facilitated a structured explo-
ration of the best combinations of ingredients and methods for producing high-quality
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bioplastics [321], demonstrating its effectiveness in optimizing the biopolymer produc-
tion process.

The depletion of fossil fuels and rising plastic pollution necessitate sustainable alterna-
tives like polyhydroxyalkanoates (PHAs). Bejagam et al. [294] employed ML to predict the
melting temperature (Tm) of various PHA homo- and copolymers using a curated dataset
of experimental Tm values, molecular weights, and polydispersity indices. Descriptors
of polymer topology and charge/polarity were utilized to develop predictive ML models.
This approach, integrated with a glass transition temperature (Tg) prediction model and an
evolutionary algorithm, facilitated multiobjective optimization in polymer design.

Patnode et al. [322] developed bioplastic films using soy protein, zein, and plant
oil-based monomer (POBM) latexes as sustainable alternatives to petrochemical-based
food packaging. By leveraging the film-forming ability of soy protein, the strength of
zein, and the plasticizing and hydrophobizing effects of POBM-latexes, strong, flexible,
and moisture-resistant bioplastic films, termed proteoposites, were created. ML models
with >85% accuracy were used to predict and optimize the bioplastics’ properties, con-
firming experimental outcomes. These proteoposite films show promise as biodegradable,
high-performance packaging materials.

Biopolymer-based soil treatment (BPST) [323–325] is gaining traction in sustainable
geotechnical engineering due to its low carbon footprint and effective ground improvement
properties. Lee et al. [326] employed a decision tree ML model to predict the unconfined
compressive strength (UCS) of BPST, achieving a high accuracy of R2 > 0.99. Their anal-
ysis revealed that biopolymer and water contents were critical factors influencing UCS.
The model utilized data from eight published studies on BPST, focusing on various features
that affect strength, including biopolymer type, soil type, and water content.

Bohar et al. [327] integrated ML and additive manufacturing to predict and opti-
mize the mechanical strength of FDM-printed PEEK components, critical for aerospace,
biomedical, and automotive industries. Key process parameters—infill density, layer
height, printing speed, and infill pattern—were analyzed experimentally. Support Vector
Regression (SVR) and Random Forest Regression (RFR) models achieved accurate tensile
strength predictions, with deviations under 5%. Using a genetic algorithm (GA), the op-
timized parameters yielded a maximum tensile strength of 66.17 MPa. Microstructural
analysis validated the results, demonstrating the potential of ML-driven optimization for
high-performance 3D printing.

Ergun et al. [328] explored xanthan gum as a foam material for insulation and packag-
ing, a novel application for this natural biopolymer. Foams were produced using varying
ratios of xanthan gum and cellulose fiber in a 5% citric acid medium. Results showed that
xanthan gum significantly influenced foam properties, with densities ranging from 49.42 to
172.2 kg/m3, compressive moduli from 235.25 to 1257.52 KPa, and flexural moduli from
1939.76 to 12,736.39 KPa. Five ML models were applied to predict material properties,
with the generalized regression neural network (R2 > 0.97) achieving the best accuracy,
optimizing the process while reducing experimental efforts.

Ergun et al. [329] investigated the use of guar gum-based foams for insulation ap-
plications, focusing on their properties and predicting them through regression analysis.
The foams were produced by mixing guar gum, cellulose, and boric acid in varying pro-
portions and drying the mixture. The resulting foams exhibited desirable properties such
as low density, low thermal conductivity, and good mechanical strength. Regression mod-
els, including Multiple Linear Regression (MLR) and Gaussian Process Regression (GP),
were used to estimate the foam’s density, compression modulus, and thermal conductivity.
The GP model achieved high prediction accuracy (R2 up to 0.99), indicating that guar gum
significantly influenced the foam’s properties.

Lofgren et al. [330] explored the optimization of the AquaSolv omni biorefinery for
lignin using Bayesian optimization, an ML technique that enhances sample efficiency and
guides data collection. The process links biorefinery conditions, such as hydrothermal
pretreatment severity and temperature, with lignin’s structural features, analyzed through
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2D nuclear magnetic resonance spectroscopy. By applying Pareto front analysis, the optimal
processing conditions were identified to maximize lignin yield and preserve β-O-4 linkages
for efficient depolymerization into platform chemicals. The research highlighted ML’s
potential in advancing sustainable chemical processing for targeted applications.

Ifran et al. [331] developed an ML model using Gaussian Process Regression to pre-
dict nutrient release time from biopolymer-coated controlled-release fertilizers (CRFs).
The model incorporates parameters like diffusion coefficient, coating thickness, and size
distribution. With an R2 of 1 and an RMSE of 0.003, the model accurately predicted nutrient
release, helping to optimize CRF performance in precision farming. It can be used to
analyze and improve the release profiles of various biopolymer-coated CRFs.

Champa et al. [332] enhanced the mechanical properties of poly[(butylene succinate)-co-
adipate] (PBSA) using functionalized single-walled carbon nanotubes (SWCNTs). Different
SWCNT loadings were incorporated into PBSA via solution casting and optimized ultra-
sonication. The nanocomposites showed significant improvements in stiffness due to the
superior reinforcing ability of SWCNTs. Four machine learning models—Polynomial Regres-
sion, Support Vector Machines, Gradient Boosting, and Artificial Neural Networks—were
used to predict mechanical properties such as Young’s modulus, tensile strength, elongation
at break, and impact strength, with R2 values ranging from 0.69 to 0.99. The study offers
a promising approach to modeling and optimizing polymeric nanocomposites for various
industrial applications.

For clarity, Table 1 summarizes the results of studies that utilized different supervised
learning models for analyzing biopolymers. The table includes information on specific
materials, applied models, obtained results, and limitations of the research.

Table 1. Summary of supervised learning applications in biopolymer research.

Reference Focus Material Applied Model Results Limitations

Lee et al.
(2023) [326]

Predicting
ligand–biopolymer
affinities

Biopolymer–ligand
complexes

Random Forest
Classifier,
Random Forest
Regressor

Achieved competitive
predictive performance using
4703 complexes; dataset split
into training, validation,
and testing.

Limited to the structures
available in the Protein
Data Bank (PDB).

Kathuria et al.
(2022) [291]

Classification of
biodegradable starch
films

Biodegradable starch
films

k-Nearest
Neighbor (KNN)

Identified optimal film
formulation with WVP
1.21 × 10−10, TS 2.34 MPa,
thickness 0.193 mm.

Limited dataset of
12 films.

Bejagam et al.
(2022) [294]

Biocomposites for
automotive
applications

Wheat straw-filled
polypropylene

Polynomial
Regression,
Artificial Neural
Networks
(ANNs), SVM

SVM provided the best
predictive model for
mechanical properties;
significant variation in
composite properties noted.

Reliance on specific
material formulations
may limit
broader applicability.

Xing et al.
(2002) [298]

Predicting molecular
weight of
polycaprolactone

Polycaprolactone
(PCL) ANN, SVM

SVM was superior for
predicting molecular weight
based on synthesis
parameters; confirmed
effectiveness in
polymerization.

Focused only on PCL
and its
synthesis parameters.

Saber et al.
(2023) [304]

Optimizing pullulan
biosynthesis

Pullulan (from
Aureobasidium
pullulans)

Decision Tree
Learning,
Taguchi Method

Achieved a pullulan yield of
7.23% with reduced sucrose;
optimal conditions
identified.

Specific to one strain of
fungus; broader
applicability
needs exploration.

Berger et al.
(2020) [320]

Converting orange
peels into
biodegradable
polymers

Orange peels Decision Tree

Identified optimal
production conditions for
bioplastics; effective analysis
of production variables.

Limited to orange peel
feedstock; may not
apply to other materials.

Bejagam et al.
(2022) [294]

Predicting melting
temperatures of
PHAs

Polyhydroxyalkanoates
(PHAs) ML models

Developed ML models
predicting melting
temperature and facilitating
polymer design optimization.

Limited dataset for
training models; may
affect accuracy.
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Table 1. Cont.

Reference Focus Material Applied Model Results Limitations

Bohar et al. [327]

ML and additive
manufacturing for
mechanical strength
prediction in
FDM-printed
components

PEEK (Polyether ether
ketone)

Support Vector
Regression
(SVR), Random
Forest
Regression
(RFR), Genetic
Algorithm (GA)

Accurate tensile strength
prediction (deviation < 5%),
optimized parameters (66.17
MPa tensile strength).

Limited to FDM-printed
PEEK components.

Ergun et al. [328]
Xanthan gum-based
foam for insulation
and packaging

Xanthan gum,
cellulose fiber

Generalized
Regression
Neural Network
(GRNN),
multiple ML
models

Xanthan gum impacted foam
properties, R2 > 0.97 for
GRNN model, optimized
foam properties.

Limited to foam
properties and materials
studied.

Ergun et al. [329]
Guar gum-based
foam for insulation
applications

Guar gum, cellulose,
boric acid

Multiple Linear
Regression
(MLR), Gaussian
Process
Regression (GP)

High prediction accuracy (R2

up to 0.99), low density, low
thermal conductivity, good
mechanical strength.

Focused on limited
biopolymer-based foam
formulations.

