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Abstract: Narrow Band-Wireless Wide Area Networking (NB-WWAN) technologies are becoming
more popular across a wide range of application domains due to their ability to provide spatially
distributed and reliable wireless connectivity in addition to offering low data rates, low bandwidth,
long-range, and long battery life. For functional testing and performance assessments, the wide
range of wireless technology alternatives within this category poses several difficulties. At the
device level, it is necessary to address issues such as resource limitations, complex protocols, in-
teroperability, and reliability, while at the network level, challenges include complex topologies
and wireless channel/signal propagation problems. Testing the functionality and measuring the
performance of spatially distributed NB-WWAN systems require a systematic approach to over-
come these challenges. Furthermore, to provide a seamless test flow, it is also critical to test and
compare the performance of wireless systems systematically and consistently across the different
system development phases. To evaluate NB-WWAN technologies comprehensively across multiple
abstraction levels—network simulators, emulated lab testbeds, and field test environments—we
propose a unified multi-abstraction-level testing methodology. A detailed technical description of the
prototype implementation and its evaluation is presented in this paper.
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1. Introduction

Many application domains have been drawn to Spatially Distributed Wireless Net-
working (SDWN) technologies as a result of the digitalization and wireless networking
trends. Industry 4.0 use cases that rely on the Internet of Things (IoT), like factory au-
tomation, process automation, logistics, and machine-to-machine (M2M) communication,
heavily rely on spatially distributed wireless networks (SDWNs), including short-range
wireless networks (SRWNs), narrow band-wireless wide area networks (NB-WWANs),
5G-and-beyond networks, and 6G networks [1]. With the help of SDWNSs, applications
that are geographically distributed and networked may operate more effectively and af-
fordably by enabling seamless wireless communication. These applications have a variety
of system requirements, including latency, dependability, battery life, periodicity, range,
bandwidth, data rate, and mobility. For instance, while process automation applications
are spatially much more widely distributed—possibly over several square kilometers of a
chemical or biological process plant, with less time-critical reactions but of greater logical
depth—factory automation applications require very fast reactions (down to 10 ms or even
1 ms) and are characterized by a high density of nodes in a production plant. Even though
only a single node may be deployed in a system for traditional M2M communication appli-
cations like infrastructure monitoring, scalability is extremely high due to the potential to
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link thousands of devices [2,3]. There are several technological options available to offer
dependable wireless communication and satisfy the varied needs of SDWN:s.

Functional testing and performance measurements are essential for evaluating and
comparing different networking systems. Aperiodic uplink transmissions, burst uplink
transmissions, periodic uplink transmissions, aperiodic uplink-downlink transmissions,
control loop, aperiodic downlink transmissions, aperiodic downlink—uplink transmissions,
and over-the-air firmware updates are just a few examples of the various communication
patterns used by applications in the Industrial IoT domain [4-6]. Before choosing an ap-
propriate wireless solution, several SDWN technologies must be assessed based on system
factors and needs. Performance measurements and functional testing are critical tasks for
systematic assessment. Although there are several functional testing and performance
assessment approaches, most of them are technology-specific. Additionally, generic test
methodologies are based on multiple abstraction layers that model or prototype the system
settings, resulting in a lack of uniformity.

In this paper, we present a unified methodology for functional testing and perfor-
mance measurements, and its prototype implementation specifically designed to address
the challenges of diverse System Under Test (SUT) technologies and devices across varying
test abstraction levels. Our approach allows for high-level test case descriptions that can
be consistently applied across simulation, emulated testbeds, and real field environments.
Additionally, we share insights from initial performance evaluations, demonstrating the
methodology’s effectiveness in achieving standardized testing and comparability across
platforms. This work contributes to a unified and systematic functional testing methodol-
ogy that promotes consistency, repeatability, and scalability in evaluating future wireless
IoT systems.