Lofgren et al. [330]
Optimization of
AquaSolv biorefinery
for lignin

Lignin

Bayesian
Optimization,
Pareto Front
Analysis

Maximized lignin yield and
β-O-4 linkages, optimized
biorefinery conditions.

Limited to lignin
depolymerization and
chemical processing.

Ifran et al. [331]

ML model for
nutrient release
prediction from
CRFs

Biopolymer-coated
controlled-release
fertilizers

Gaussian Process
Regression
(GPR)

R2 = 1, RMSE = 0.003,
accurate nutrient release time
prediction for CRFs.

Focus on CRFs, not
applicable to all
fertilizer types.

Champa et al. [332]

Enhancing
mechanical
properties of PBSA
with SWCNTs

PBSA, single-walled
carbon nanotubes
(SWCNTs)

Polynomial
Regression (PR),
Support Vector
Machines
(SVMs),
Gradient
Boosting (GB),
Artificial Neural
Network (ANN)

Significant improvement in
stiffness, R2 values ranging
from 0.69 to 0.99 for various
mechanical properties.

Variability in model
performance based on
predicted property.

3.2. Unsupervised Learning

Unsupervised learning is beneficial for exploring and identifying hidden patterns
in process data where no predefined labels exist. For example, clustering algorithms can
categorize batches of raw materials based on their composition, quality, or suitability for
biopolymer production. These techniques are also useful in analyzing microbial behav-
ior during fermentation, where different strains might exhibit unique growth profiles,
by grouping them based on similar characteristics or fermentation outcomes. Dimen-
sionality reduction methods like Principal Component Analysis (PCA) can also uncover
significant factors contributing to process variability, facilitating better control strategies.
Figure 7 illustrates possible ways to apply unsupervised methods in biopolymer research.

Lignin, the second most abundant biological polymer, has a complex structure and is
primarily produced as a waste product in the pulp and paper industry, often underutilized.
Understanding its structure is crucial for exploring potential applications. High-resolution
nuclear magnetic resonance (NMR) spectroscopy is commonly used for dissolved lignin,
but it cannot analyze insoluble technical lignins. Solid-state NMR spectroscopy offers a
solution. Grishanovich et al. [333] introduced a method to classify the degree of lignin al-
teration using Hierarchical Cluster Analysis (HCA) on solid-state NMR spectra, addressing
the lack of direct correlations between NMR spectra of dissolved and solid lignins.
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Unsupervised Learning Methods
for Biopolymer Production
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Figure 7. Unsupervised learning methods in biopolymer research with possible applications.

Ireddy et al. [334] analyzed the surfaces of polyhydroxyalkanoate (PHA) films with
varying monomer compositions using atomic force microscopy (AFM) and unsupervised
ML algorithms. The aim was to classify films based on global attributes such as scan size,
thickness, and monomer type. Their research benchmarked 12 widely used clustering
algorithms through a hybrid approach, demonstrating the effectiveness of applying a
one-dimensional (1D) Fourier Transform [335] (FT) on high-dimensional vectorized data
for classification. Results indicated that the 1D FT produces the most accurate outcomes.
The study also provided insights into individual algorithm performances and the impact of
different data pools, alongside an early version of a tool designed for surface investigation
using ML methods.

PLA is a bioresorbable polymer used in medical devices that require careful processing
to avoid degradation. Mulrennan et al. [336] integrated in-process temperature, pressure,
and NIR spectroscopy measurements with multivariate regression methods to predict
the mechanical strength of extruded PLA products. Their work evaluated the feasibility
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of this method as an intelligent sensor for real-time quality analysis in compliance with
medical device regulations. Their results indicated that combining NIR and conventional
sensor data is essential for robust predictions across varying processing conditions. While
partial least squares [337] (PLS) performed well, Random Forest (RF) and Support Vector
Regression [338] (SVR) demonstrated superior reliability with a prior principal component
dimension reduction step, suggesting that nonlinear methods may outperform traditional
linear methods in predicting mechanical properties from complex sensor data.

DNA-binding proteins are crucial for genetic information processing but are often
inefficiently identified by traditional methods. Zhang et al. [339] leveraged ML to extract
and optimize four feature types: Reduced sequence and index-vectors (RS), Pseudo-amino
acid components (PseAACS), Position-specific scoring matrix-Auto Cross Covariance
Transform (PSSM-ACCT), and Position-specific scoring matrix-Discrete Wavelet Transform
(PSSM-DWT). Using the LASSO method for dimension reduction, the optimized features
were input into ensemble learning algorithms, achieving high accuracy rates of 86.98% and
88.9% in five-fold cross-validation with datasets PDB1075 and PDB594. The independent
experiment showed an accuracy of 83.33%, indicating that the proposed methodology
effectively predicts DNA-binding proteins.

The Kohonen self-organizing map [340] (SOM) was utilized by Qiao et al. [341] to map
protein molecular surfaces, representing properties like shape and molecular electrostatics
through 3D surface coordinates. This approach allows for visual comparisons of molecular
features among proteins with similar topological or chemical characteristics. The SOM or-
ganizes input features onto a layered NN, creating globally ordered maps while preserving
topological relationships and reducing dimensionality. The competitive learning process
adjusts weights in the SOM, ensuring that neurons close in the network activate each other
based on similar input, leading to global organization. This innovative method addresses
the challenges of representing complex interrelationships in computational chemistry
and biochemistry.

The consensus scaffolded mixture (CSM) position weight matrix model enhances the
modeling of cis-regulatory elements by using overlapping components represented by multiple-
position weight matrices (PWMs) linked to specific binding patterns. Jiang et al. [342] in-
troduced a learning algorithm consisting of an initial structure learning phase based on
frequent pattern mining, followed by refinement using the expectation maximization (EM)
algorithm. In a case study of the transcription factor Leu3, CSM models aligned with
conventional mixtures but demonstrated superior fitness via the Fermi-Dirac distribu-
tion. An analysis of predicted binding sites for 83 JASPAR transcription factors indicated
that the CSM outperformed simple mixtures, context-specific independent (CSI) mixtures,
and single PWM models in 83%, 84%, and 75% of the cases, respectively. A five-fold cross-
validation across 46 TRANSFAC datasets confirmed the CSM model’s greater generality
compared to other mixture models.

Motif discovery [343] in biological sequences is essential for understanding gene
expression and regulation. Hasan et al. [344] reviewed the application of data mining
techniques for motif discovery, noting a recent surge in interest despite limited prior usage
compared to other algorithms. Various methodologies, including GYM, a program based
on the a priori method [345], successfully identified helix-turn-helix motifs, improving
detection rates without increasing false predictions. Challenges included the choice of
training sets and minimum support thresholds. The modified prefix span method improved
frequent pattern extraction by considering gaps, while BioPM utilized a prefix-projected
method for efficient motif mining. Pushdown automata were employed for grammar-based
motif extraction, and algorithms like informative motif mining and FP-growth enhanced
performance by optimizing the search for biologically significant motifs.

Yousef et al. [346] explored how learning a suitable distance metric from labeled ex-
amples can significantly enhance k-Nearest Neighbor (kNN) classification performance.
The proposed ensemble clustering kNN classifier [347] (EC-kNN) improved accuracy by
defining distances based on co-clustering rather than solely geometric proximity. Through
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experiments involving seven plant microRNA species and eight feature selection methods,
EC-kNN consistently outperformed traditional classifiers, including SVM. The EC-kNN
approach also reduced data complexity by grouping points into equivalence classes, facil-
itating a novel data reduction technique complementary to methods like principal com-
ponent analysis (PCA). The algorithm’s effectiveness was demonstrated through multiple
runs and robust average results across different datasets.

Wei et al. [348] addressed the challenge of limited data in biochemistry, particularly
in organic chemistry. To enhance modeling performance in the biopolymerization process,
the authors proposed an ML approach that utilizes variational autoencoders and generative
adversarial networks for data augmentation, mitigating overfitting. The Random Forest and
ANN algorithms were employed for modeling. Results indicated that data augmentation
significantly improves regression model performance, with the Random Forest model aug-
mented by generative adversarial networks achieving the highest predictive accuracy—an R2

of 0.94 on the training set and 0.74 on the test set.
Lignin, an abundant biopolymer, presents substantial industrial potential, yet the

limited molecular structure data restrict its applications. Eswaran et al. [349] introduced
the Lignin Structural (LGS) Dataset, which features the molecular structures of milled
wood lignin, emphasizing on two primary monomeric units (coniferyl and syringyl) and
six prevalent interunit linkages. The dataset encompasses 60,000 newly generated lignin
structures that accurately reflect experimental properties, achieving about 90% accuracy in
matching literature data. The LGS dataset serves as a crucial resource for advancing lignin
chemistry research, supporting computational simulations and predictive modeling.

Abreu et al. [350] investigated biohydrogen production from arabinose using four
different anaerobic sludges across varying pH levels (4.5 to 8.0), with arabinose concen-
trations set at 30 g/L. The modified Gompertz equation was used to estimate production
parameters, revealing that higher pH values led to greater hydrogen production across all
sludges. Among the tested sludges, G2 (acclimated granular sludge) demonstrated the
highest hydrogen yield and arabinose consumption. Granular sludges exhibited distinct
behavior from suspended sludges, including shorter lag phases and varying fermentation
pathways. A strong correlation (R2 = 0.973) between n-butyrate and ethanol percentages
in G1 sludge suggested that ethanol/butyrate fermentation was predominant, while S1
showed a high correlation between n-butyrate and acetate (R2 = 0.980). The findings im-
ply that granular sludge maintains efficiency across broader pH ranges, optimizing the
hydrogen production of arabinose.

Fredricks et al. [351] highlighted the environmental concerns associated with non-
degradable fossil-based plastics and advocates for biopolymers as sustainable alter-
natives. Biopolymers, synthesized by living organisms, offer desirable mechanical
properties, compostability, and renewable sourcing. The paper discusses the hierar-
chical structure of three prominent biopolymer classes—cellulose, chitin, and protein
beta-sheet structures—focusing on how their interaction networks contribute to mechan-
ical strength. Various fabrication and processing techniques to develop macroscopic
materials and composites from these biopolymers were reviewed. In addition, a novel
approach that uses intact microorganisms or biological matter as building blocks for
material construction was presented. The paper emphasizes the processing–structure–
property relationships of biomatter-based materials and concludes with a perspective on
the potential role of biopolymers in promoting a circular economy.

To provide a clear overview of key research in the fields of biopolymers and unsupervised
learning, Table 2 summarizes the main studies. It highlights the research focus, materials used,
applied models, results, and identified limitations.This summary facilitates a comparison
between different approaches and models used in biopolymer analysis and related areas.
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Table 2. Summary of unsupervised learning applications in biopolymer research.

Reference Focus Material Applied Model Results Limitations

Grishanovich
et al.
(2024) [333]

Classifying the degree
of lignin alteration
using solid-state NMR
spectroscopy.

Technical lignins

Hierarchical
Cluster Analysis
(HCA) on
solid-state NMR
spectra

Method effectively classifies
lignin alterations, addressing
gaps in correlating dissolved
and solid lignins.

Limited to the accuracy
of solid-state NMR and
its analysis.

Ireddy et al.
(2024) [334]

Analyzing PHA film
surfaces using AFM
and ML algorithms for
classification.

Polyhydroxyalkanoate
(PHA) films

Unsupervised
ML algorithms;
benchmarking
12 clustering
algorithms; 1D
Fourier
Transform (FT)

The 1D FT yielded the
highest accuracy for film
classification. Insights
provided on algorithm
performance and data
impact, along with a
preliminary ML tool for
surface investigation.

Focused on specific
attributes; performance
may vary with different
film compositions.

Mulrennan
et al.
(2022) [336]

Predicting mechanical
strength of PLA using
real-time sensor data.

Polylactide (PLA)

Multivariate
regression
methods,
including partial
least squares
(PLS), Random
Forest (RF), SVR

Combining NIR and
conventional sensor data
enhanced predictions; RF
and SVR showed superior
reliability. Nonlinear
methods outperformed linear
methods.

Method complexity and
need for real-time
monitoring may limit
applicability in practice.

Zhang et al.
(2021) [339]

Identifying
DNA-binding proteins
using optimized
features and ensemble
learning.

DNA-binding
proteins

ML algorithms,
LASSO for
feature selection,
ensemble
learning
methods

Achieved high accuracy
(86.98% and 88.9%) in
five-fold cross-validation;
effective prediction
methodology.

Requires extensive
dataset for robust
validation; may not
generalize to all
protein types.

Qiao et al.
(2001) [341]

Mapping protein
molecular surfaces
using SOM for
visualization.

Protein molecular
surfaces

Kohonen
self-organizing
map (SOM)

Provides a novel method for
the visual comparison of
molecular features,
effectively addressing
complex interrelationships in
proteins.

SOM’s effectiveness
may vary based on
input feature quality.

Jiang et al.
(2013) [342]

Improving
cis-regulatory element
modeling using the
CSM model with
PWMs.

Transcription factors

Consensus
scaffolded
mixture (CSM)
position weight
matrix model
with EM
algorithm

CSM model showed superior
performance compared to
other mixture models in 83%
of cases, enhancing binding
site prediction for
transcription factors.

Limited to specific
datasets;
generalizability to other
transcription factors
may vary.

Hasan et al.
(2014) [344]

Review of motif
discovery methods in
biological sequences.

Biological sequences

Various data
mining
techniques,
including GYM,
modified prefix
span method,
and grammar-
based motif
extraction

Identified methodologies
improved motif detection
rates while addressing
training set and support
threshold challenges.

Limited exploration of
all possible algorithms;
focus on
recent developments.

Yousef et al.
(2016) [346]

Enhancing kNN
classification with a
new distance metric
learning approach.

Plant microRNA
species

Ensemble
clustering kNN
classifier
(EC-kNN)

EC-kNN consistently
outperformed traditional
classifiers, reducing data
complexity and improving
accuracy through
co-clustering distance
definitions.

Relies on labeled
examples, limiting
application to well-
characterized datasets.

Wei et al.
(2022) [348]

Addressing data
limitations in
biopolymerization
modeling using ML.

Biopolymers

Variational
autoencoders,
generative
adversarial
networks
(GANs),
Random Forest
(RF), ANN

Data augmentation
improved regression model
performance significantly,
with RF achieving an R2 of
0.94 on the training set and
0.74 on the test set.

Dependence on quality
of augmented data; may
not fully replicate
real-world variability.
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Table 2. Cont.

Reference Focus Material Applied Model Results Limitations

Eswaran et al.
(2022) [349]

Developing a
structural dataset for
lignin to facilitate
computational
research.

Milled wood lignin Dataset creation
and analysis

LGS dataset includes 60,000
structures with 90% accuracy
in reflecting experimental
properties, serving as a
crucial resource for lignin
chemistry research.

Limited by existing
experimental data and
the accuracy of
generated structures.

Abreu et al.
(2009) [350]

Investigating
biohydrogen
production from
arabinose using
anaerobic sludges.

Anaerobic sludges

Modified
Gompertz
equation for
estimating
hydrogen
production
parameters

Higher pH levels correlated
with increased hydrogen
production; G2 sludge
showed the highest yields
and efficiency. Strong
correlations observed in
fermentation pathways.

Specific to arabinose
and pH conditions;
results may not
generalize to
other substrates.

Fredricks et al.
(2023) [351]

Analyzing
biopolymers as
sustainable
alternatives to
fossil-based plastics.

Cellulose, chitin,
protein beta-sheet
structures

Structural
analysis and
processing
methods for
biopolymers

Discusses mechanical
properties, processing
techniques, and the potential
of biopolymers in promoting
a circular economy.

Emphasis on selected
biopolymer classes;
further research needed
for broader applicability.

3.3. Neural Networks and Deep Learning
NNs, and more specifically deep learning architectures, handle highly complex, non-

linear relationships between variables within biopolymer production processes. These
models excel in situations where traditional statistical models may fall short due to the
sheer complexity of interactions, such as those observed in fermentation and polymer
extraction. Deep learning can account for numerous variables and their interdependencies,
enabling better control and optimization across different stages of the production pipeline.
Figure 8 illustrates diagram with key NN architectures used in biopolymer production and
their specific applications

Multilayer perceptrons [352–355] (MLPs) are a type of NN capable of approximating
functions and making accurate predictions based on multiple input variables. In biopolymer
manufacturing, MLPs can be used to predict fermentation outcomes based on real-time
sensor data, such as pH, dissolved oxygen, and nutrient concentrations. These models can
also optimize nutrient supply schedules to maximize microbial activity, thereby enhancing
product yield and quality. Additionally, MLPs may assist in adaptive control systems that
automatically adjust fermentation parameters during the process, leading to increased
production efficiency.

Convolutional Neural Networks [356–359] (CNNs), though traditionally associated
with image recognition, are finding innovative applications in biopolymer manufacturing,
particularly in quality control. By analyzing microscopic images of biopolymers, CNNs can
detect structural inconsistencies, contamination, or defects that may not be visible through
conventional inspection methods. Furthermore, CNN-based systems could be employed in
automated defect detection during the final stages of product refinement, ensuring only
high-quality biopolymers reach the end users.

Recurrent Neural Networks [360–363] (RNNs) are specifically designed to handle
sequential data, making them highly valuable for time-series prediction. In biopolymer
production, RNNs can be employed to model fermentation dynamics by analyzing his-
torical data from previous batches and forecasting future states. This capability enables
real-time adjustments in fermentation parameters, reducing the likelihood of deviations
and improving consistency in product quality.