2. Background
2.1. Wireless Technologies in Industrial IoT Use Cases

Current 3G and 4G services are unable to provide the wide range of communication
demands, including high data rates, high dependability, wide coverage, low latency, etc.
However, 5G, with features such as Massive Machine Type Communications (mMTC)
and Ultra-Reliable and Low-latency Communications (URLLC), is a viable option for IoT
communication requirements in Industry 4.0 [7]. The single-air interface provided by 5G is
adaptable, scalable, and capable of meeting the demands of diverse use cases.

To link low-bandwidth and battery-powered devices across long distances, a new class
of wireless wide-area networks dubbed NB-WWAN was developed. The Third Generation
Partnership Project (3GPP) has defined cellular IoT (cloT) versions of NB-WWANSs, whereas
proprietary created technologies like LoRa/ LoRaWAN, SigFox, and MIOTY operate in both
unlicensed and licensed bands. Narrow band Internet of Things (NB-IoT) has become the
most well-known among them because of its attractive system properties, energy-saving
mode of operation with low data rates and bandwidth, and its readiness for 5G use cases.

Our previous studies have evaluated the performance of standardized testing environ-
ments for these technologies, as documented in [8,9]. In the current business environment
of rapid advancements in wireless technology and a range of wireless solutions, many con-
cerns and challenges occur; these issues and problems can only be answered via thorough
testing and measuring. These include identifying the factors that lead to the best perfor-
mance, determining the requirements for dependable and reliable wireless communication,
assessing the suitability of technologies for various applications, contrasting NB-WWAN
solutions with cellular solutions like 4G, 5G-and-beyond, and 6G, and looking into how to
optimize these solutions to support future applications. It is also essential to understand
how standardization efforts might be influenced by testing experiences and how simulation
models can be used to forecast a technology’s performance in specific installations. To
overcome these challenges, it is vital to use thorough and meticulous testing and measuring
methodologies that take into consideration a variety of factors including network design,
wireless channel characteristics, interference, and hardware restrictions. By conducting
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such comprehensive tests and performance measurements, we can gain deeper insights
into the functionality of wireless technologies and contribute to their development and
successful implementation across a wide range of applications.

2.2. Analysis of Related Works of Functional Testing and Performance Measurement Methodologies
of NB-WWAN Systems

Many IoT and Industry 4.0 use cases require spatially dispersed NB-WWAN systems.
Functional testing is crucial at different phases of the system development process to
guarantee the systems’ dependable performance. However, there are several difficulties in
functionally evaluating such networks, primarily because wireless communication devices
often have limited resources and rely on complex communication layer technologies. The
majority of the time, these devices must also cooperate, and since they are frequently
installed in unattended settings, stringent dependability standards are introduced. There
may be certain firmware-specific mistakes, such as incorrect standards, technologies, or
specification interpretation or implementation, as well as generic firmware flaws [10].
Hardware-related issues, including timing errors, resource limitations, and physical mal-
functions, also pose significant challenges.

The fact that these wireless networks typically function in complicated topologies,
which causes several wireless channel and signal propagation challenges, is another signifi-
cant problem with them. Additionally, there are other potential causes for wireless commu-
nication failure in such systems, including multipath effects, interference, etc. Performance
metrics are also necessary for methodically comparing various competing technologies.
The growing importance of wireless networks has resulted in the development of numerous
testing and verification methodologies, each with unique characteristics and designed for
specific test platforms. The most widely used platforms are built on a variety of abstraction
levels, including simulation, emulated test environments, and field trials [11]. The typical
implementation of these testing platforms makes use of wireless communication channels
and networking node prototypes and models.

Around 53% of authors employed simulation in their research, according to a 2016
study [12] of wireless sensor network simulation tools and testbeds. Simulation is, therefore,
the research instrument of choice for the bulk of the wireless sensor network community
research. Network simulators are often used to compute input data, simulate network
behavior, and analyze performance using mathematical models of network functions.
There are system-level simulators that aid in the quick assessment of network performance.
These simulators employ highly abstracted models that do not take into account hardware,
networking, wireless channel, or timing-related behaviours. In-depth simulators address
networking behaviors and protocols, but hardware and wireless channel-related aspects
are still abstracted.