Long short-term memory [364–367] (LSTM) networks are a specialized type of RNN
designed to overcome the limitations of short-term memory in traditional RNNs. In biopoly-
mer production, LSTMs can be applied to track long-term dependencies in complex pro-
cesses, such as the progression of fermentation over extended periods. LSTMs are par-
ticularly useful in monitoring and predicting batch fermentation outcomes, optimizing
nutrient input, and ensuring the stability of production processes over time.
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Neural Networks and Deep Learning
in Biopolymer Production

Multilayer Perceptrons (MLPs) Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs) Long Short-Term Memory (LSTMs)

Generative Adversarial Networks (GANs) Autoencoders

Transformer Networks Deep Belief Networks (DBNs)

Predict fermentation outcomes
Optimize nutrient supply schedules

Analyze microscopic images
Detect defects in biopolymers

Model fermentation dynamics
Predict time-series behavior

Track long-term dependencies
Optimize batch fermentation

Simulate production scenarios
Generate synthetic data for testing

Feature extraction
Dimensionality reduction

Detect anomalies in production data

Analyze multivariate data
Monitor complex production processes

Discover latent factors
Optimize fermentation pathways

Figure 8. Application of various NNs and deep learning architectures in biopolymer production.

Generative adversarial networks [368–371] (GANs) consist of two NNs (a genera-
tor and a discriminator) that work in opposition to improve the performance of both.
In biopolymer production, GANs can be used to simulate the effects of different produc-
tion parameters on product yield, aiding in process optimization [372,373]. Additionally,
GANs can generate synthetic datasets that replicate the conditions of rare or expensive
experiments, helping manufacturers explore different scenarios without conducting costly
physical tests.

Autoencoders [374–377] are unsupervised learning architectures used for feature
extraction and dimensionality reduction. In biopolymer manufacturing, autoencoders
can be applied to compress large sets of sensor data collected during fermentation and
extraction processes. This allows for a more efficient analysis of underlying patterns,
leading to better control of key production variables. Autoencoders are also useful for
anomaly detection, identifying irregularities in the data that could indicate process faults
or contamination.

Transformer networks [378–381], originally developed for natural language process-
ing, are gaining traction in industries requiring the analysis of long-range dependencies.
In biopolymer production, transformers could be used to analyze multivariate time-series
data, such as environmental conditions or equipment sensor data, and predict future states
of the fermentation process. Their ability to handle large datasets and model complex
relationships makes them highly applicable in optimizing batch production cycles.

Finally, Deep Belief Networks [382–385] (DBNs) are generative NNs that stack mul-
tiple layers of Restricted Boltzmann Machines (RBMs). They can learn to represent data
hierarchically, making them useful for modeling complex relationships between variables
in biopolymer production. DBNs can be applied to tasks such as optimizing fermentation
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pathways by discovering latent factors influencing microbial growth, leading to more
efficient and controlled production.

Biological systems inspire materials science through their complex multiscale archi-
tectures. Combining ML with multiscale modeling provides insights into the structure–
property–function relationships of biomaterials. Arevalo et al. [386] reviewed ML
techniques—such as NNs and autoencoders—that are applied to predict and design bi-
ological materials, advocating for the integration of ML with physics-based models for
high-throughput materials discovery.

Khare et al. [387] applied transformer models to predict the thermal stability of collagen
triple helices based on amino acid sequences. They compared a small transformer model
and a large pretrained ProtBERT model. Despite ProtBERT’s higher complexity, the small
model achieved a nearly similar accuracy while using significantly fewer parameters. Both
models showed good performance against experimental data, marking the first use of
transformers for predicting biophysical properties from small data sets.

Bandyopadhyay et al. [388] presented a method to explore the conformational land-
scapes of mini-proteins and peptides using autoencoders. By projecting molecular dy-
namics simulations into a latent space, the method identifies key metastable states and
predicts the folding behavior of complex proteins. The approach outperformed traditional
dimensionality reduction techniques, offering a more optimized view of protein dynamics
and folding pathways.

A generative model based on variational autoencoders was developed by
Sadeghi et al. [389] to design DNA-stabilized silver nanoclusters (AgN-DNAs) with op-
timized fluorescence properties. This model allows for multiobjective property design,
including the ability to generate AgN-DNAs with enhanced near-infrared emission for
bioimaging. It also provides automatic feature extraction and reverse mapping from desired
properties to DNA sequences, improving upon traditional models that require manual
feature engineering.

Satteri et al.’s [390] review covers recent advancements in data-driven approaches for
the inverse design of polymers with specific properties. It highlights three key strategies,
all of which leverage materials data to explore chemical space efficiently: high-throughput
virtual screening, global optimization, and generative models. The article discusses the chal-
lenges and opportunities in using these data-driven techniques to optimize polymer design.

ML techniques were applied by Baldizon et al. [391] to improve the classification of lin-
ear and circular DNA molecules in noisy data from solid-state nanopore experiments. Three
methods—k-means clustering, principal component analysis with k-means, and long short-
term memory (LSTM) models—were tested, with the LSTM model achieving the highest
accuracy (80%), demonstrating its potential for better handling of noisy nanopore data.

Noor et al. [392] applied NNs, enhanced by bootstrap resampling, to predict the
molecular weight of biopolymers produced in a batch reactor. The biopolymerization
process, catalyzed by *Candida antarctica* lipase B, involved ε-caprolactone and toluene.
NNs with a single hidden layer and trained with Levenberg–Marquardt optimization were
used to model the process, using reaction temperature, time, and molecular weight as
inputs. The model achieved accurate one-step-ahead predictions of biopolymer molecular
weight, demonstrating its potential for controlling biopolymer quality.

Leal et al. [393] detailed the creation of a hydroxypropyl cellulose (HPC)-based sensor
for estimating force. By mixing HPC with deionized water at varying concentrations,
the sensor’s RGB color responses were analyzed, showing a correlation between HPC con-
centration and sensor sensitivity. A 63% HPC concentration yielded the highest sensitivity
for red and green components, while a 57% concentration showed uniformity in sensitivity
when force was applied at different positions. The sensor demonstrated sub-centimeter
spatial resolution for force distribution assessment, and the integration of a CNN improved
accuracy, achieving a mean squared error of 0.037.

Salma et al. [394] focused on predicting the drug release and skin permeation of
Piroxicam (PX) topical films made from chitosan (CTS), xanthan gum (XG), and their car-
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boxymethyl derivatives (CMXs). Using the solvent casting method with Tween 80 as a
permeation enhancer, the films showed good physicochemical properties. Deep learning
and ML models were employed to predict drug release and permeation rates. The op-
timal formulation (F8 based on CTS-CMX3) achieved a 99.97% drug release. The Deep
Neural Network (DNN) emerged as the best predictive approach, demonstrating high
accuracy with mean squared error values of 0.00098 for drug release and 0.00182 for
permeation kinetics.

Araujo et al. [395] utilized thermogravimetric analysis to investigate chitosan’s thermal
degradation under dynamic conditions, employing a multilayer perceptron (MLP) NN to
quantify contributions from various kinetic models. The MLP architecture successfully
approximated experimental data, showing the lowest residual error and determining
activation energies ranging from 98.1 to 183.3 kJ/mol. The analysis revealed a relationship
between activation energy increases and polymer dehydration, highlighting the MLP’s
ability to capture complex thermal behavior during chitosan decomposition.

Wong et al. [396] discussed the biopolymerization of ε-caprolactone using the Novozyme
435 catalyst, varying reactor temperatures and impeller speeds. A multilayer feedforward
neural network (FFNN) model was developed, comparing the performance of 11 training
algorithms. Results indicated that the quasi-Newton and Levenberg–Marquardt algorithms
outperformed others, achieving mean absolute percentage error (MAPE) values of 4.512%,
5.31%, and 3.21% for various molecular weight measures in the polycaprolactone biopoly-
merization process. This research identified effective training methods for estimating
biopolymerization performance.

Laycock et al. [397] discussed the transition from traditional experimental methods to
advanced computational approaches in the design and manufacture of biodegradable and
bioderived polymeric materials. The Materials 4.0 framework integrates multiscale simula-
tions, computational modeling, and artificial intelligence to model biopolymer structures,
predict properties, and understand flow and processability. This holistic approach comple-
ments experimental techniques, facilitating the study of various biopolymeric materials,
including biodegradable polyesters and polysaccharides. Furthermore, ML techniques were
applied to optimize material properties and predict the effects of modifications and external
factors. The article emphasizes the growing repository of computational modeling data
that enhance design flexibility and processing options before costly experimental testing.

Kartal et al. [398] focused on the thermal degradation of biopolymeric structures in
biomass—specifically hemicellulose, cellulose, and lignin. Given the complex structure of
biomass, characterizing thermal degradation typically requires extensive experimental re-
sources. The authors developed an ANN model to generate differential thermogravimetric
analysis (DTG) curves for these biopolymers using proximate analysis results. Implemented
with TensorFlow, the ANN model demonstrated excellent performance with R2 values
exceeding 0.998, allowing for the estimation of thermal degradation at any temperature.
This model enables immediate calculations of biopolymer fractions in degraded biomass,
representing a novel advancement in the field.

Review [152] highlights the integration of ML with algae-derived biopolymers for
enhancing 3D printing processes. It addresses the need for sustainable manufacturing solu-
tions and discusses algae-based biopolymers like alginate and carrageenan, emphasizing
their environmental advantages and technical challenges. The paper outlines how ML can
optimize material selection, predictive modeling, and quality control, resulting in improved
mechanical properties and printing parameter optimization [399–401]. Applications, such
as Spirulina-based materials and carrageenan in bone tissue engineering, are highlighted.
The article concludes that despite challenges, combining ML with algae-derived biopoly-
mers has the potential to revolutionize sustainable additive manufacturing, with significant
advancements in eco-friendly production techniques.

Asgharzadeh et al. [402] presented a deep learning method for segmenting biopoly-
mer networks observed through confocal laser scanning microscopy (CLSM). The au-
thors utilized an encoder–decoder network architecture, achieving a dice score of 0.88



Polymers 2024, 16, 3368 26 of 45

for segmenting filamentous temperature-sensitive Z proteins from the chloroplasts of
Physcomitrella patens. The segmentation process involved creating ground truth images
through a semi-automated method, using adaptive local thresholding followed by expert
modification. To enhance the dataset, 3D images were transformed into 2D slices, resulting
in a training dataset of 15,015 images. The model was trained using a 5-fold cross-validation
scheme, and performance was evaluated using the Intersection-over-Union (IoU) metric.
The network, implemented in Keras and trained on an Nvidia GTX 1070 GPU, successfully
produced segmented 3D images from the original CLSM data.

Leng et al. [403] discussed the development of an artificial fully connected neural
network (FCNN) for modeling the behavior of representative volume elements (RVEs) in
biopolymer gels, such as fibrin and collagen, which are important in tissue engineering.
The FCNN was trained on data from 1100 fiber networks under biaxial deformations to
predict strain energy derivatives. By incorporating constraints like the convexity of the
strain energy function and symmetry of the Hessian, the FCNN was successfully integrated
into the finite element software Abaqus as a user material subroutine (UMAT). The model
outputs derivatives of strain energy in relation to deformation invariants, enhancing the
simulation of biopolymer gels in nonlinear elasticity problems. The authors emphasized
the potential for combining ML with computational mechanics to improve the modeling of
biological materials with multiscale structures.

The growing environmental concerns over plastic pollution have heightened interest
in producing biodegradable starch-based films. Nobrega et al. [404] emphasized the need
for a comprehensive understanding of how various additives affect the properties of these
films. Self-organizing maps (SOMs) were employed to analyze the mechanical and barrier
properties of the films, highlighting the critical role of glycerol in films with low amounts
of poly(butylene adipate-co-terephthalate) (PBAT) and its dependence on equilibrium
relative humidity for water vapor permeability (WVP). The research utilized a multilayer
perceptron model combined with a genetic algorithm to predict and optimize the properties
of biodegradable films, achieving a high correlation between experimental and theoretical
results with a maximum error of 24%. The authors suggested that further data are needed
to enhance the model’s accuracy and ensure component compatibility.

Table 3 summarizes various studies that focus on the use of ML in the design and
optimization of biopolymers. For each study, the key focus, materials investigated, applied
models, results obtained, and limitations of the approaches are highlighted. This table
illustrates the broad range of ML applications in materials science, emphasizing both the
advancements made and the challenges that remain in this field.

Table 3. Summary of deep learning applications in the design of biopolymers.

Reference Focus Material Dataset Applied Model Results Limitations

Khare et al.
[387]

Predicting thermal
stability

Collagen triple
helices

Amino acid
sequences with
experimental
thermal stability
data

Transformer
models

Small transformer model
achieved similar accuracy
to larger ProtBERT while
using fewer parameters;
good performance against
experimental data.

Limited to small
datasets.

Bandyopadhyay
et al. [388]

Exploring
conformational
landscapes

Mini-proteins
and peptides

Molecular
dynamics
simulation data

Autoencoders

Method outperforms
traditional techniques,
providing optimized
views of protein
dynamics and folding
pathways.

None specified.

Sadeghi et al.
[389]

Designing
DNA-stabilized
silver nanoclusters

Silver
nanoclusters
(AgN-DNAs)

DNA sequences
with fluorescence
properties

Variational
autoencoders

Enables multiobjective
design for enhanced
fluorescence properties
and automatic feature
extraction; improves on
traditional manual
engineering methods.

None specified.
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Table 3. Cont.

Reference Focus Material Dataset Applied Model Results Limitations

Satteri et al.
[390]

Inverse design of
polymers Polymers

Materials data
with polymer
properties

Data-driven
approaches

Highlights strategies like
high-throughput virtual
screening and generative
models; discusses
optimization challenges.

Challenges in
data-driven
optimization
discussed.

Baldizon et al.
[391]

Classifying DNA
molecules

Linear and
circular DNA

Noisy data from
solid-state
nanopore
experiments

LSTM models,
PCA

LSTM achieved highest
accuracy (80%) for noisy
data classification from
solid-state nanopore
experiments.

Limited to noisy
data context.

Noor et al.
[392]

Predicting
molecular weight
of biopolymers

ε-caprolactone
biopolymers

Reaction
temperature,
time,
and molecular
weight data

NNs

Accurate predictions of
biopolymer molecular
weight; demonstrated
potential for controlling
quality in
biopolymerization
processes.

Focused on a
specific
biopolymer
process.

Leal et al. [393] Force sensor
development

Hydroxypropyl
cellulose (HPC)

RGB color
responses of HPC
sensors under
varying force and
concentration

CNN

Achieved a mean squared
error of 0.037; highest
sensitivity noted at
specific HPC
concentrations.

None specified.

Salma et al.
[394]

Drug release and
skin permeation

Piroxicam
films from
chitosan and
xanthan gum

Drug release and
permeation data
for various
formulations

Deep learning,
ML

DNN achieved high
accuracy; optimal
formulation reached
99.97% drug release.

None specified.

Araujo et al.
[395]

Thermal
degradation of
chitosan

Chitosan Thermogravimetric
analysis data

Multilayer
perceptron
(MLP)

MLP effectively
quantified contributions
from various kinetic
models; lowest residual
error recorded.

None specified.

Wong et al.
[396]

Biopolymerization
performance ε-caprolactone

Biopolymerization
data with
molecular weight
measures

Multilayer
feedforward
NN

Identified effective
training algorithms;
MAPE values for various
molecular weights.

None specified.

Laycock et al.
[397]

Computational
methods in
biopolymer design

Biodegradable
and bioderived
polymers

Computational
modeling data for
polymeric
materials

Multiscale
simulations, AI

Integrated framework
enhances design
flexibility and predicts
effects of modifications
before testing.

None specified.

Kartal et al.
[398]

Thermal
degradation of
biomass
biopolymers

Hemicellulose,
cellulose,
lignin

Proximate
analysis data and
thermal
degradation
behavior

ANN

Excellent performance
with R2 values over 0.998;
allows for immediate
calculations of
biopolymer fractions in
degraded biomass.

Complexity in
biomass
characterization
remains.

Bin et al. [152]
ML in
algae-derived
biopolymers

Algae-based
biopolymers

Material
properties and 3D
printing process
parameters

ML

Highlights potential for
sustainable
manufacturing and
improved mechanical
properties; discusses
applications in 3D
printing.

Technical
challenges in
material
properties
optimization.

Asgharzadeh
et al. [402]

Deep learning for
confocal
microscopy

Biopolymer
networks

3D confocal
microscopy
images of
biopolymer
networks
(transformed to
2D slices)

Encoder-
decoder
network

Achieved a dice score of
0.88 in segmentation
tasks; extensive training
dataset created from 3D
to 2D transformations.

None specified.
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Table 3. Cont.

Reference Focus Material Dataset Applied Model Results Limitations

Leng et al.
[403]

Modeling
biopolymer gel
behavior

Fibrin, collagen

Strain energy
data from fiber
networks under
biaxial
deformation

FCNN

Successfully predicts
strain energy derivatives;
integrated into finite
element software for
nonlinear elasticity
problems.

None specified.

Nobrega et al.
[404]

Biodegradable
starch-based films

Starch-based
films

Mechanical and
barrier property
data with
additive effects

Self-organizing
maps (SOMs),
MLP

Achieved high correlation
(max error 24%) in
predicting mechanical
and barrier properties;
emphasizes role of
glycerol.

Further data
needed to
improve model
accuracy and
compatibility.

4. Challenges of Integrating ML in Biopolymer Research

Integrating ML into biopolymer research presents several challenges that limit its
broader application and effectiveness. One of the primary issues is the limited availability
of experimental data. In fields like biochemistry and organic chemistry, data collected
from experiments often come in small quantities, making it difficult to train and validate
robust models. For instance, in the biopolymerization process, small datasets can lead to
overfitting, reducing the ability of models to make accurate predictions on new data. This
data scarcity was exacerbated during the COVID-19 pandemic, which further restricted the
ability to conduct experimental research.

Additionally, the molecular structures of biopolymers are complex and diverse, posing
another major hurdle for accurate modeling. Structures such as lignin or polylactides
contain various intermolecular interactions and bonds, making it challenging to mathemat-
ically represent these materials using conventional methods. Traditional ML models, like
linear regression, often struggle to capture the nonlinear dependencies that characterize
these systems. Therefore, more sophisticated modeling techniques and their integration
with physical and chemical simulation methods are required.

Another key issue is the lack of high-quality labeled data, especially in biochemical
processes. Automating the annotation of datasets is a significant effort, and without reliable
labels, ML models cannot achieve high accuracy. Below are key comments based on
reviewed papers:

• Using variational autoencoders (VAEs) and generative adversarial networks (GANs)
to synthesize new data from small experimental datasets can enhance model quality
and mitigate the risk of overfitting. This approach has already been proven effective
in certain biopolymer studies.