However, these simulators still abstract hardware and wireless channel-related be-
haviours. In the past, testbeds have attracted increasing attention, particularly in the
case of WSN and IoT research, because the simulation method lacks realism (in testing
distributed networking solutions). The examination of various test and performance assess-
ment platforms for wireless systems is the subject of several relevant publications in the
literature [10,11]. H. Hellbrtick et al. [10] provide an overview of prominent WSN testbeds
in Europe and other regions, while other studies [10,12,13] highlight the utility of testbeds
in controlled laboratory or field environments using real networking equipment. There are
three types of testbeds: the standard laboratory-based testbed, the field testbed, and the
testbed as a service (TaaS). Many eminent institutions have testbeds in their labs, which
can have substantial deployment costs, maintenance requirements, and environmental
dependencies [10,13-15]. Taa$S offers online access through Web UI and capabilities to
design and execute tests by user requirements to get around these restrictions. To meet
numerous criteria, including heterogeneity, scalability, portability, federation, flexibility,
mobility, interaction, debuggability, software reuse, repetition, and concurrency, several
testbeds are available for wireless research [11,14].
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The analyses of recent research have explored numerous methodologies to address
the complex demands of functional testing and performance measurement across wire-
less technologies. For instance, the Open-Air Interface (OAI) platform [16] provides a
software-based emulation framework, validating the cellular stack under controlled con-
ditions with 3GPP channel models. This platform enables scalable, repeatable testing,
though it underscores the need for standardized channel models across platforms to ensure
consistent performance metrics. Similarly in other work, Stajkic et al. [17] propose a spa-
tial downscaling methodology that replicates large-scale network conditions in compact
testbeds, enabling controlled performance evaluations. However, translating real-world
field conditions into lab environments presents challenges, as varied downscaling prac-
tices can yield inconsistent performance outcomes, emphasizing the need for a unified
methodology. In a related approach, the EuWIn platform [18] and WalT testbed [19] pro-
vide controlled environments for IoT and wireless protocol testing, offering reproducible
setups but highlighting the difficulty of standardizing tests across different configurations
and hardware.

Additional testbed methodologies emphasize the importance of interoperability and
unified KPI metrics for systematic evaluation. FIESTA-IoT’s Unified IoT Ontology [20]
and the Eclipse IoT-Testware project [21] aimed to facilitate the federation of testbeds
and semantic interoperability, introducing standardized data models to support cross-
platform comparisons. There are many 5G testbed infrastructures, such as the 5G-MLab [22]
and Open5Gaccess [23], which highlight the importance of consistent KPI metrics for
reliability and scalability across diverse environments. Recent studies of 5G/wireless
testbed implementation work, such as 5GTaaS by Reddy et al. [24] and the TRIANGLE
testbed [25], support open-source tools integrated functional testing, while the distributed
testbed by Arendt et al. [26] and the SDN-based 5G testbed by Pineda et al. [27] prioritize
network safety and flexibility. Notably, Martins et al. [28] focused on energy modeling
within virtualized RANSs, and Liu and Kalaa [29] introduced the TRUST testbed to evaluate
5G-enabled medical devices in regulatory contexts, both indicating the need for tailored,
reliable testing methodologies in mission-critical applications such as industrial IoT. These
studies collectively underscore the importance of developing a unified functional testing
and performance measurement methodology to ensure systematic evaluation, comparable
results, and scalability across diverse IoT and 5G functional test cases.

2.3. Need for “Uniformity” in Functional Testing and Performance Measurements

The performance and dependability of wireless communication networks have be-
come a major topic of debate due to the fast growth of wireless technology. A significant
issue is the lack of standardization in functional testing and performance measurements,
as current solutions are often technology-specific and cannot be applied in a unified con-
text. Despite having a similar underlying architecture, distinct test platforms have varied
testing approaches and test case descriptions. This study aims to address the challenge of
conducting unified functional testing and performance measurements for NB-WWAN’s by
proposing a unified testbed that enables consistent test case design, execution, and analysis.