• Applying nonlinear methods such as Random Forests, SVM, and NNs can significantly
improve the prediction of biopolymer properties. These algorithms are particularly
useful for handling data with complex molecular interactions.

• ML in biopolymer research can benefit from closer integration with traditional compu-
tational chemistry methods, like molecular dynamics or quantum chemistry simula-
tions. Combining knowledge from fundamental laws with ML capabilities will enable
more accurate predictions.

• Active learning algorithms can efficiently use small datasets by selecting the most
informative experiments to prioritize data collection. This strategy can reduce the
experimental workload required to train models.

• As demonstrated by the Lignin Structural Dataset (LGS), the creation and publication
of unique datasets for different biopolymers is importnant for advancing the field.
These databases will support improved simulations, predictive models, and facilitate
resource sharing among researchers.



Polymers 2024, 16, 3368 29 of 45

5. Future Directions for Development

To successfully integrate ML into biopolymer research, it is essential to address current
challenges and explore future development opportunities. In the future, improving the
integration of ML into biopolymer research will aid in the development of new materials
with targeted properties and optimize their production for sustainable use. These advance-
ments will help overcome current limitations and open new avenues for innovation in
biopolymer science.

Uncertainty quantification (UQ) helps account for variability in input data, measure-
ment errors, and process instability [405]. It allows for assessing the accuracy of models
and predictions, providing insights into the confidence of results. In biopolymers, UQ can
be used to consider factors like composition, production conditions, and environmental
influences on material properties. It can improve the prediction of material characteristics,
optimize production processes, and increase the reliability of final products.

Explainable AI (XAI) [406] aims to make machine learning models more interpretable
by providing insights into how decisions are made. It helps bridge the gap between
model complexity and human understanding, making it easier to trust and validate model
outputs. In biopolymer manufacturing, XAI can be applied to understand the relation-
ship between raw materials, processing parameters, and the resulting properties of the
biopolymer. This transparency can guide decision-making and improve the optimization
of production processes.

Below are several key areas where ML can make a significant impact:

• Grishanovich et al. (2024) [333] used Hierarchical Cluster Analysis (HCA) to clas-
sify lignin alterations using solid-state NMR spectra, addressing the gap between
dissolved and solid lignins. Ireddy et al. (2024) [334] demonstrated that 1D Fourier
Transform (FT) achieved high accuracy in classifying polyhydroxyalkanoate (PHA)
films using unsupervised machine learning algorithms. Both approaches highlight the
effectiveness of unsupervised techniques in classifying complex biopolymers. How-
ever, the accuracy of these models is constrained by the limitations of the underlying
technologies (solid-state NMR and FT) and may vary with material composition. Fu-
ture research should focus on integrating more advanced spectroscopic techniques
or hybrid models to overcome these limitations and improve generalization across
different biopolymer types.

• Mulrennan et al. (2022) [336] combined near-infrared (NIR) and conventional sensor
data with Random Forest (RF) and Support Vector Regression (SVR) models to predict
the mechanical strength of polylactide (PLA). Similarly, Bejagam et al. (2022) [294]
demonstrated that Support Vector Machines (SVMs) excelled in predicting the mechan-
ical properties of wheat straw-filled polypropylene composites. Both studies show the
superiority of nonlinear models like RF and SVM over traditional linear methods for
material property prediction. However, the complexity of these models and the need
for real-time data or specific formulations may limit practical applications. Future
work could focus on simplifying these models for broader use and exploring their
adaptability to different biopolymer formulations.

• Zhang et al. (2021) [339] used ensemble learning for high-accuracy DNA-binding
protein prediction, relying on feature selection with LASSO. Xing et al. (2002) [298]
employed an SVM to predict the molecular weight of polycaprolactone (PCL), showing
that SVM outperformed Artificial Neural Networks (ANNs) in this context. While
these methods provide high accuracy, they require large, high-quality datasets for
training and may not generalize well across different protein types or polymers. Future
research could explore methods for data augmentation or transfer learning to expand
these models’ applicability and robustness.

• Qiao et al. (2001) [341] employed self-organizing maps (SOMs) for visualizing protein
molecular surfaces, while Bandyopadhyay et al. (2021) [388] used autoencoders to
predict protein dynamics and folding pathways. Both approaches highlight the im-
portance of unsupervised learning in understanding complex biomolecular features.
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However, the effectiveness of an SOM depends on input feature quality, while autoen-
coders may struggle with very complex datasets. Future studies could integrate SOMs
with deep learning-based feature extraction or enhance autoencoders by incorporating
reinforcement learning to better model protein conformational landscapes.

• Sadeghi et al. (2024) [389] used variational autoencoders (VAEs) for multiobjective opti-
mization in the design of DNA-stabilized silver nanoclusters. Satteri et al. (2021) [390]
emphasized the potential of data-driven models, such as generative models, for poly-
mer design. Both studies demonstrate the power of data-driven techniques in optimiz-
ing material properties, but challenges remain in data quality and model generalizabil-
ity. Future research should focus on improving model robustness and combining these
techniques with traditional methods to achieve more accurate and versatile material
design processes.

• Kartal et al. (2023) [398] employed Artificial Neural Networks (ANNs) to predict the
thermal degradation of biomass biopolymers with high accuracy, while Khare et al.
(2022) [387] demonstrated the potential of small transformer models to predict the
thermal stability of collagen triple helices. Both studies underline the importance of
accurate prediction of biopolymer degradation, though the complexity of biomass
and the limitations of smaller datasets in transformers may pose challenges. Future
studies could integrate more advanced models, such as hybrid machine learning tech-
niques, and explore the use of multi-modal datasets to improve prediction accuracy
for biopolymer stability and degradation.

• Ifran et al. (2020) [331] used Gaussian Process Regression (GPR) for accurate prediction
of nutrient release in biopolymer-coated controlled-release fertilizers (CRFs), while
Kathuria et al. (2022) [291] applied k-Nearest Neighbor (k-NN) models to optimize
biodegradable starch film formulations. Both approaches show promise in predicting
biopolymer properties, but their applicability may be limited by specific material
conditions or dataset sizes. Future research should explore expanding these models to
include a broader range of materials and applications and work towards integrating
them with other predictive models for improved generalization.

• Khare et al. (2022) [387] demonstrated that small transformer models can efficiently
predict the thermal stability of biopolymer structures like collagen triple helices.
These models provide a promising alternative to larger models such as ProtBERT,
offering similar accuracy with fewer parameters. Future research could investigate
the scalability of transformer models for larger, more complex datasets and explore
their application to other biopolymer stability predictions.

• Wei et al. (2022) [348] emphasized the importance of data augmentation in improving
machine learning model performance for biopolymerization modeling. By enhancing
the dataset, they were able to significantly boost prediction accuracy. Future research
could focus on developing more robust data augmentation techniques and incorpo-
rating generative models, such as GANs, to handle real-world data variability and
improve prediction reliability in biopolymer-related fields.
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116. Karkoszka, M.; Rok, J.; Wrześniok, D. Melanin Biopolymers in Pharmacology and Medicine—Skin Pigmentation Disorders,
Implications for Drug Action, Adverse Effects and Therapy. Pharmaceuticals 2024, 17, 521. [CrossRef]

117. Vázquez, V.; Giorgi, V.; Bonfiglio, F.; Menéndez, P.; Gioia, L.; Ovsejevi, K. Lignocellulosic residues from bioethanol production:
A novel source of biopolymers for laccase immobilization. RSC Adv. 2023, 13, 13463–13471. [CrossRef]

118. Garduño-Juárez, R.; Tovar-Anaya, D.O.; Perez-Aguilar, J.M.; Lozano-Aguirre Beltran, L.F.; Zubillaga, R.A.; Alvarez-Perez, M.A.;
Villarreal-Ramirez, E. Molecular dynamic simulations for biopolymers with biomedical applications. Polymers 2024, 16, 1864.
[CrossRef]

119. Nasarian, E.; Alizadehsani, R.; Acharya, U.R.; Tsui, K.L. Designing interpretable ML system to enhance trust in healthcare:
A systematic review to proposed responsible clinician-AI-collaboration framework. Inf. Fusion 2024, 108, 102412. [CrossRef]

120. Räz, T. ML interpretability: Simple isn’t easy. Stud. Hist. Philos. Sci. 2024, 103, 159–167. [CrossRef]
121. Ciobanu-Caraus, O.; Aicher, A.; Kernbach, J.M.; Regli, L.; Serra, C.; Staartjes, V.E. A critical moment in machine learning in

medicine: On reproducible and interpretable learning. Acta Neurochir. 2024, 166, 14. [CrossRef]
122. Khayretdinova, M.; Zakharov, I.; Pshonkovskaya, P.; Adamovich, T.; Kiryasov, A.; Zhdanov, A.; Shovkun, A. Prediction of brain

sex from EEG: Using large-scale heterogeneous dataset for developing a highly accurate and interpretable ML model. NeuroImage
2024, 285, 120495. [CrossRef]

123. Jiang, S.; Sweet, L.b.; Blougouras, G.; Brenning, A.; Li, W.; Reichstein, M.; Denzler, J.; Shangguan, W.; Yu, G.; Huang, F.; et al. How
interpretable machine learning can benefit process understanding in the geosciences. Earth’s Futur. 2024, 12, e2024EF004540.
[CrossRef]

124. Antonini, A.S.; Tanzola, J.; Asiain, L.; Ferracutti, G.R.; Castro, S.M.; Bjerg, E.A.; Ganuza, M.L. Machine Learning model
interpretability using SHAP values: Application to Igneous Rock Classification task. Appl. Comput. Geosci. 2024, 23, 100178.
[CrossRef]

125. Ma, D.; Bortnik, J.; Ma, Q.; Hua, M.; Chu, X. Machine learning interpretability of outer radiation belt enhancement and depletion
events. Geophys. Res. Lett. 2024, 51, e2023GL106049. [CrossRef]

126. Kobayashi, K.; Alam, S.B. Explainable, interpretable, and trustworthy AI for an intelligent digital twin: A case study on remaining
useful life. Eng. Appl. Artif. Intell. 2024, 129, 107620. [CrossRef]

127. Zheng, J.X.; Li, X.; Zhu, J.; Guan, S.Y.; Zhang, S.X.; Wang, W.M. Interpretable machine learning for predicting chronic kidney
disease progression risk. Digit. Health 2024, 10, 20552076231224225. [CrossRef]

128. Nadizar, G.; Rovito, L.; De Lorenzo, A.; Medvet, E.; Virgolin, M. An analysis of the ingredients for learning interpretable symbolic
regression models with human-in-the-loop and genetic programming. ACM Trans. Evol. Learn. Optim. 2024, 4, 1–30. [CrossRef]

129. Zou, X.; Perlaza, S.M.; Esnaola, I.; Altman, E. Generalization analysis of machine learning algorithms via the worst-case
data-generating probability measure. Proc. Aaai Conf. Artif. Intell. 2024, 38, 17271–17279. [CrossRef]

130. Trivedi, A. Addressing the Fallacy of Generalizing Caste Racism among Hindus: An AI/ML Approach to Deconstructing
Misconceptions. Int. J. Multidiscip. Innov. Res. Methodol. 2024, 3, 50–63.

131. Ispirova, G.; Eftimov, T.; Džeroski, S.; Seljak, B.K. MsGEN: Measuring generalization of nutrient value prediction across different
recipe datasets. Expert Syst. Appl. 2024, 237, 121507. [CrossRef]

132. Gil-Fuster, E.; Eisert, J.; Bravo-Prieto, C. Understanding quantum machine learning also requires rethinking generalization. Nat.
Commun. 2024, 15, 2277. [CrossRef]

133. Anagnostopoulos, S.J.; Toscano, J.D.; Stergiopulos, N.; Karniadakis, G.E. Learning in PINNs: Phase transition, total diffusion, and
generalization. arXiv 2024, arXiv:2403.18494.

134. Wang, Y.; Patel, S.; Ortner, C. A theoretical case study of the generalization of machine-learned potentials. Comput. Methods Appl.
Mech. Eng. 2024, 422, 116831. [CrossRef]

135. Alsaggaf, I.A.; Aloufi, S.F.; Baharith, L.A. A new generalization of the inverse generalized Weibull distribution with different
methods of estimation and applications in medicine and engineering. Symmetry 2024, 16, 1002. [CrossRef]

136. Corso, G.; Deng, A.; Fry, B.; Polizzi, N.; Barzilay, R.; Jaakkola, T. Deep confident steps to new pockets: Strategies for docking
generalization. arXiv 2024, arXiv:2402.18396.

137. Mora, A.; Bujari, A.; Bellavista, P. Enhancing generalization in federated learning with heterogeneous data: A comparative
literature review. Futur. Gener. Comput. Syst. 2024, 157, 1–15. [CrossRef]

138. Ramírez, J.G.C.; Islam, M.M. Navigating the Terrain: Scaling Challenges and Opportunities in AI/ML Infrastructure. J. Artif.
Intell. Gen. Sci. (JAIGS) 2024, 2, 241–250.

139. Singla, A.; Malhotra, T. Challenges and Opportunities in Scaling AI/ML Pipelines. J. Sci. Technol. 2024, 5, 1–21.
140. Darzi, S.; Yavuz, A.A. PQC meets ML or AI: Exploring the Synergy of Machine Learning and Post-quantum Cryptography.

TechRxiv 2024. [CrossRef]
141. Rane, N.; Mallick, S.; Kaya, O.; Rane, J. From challenges to implementation and acceptance: Addressing key barriers in artificial

intelligence, machine learning, and deep learning. In Applied Machine Learning and Deep Learning: Architectures and Techniques;
Deep Science Publishing: Palo Alto, CA, USA, 2024; pp. 153–166.

http://dx.doi.org/10.3390/su151512048
http://dx.doi.org/10.3390/ph17040521
http://dx.doi.org/10.1039/D3RA01520C
http://dx.doi.org/10.3390/polym16131864
http://dx.doi.org/10.1016/j.inffus.2024.102412
http://dx.doi.org/10.1016/j.shpsa.2023.12.007
http://dx.doi.org/10.1007/s00701-024-05892-8
http://dx.doi.org/10.1016/j.neuroimage.2023.120495
http://dx.doi.org/10.1029/2024EF004540
http://dx.doi.org/10.1016/j.acags.2024.100178
http://dx.doi.org/10.1029/2023GL106049
http://dx.doi.org/10.1016/j.engappai.2023.107620
http://dx.doi.org/10.1177/20552076231224225
http://dx.doi.org/10.1145/3643688
http://dx.doi.org/10.1609/aaai.v38i15.29674
http://dx.doi.org/10.1016/j.eswa.2023.121507
http://dx.doi.org/10.1038/s41467-024-45882-z
http://dx.doi.org/10.1016/j.cma.2024.116831
http://dx.doi.org/10.3390/sym16081002
http://dx.doi.org/10.1016/j.future.2024.03.027
http://dx.doi.org/10.36227/techrxiv.170785010.08081159/v1


Polymers 2024, 16, 3368 36 of 45

142. Patil, D.; Rane, N.; Desai, P.; Rane, J. Machine learning and deep learning: Methods, techniques, applications, challenges, and
future research opportunities. In Trustworthy Artificial Intelligence in Industry and Society; Deep Science Publishing: Palo Alto, CA,
USA, 2024; pp. 28–81.

143. Bianchi, P.; Monbaliu, J.C.M. Revisiting the Paradigm of Reaction Optimization in Flow with a Priori Computational Reaction
Intelligence. Angew. Chem. 2024, 136, e202311526. [CrossRef]

144. Prakash, S.; Malaiyappan, J.N.A.; Thirunavukkarasu, K.; Devan, M. Achieving regulatory compliance in cloud computing
through ML. AIJMR-Adv. Int. J. Multidiscip. Res. 2024, 2, 1038.

145. Choudhury, A.; Ghose, M.; Islam, A. Machine learning-based computation offloading in multi-access edge computing: A survey.
J. Syst. Archit. 2024, 148, 103090. [CrossRef]

146. Rane, J.; Mallick, S.; Kaya, O.; Rane, N. Artificial intelligence, machine learning, and deep learning in cloud, edge, and quantum
computing: A review of trends, challenges, and future directions. In Future Research Opportunities for Artificial Intelligence in
Industry 4.0 and 5; Deep Science Publishing: Palo Alto, CA, USA, 2024; p. 2.

147. Safdar, M.; Paul, P.P.; Lamouche, G.; Wood, G.; Zimmermann, M.; Hannesen, F.; Bescond, C.; Wanjara, P.; Zhao, Y.F. Funda-
mental requirements of a machine learning operations platform for industrial metal additive manufacturing. Comput. Ind.
2024, 154, 104037. [CrossRef]

148. Hussain, A.; Jabeen, N.; Tabassum, A.; Ali, J. 3D-Printed Conducting Polymers for Solid Oxide Fuel Cells. In 3D Printed Conducting
Polymers; CRC Press: Boca Raton, FL, USA, 2024; pp. 179–195.