In the context of this work, “uniformity refers to the consistency and standardization
in the description and execution of tests across various System Under Test (SUT) types and
at different levels of test abstraction”. The goal of uniformity is to ensure that, regardless
of the specific technology, device, or layer being tested, the methodology for describing
and performing the tests remains consistent. This approach simplifies the testing process,
making it easier to understand, implement, and replicate across different systems and
scenarios. To the best of our knowledge, no relevant publications have addressed the issue
of inconsistent testing methodologies and the use of varied test case descriptions.

This issue is important because NB-WWANSs sometimes have limited resources and
operate in complex network topologies, which complicates testing and dependability re-
quirements. In dispersed systems like the IoT and Industrial IoT, where functions and
applications are connected via wireless communication channels, consistent and reliable
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testing is crucial. A unified testing platform must be able to simulate and test various wire-
less environments, devices, protocols, and standards, and to gain a thorough understanding
of the system’s capabilities and limitations. It also needs to be cost- and time-effective,
flexible, better compliant, and standardized.

In this paper, we propose an integrated and unified testbed for NB-WWANSs that
enables the use of standardized test case descriptions and visualization tools across multiple
abstraction levels, including network simulation environments, emulated testbeds, and
real field testbeds. By resolving inconsistent testing approaches and enhancing testing
efficiency, this study contributes to advancing wireless communication system development
and deployment.

3. Unified Testing Methodology

This section describes the research objective and methodology, which also includes
the extensive research procedure. Specific research questions were developed to align with
the study’s aim.

3.1. Research Goal

The primary goal of this research is to investigate how functional testing and perfor-
mance measurement can be made uniform and seamless and to introduce and detail the
prototype implementation of a unified functional testing and performance measurement
methodology. Additionally, we present early experiences with performance evaluations.
The proposed methodology enables the unification of testing approaches and test cases
by describing tests at a high level, consistently applicable to various System Under Test
(SUT) technologies and devices across different test abstraction levels (simulation, emulated
testbeds, and real field environments).

3.2. Methodology

In this part, we describe the required terms and methods and introduce a uniform
testing approach that enables seamless test flow across various levels of abstraction. This
methodology’s primary goal is to make it possible to run unified test cases on many
platforms with various levels of abstraction, from simulation to emulated lab testbed to
field testing. For the intended system/technology under test, the tester must be able
to conduct seamless functional testing and performance assessment across a variety of
platforms, including network simulators, emulated testbeds, and real-world field test
environments. We propose a spiral model-based testbed approach that integrates testing
across all stages of the System Testing Life Cycle (STLC). The central concept of this
approach is to utilize uniform test cases when evaluating the system on different test
platforms—network simulation, emulated testbeds, and field testbeds—throughout the
STLC. The research methodology employed in this study was derived from the hypothetico-
deductive method [30]. The research methodology is carried out as a scientific inquiry,
starting with the development of a fictitious research objective, and progressing to the goal’s
augmentation by testing and discussion of each research contribution. In observing the
data gathered during the experimentation process, there was no bias present. The solutions
were benchmarked and published to emphasize the research contributions with reliable
confidence in the observed findings. Figure 1 depicts the research method and a summary
of the unified approach for conducting functional tests across various test platforms by
managing every piece of the test environment using the same test execution tools.

The following are the main steps of this unified multi-abstraction layer testing methodology.

Step 1: Unified Test Description

The first step involves defining the use case, test specifications, and unified test
strategy. To ensure consistent functional testing of spatially distributed wireless systems
across multiple platforms, a comprehensive test strategy is required. This strategy should
encompass clear objectives, scope, methodologies, and detailed test cases and scenarios
described in the test plan. A consistent test data and control format that can be utilized
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across all types of System Under Tests (SUTs) and Test Platforms should be used in the
test cases to make them easy to run on various test platforms. Tests for a single distinct
idea (such as transmitting UDP packets on an NB-IoT network) must be parameterizable as
much as possible within the concept’s scope. At the level of the exchanged abstract data
messages and signals, clear definitions of interfaces between the test system and the system
under test are established.