149. Das, S.; Jegadeesan, J.T.; Basu, B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and
Current Status. Biomacromolecules 2024, 25, 2156–2221. [CrossRef]

150. Asl, Z.R.; Rezaee, K.; Ansari, M.; Zare, F.; Roknabadi, M.H.A. A review of biopolymer-based hydrogels and IoT integration for en-
hanced diabetes diagnosis, management, and treatment. Int. J. Biol. Macromol. 2024, 280, 135988. : 10.1016/j.ijbiomac.2024.135988
[CrossRef]

151. Xiong, G.; Zhou, X.; Zhang, C.; Xu, X. A comprehensive review of intelligent packaging materials based on biopolymers: Role
of anthocyanins, type and properties of materials, and their application in monitoring meat freshness. Int. J. Biol. Macromol.
2024, 282 Pt 6, 137462. [CrossRef]

152. Bin Abu Sofian, A.D.A.; Lim, H.R.; Chew, K.W.; Show, P.L. Advancing 3D Printing through Integration of Machine Learning with
Algae-Based Biopolymers. ChemBioEng Rev. 2024, 11, 406–425. [CrossRef]

153. Singh, N.K.; Baranwal, J.; Pati, S.; Barse, B.; Khan, R.H.; Kumar, A. Application of plant products in the synthesis and
functionalisation of biopolymers. Int. J. Biol. Macromol. 2023, 237, 124174. [CrossRef]

154. Silva, F.C.O.; Malaisamy, A.; Cahú, T.B.; de Araújo, M.I.F.; Soares, P.A.G.; Vieira, A.T.; dos Santos Correia, M.T. Polysaccharides
from exudate gums of plants and interactions with the intestinal microbiota: A review of vegetal biopolymers and prediction of
their prebiotic potential. Int. J. Biol. Macromol. 2023, 254 Pt 2, 127715. [CrossRef]

155. Bose, I.; Nousheen.; Roy, S.; Yaduvanshi, P.; Sharma, S.; Chandel, V.; Biswas, D. Unveiling the potential of marine biopolymers:
Sources, classification, and diverse food applications. Materials 2023, 16, 4840. [CrossRef]

156. Rahman, S.; Gogoi, J.; Dubey, S.; Chowdhury, D. Animal derived biopolymers for food packaging applications: A review. Int. J.
Biol. Macromol. 2024, 255, 128197. [CrossRef]

157. Chaari, M.; Smaoui, S. Pullulan as a biopolymer from microorganisms: Role in food packaging. Curr. Food Sci. Technol. Rep.
2024, 2, 149–156. [CrossRef]

158. Weyhrich, C.W.; Petrova, S.P.; Edgar, K.J.; Long, T.E. Renewed interest in biopolymer composites: Incorporation of renewable,
plant-sourced fibers. Green Chem. 2023, 25, 106–129. [CrossRef]

159. Kumar, D.P.; Nair, A.S.; Balakrishnan, P.; Gopi, S. Biopolymers from renewable sources. In Handbook of Biopolymers; Springer:
Singapore, 2023; pp. 27–56.

160. Vasile, C.; Baican, M. Lignins as promising renewable biopolymers and bioactive compounds for high-performance materials.
Polymers 2023, 15, 3177. [CrossRef]

161. Ladhari, S.; Vu, N.N.; Boisvert, C.; Saidi, A.; Nguyen-Tri, P. Recent development of polyhydroxyalkanoates (PHA)-based materials
for antibacterial applications: A review. ACS Appl. Bio Mater. 2023, 6, 1398–1430. [CrossRef]

162. Mukherjee, A.; Koller, M. Microbial polyHydroxyAlkanoate (PHA) biopolymers—Intrinsically natural. Bioengineering 2023, 10, 855.
[CrossRef]

163. Molinari, G.; Parlanti, P.; Aliotta, L.; Lazzeri, A.; Gemmi, M. TEM morphological analysis of biopolymers: The case of Poly (Lactic
Acid)(PLA). Mater. Today Commun. 2024, 38, 107868. [CrossRef]

164. Alhulaybi, Z.A. Fabrication and Characterization of Poly (lactic acid)-Based Biopolymer for Surgical Sutures. ChemEngineering
2023, 7, 98. [CrossRef]

165. Koch, M.; Spierling, S.; Venkatachalam, V.; Endres, H.J.; Owsianiak, M.; Vea, E.B.; Daffert, C.; Neureiter, M.; Fritz, I. Comparative
assessment of environmental impacts of 1st generation (corn feedstock) and 3rd generation (carbon dioxide feedstock) PHA
production pathways using life cycle assessment. Sci. Total Environ. 2023, 863, 160991. [CrossRef]

166. Churam, T.; Usubharatana, P.; Phungrassami, H. Sustainable production of carboxymethyl cellulose: A biopolymer alternative
from sugarcane (Saccharum officinarum L.) leaves. Sustainability 2024, 16, 2352. [CrossRef]

167. Govoni, C.; D’Odorico, P.; Pinotti, L.; Rulli, M.C. Preserving global land and water resources through the replacement of livestock
feed crops with agricultural by-products. Nat. Food 2023, 4, 1047–1057. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/ange.202311526
http://dx.doi.org/10.1016/j.sysarc.2024.103090
http://dx.doi.org/10.1016/j.compind.2023.104037
http://dx.doi.org/10.1021/acs.biomac.3c01271
http://dx.doi.org/10.1016/j.ijbiomac.2024.135988
http://dx.doi.org/10.1016/j.ijbiomac.2024.137462
http://dx.doi.org/10.1002/cben.202300054
http://dx.doi.org/10.1016/j.ijbiomac.2023.124174
http://dx.doi.org/10.1016/j.ijbiomac.2023.127715
http://dx.doi.org/10.3390/ma16134840
http://dx.doi.org/10.1016/j.ijbiomac.2023.128197
http://dx.doi.org/10.1007/s43555-024-00023-x
http://dx.doi.org/10.1039/D2GC03384D
http://dx.doi.org/10.3390/polym15153177
http://dx.doi.org/10.1021/acsabm.3c00078
http://dx.doi.org/10.3390/bioengineering10070855
http://dx.doi.org/10.1016/j.mtcomm.2023.107868
http://dx.doi.org/10.3390/chemengineering7050098
http://dx.doi.org/10.1016/j.scitotenv.2022.160991
http://dx.doi.org/10.3390/su16062352
http://dx.doi.org/10.1038/s43016-023-00884-w
http://www.ncbi.nlm.nih.gov/pubmed/38053006


Polymers 2024, 16, 3368 37 of 45

168. Mehmood, M.A.; Amin, M.; Haider, M.N.; Malik, S.; Malik, H.A.; Alam, M.A.; Xu, J.; Alessa, A.H.; Khan, A.Z.; Boopathy, R.
Wastewater-Grown Algal Biomass as Carbon-neutral, Renewable, and Low Water Footprint Feedstock for Clean Energy and
Bioplastics. Curr. Pollut. Rep. 2024, 10, 172–188. [CrossRef]

169. Phiri, R.; Rangappa, S.M.; Siengchin, S.; Oladijo, O.P.; Dhakal, H.N. Development of sustainable biopolymer-based composites
for lightweight applications from agricultural waste biomass: A review. Adv. Ind. Eng. Polym. Res. 2023, 6, 436–450. [CrossRef]

170. Sreeharsha, R.V.; Dubey, N.; Mohan, S.V. Orienting biodiesel production towards sustainability and circularity by tailoring the
feedstock and processes. J. Clean. Prod. 2023, 414, 137526. [CrossRef]

171. Ivankin, A.N.; Zarubina, A.N.; Borisova, O.A. Bacteriostatic Paper–Polymer Composites Based on Styrene. Polym. Sci. Ser. D
2024, 17, 719–724. [CrossRef]

172. Bibi, F.; Ilyas, N.; Saeed, M.; Shabir, S.; Shati, A.A.; Alfaifi, M.Y.; Amesho, K.T.; Chowdhury, S.; Sayyed, R.Z. Innovative
production o f value-added products using agro-industrial wastes via solid-state fermentation. Environ. Sci. Pollut. Res.
2023, 30, 125197–125213. [CrossRef]

173. Low, K.E.; Tingley, J.P.; Klassen, L.; King, M.L.; Xing, X.; Watt, C.; Hoover, S.E.; Gorzelak, M.; Abbott, D.W. Carbohydrate
flow through agricultural ecosystems: Implications for synthesis and microbial conversion of carbohydrates. Biotechnol. Adv.
2023, 69, 108245. [CrossRef]

174. Kumar, V.; Lakkaboyana, S.K.; Tsouko, E.; Maina, S.; Pandey, M.; Umesh, M.; Singhal, B.; Sharma, N.; Awasthi, M.K.; Andler,
R.; et al. Commercialization potential of agro-based polyhydroxyalkanoates biorefinery: A technical perspective on advances and
critical barriers. Int. J. Biol. Macromol. 2023, 234, 123733. [CrossRef]

175. Ogunrewo, O.F.; Nwulu, N.I. Optimisation framework of biomass supply chain in southwest Nigeria. Clean. Eng. Technol.
2024, 18, 100711. [CrossRef]

176. Gong, C.; Meng, X.; Thygesen, L.G.; Sheng, K.; Pu, Y.; Wang, L.; Ragauskas, A.; Zhang, X.; Thomsen, S.T. The significance of
biomass densification in biological-based biorefineries: A critical review. Renew. Sustain. Energy Rev. 2023, 183, 113520. [CrossRef]

177. Shapiro, A.J.; O’Dea, R.M.; Li, S.C.; Ajah, J.C.; Bass, G.F.; Epps, T.H., III. Engineering innovations, challenges, and opportunities
for lignocellulosic biorefineries: Leveraging biobased polymer production. Annu. Rev. Chem. Biomol. Eng. 2023, 14, 109–140.
[CrossRef]

178. Nicolescu, C.M.; Bumbac, M.; Buruleanu, C.L.; Popescu, E.C.; Stanescu, S.G.; Georgescu, A.A.; Toma, S.M. Biopolymers produced
by lactic acid Bacteria: Characterization and food application. Polymers 2023, 15, 1539. [CrossRef]
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