Unified Test System

Define Use Case, Test Requirements, and Test Plan J

v

~ Unified Test Description

Multi Abstraction Level TestBed

[ Execute Test Cases on each Test Platform ]

Step#1 q [

Step#2 1

' . o ,
Refine and Optimize Test Cases and Environment [ Ste p#5
Step#3 Unified Test Execution

[ Collect and Analyse Test Data ]

Unified Test Results Analysis Visualization

Step#4 |

[ Monitor and Evaluate Test Results J

\/

Iterations Optimizations

[ Desired Outcomes Achieved & Test Success ]

v

Figure 1. Unified multi-abstraction-level testing methodology.

Step 2: Unified multi-abstraction-layer testbed setup

The second step is to build up the unified testbed, which combines several abstraction-
level-based testing platforms, including field testbeds, emulated testbeds, and network
simulation. It is important to create unified test interfaces for the various test platforms and
systems under test (SUT). The test focuses on the SUT, which receives input test messages
(often referred to as “stimuli”) designed to prompt specific behavior. The test description
will change since different devices have various interfaces. As a result, the test system has
to be integrated by using integrated test interfaces or command sets for various devices.
Additionally, the test system should not be dependent on a particular hardware interface.
It should support a variety of hardware interfaces (e.g., serial and TCP/IP), and switching
between these interfaces (e.g., from serial to TCP/IP) should be straightforward.

Step 3: Uniform Test execution procedure and use of common toolsets

The third step involves executing the test cases on each test platform using the same
test automation framework, tools, procedures, and data analysis techniques. This ensures
the comparability and significance of test results across test platforms. The tests should be
specific enough to test individual components comprehensively, while the test environment
should define the tests as consistently as possible across platforms.

Step 4: Uniform Test visualization/analysis

Gathering and analyzing test data from each test platform is the fourth step. The
results must be visualized in a uniform manner to ensure findings are precise and easy
to compare. Using standardized data formats and protocols, as well as automated data
gathering and analysis tools, are some examples of this.
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Step 5: Spiral model-based iterations and Optimizations

To make sure that the test objectives are satisfied and that the findings are consistent,
step 5 of the suggested testing methodology entails constant monitoring and review of
test results across all testing techniques. To get ready for the next round of testing, the
assessment phase informs the improvement and optimization of test cases, as well as the
testing environment and tools. Through iterative testing and performance measurement
improvement, this spiral model-based technique ensures systematic testing.

For the first level of tests and analysis against system requirements and design, simula-
tion model-based test platforms are employed in the testing process. The majority of system
components, such as the hardware of MCUs and transceivers and wireless propagation
channels, are abstracted by the simulation platform. Following the first assessment, testing
is carried out in an emulated testbed where the wireless channel characteristics are ab-
stracted, enabling wireless channel abstraction and test repeatability. Once the operational
prototype is available, testing is carried out as field testing while taking into account all
actual wireless propagation effects.

The suggested technique takes into account the implications of various abstraction
levels and chooses appropriate test platforms for various test kinds across the testing life
cycle while reusing identical test cases. This method provides a thorough understanding
of the performance and behaviour of the wireless system that is being tested in various
circumstances, enabling the detection and correction of problems prior to deployment. The
testbed must specify a method of characterizing and parametrizing networks on various
tiers in order to govern all parts of the test environment from a single test execution tool. In
order to provide more flexible use cases, additional devices must also be programmable
from inside the test case. These additional devices can include a signal generator for noise
production, a custom test system emulation, or various measurement and analysis tools.

3.3. Unified Test Description Methodology

Testing and Test Control Notation version 3 (TTCN-3) is a standardized testing lan-
guage designed for communication systems testing [16]. It is suitable for various testing
requirements and supports both static and dynamic setups. TTCN-3 is designed for
readability, allowing non-programmers to create, read, and comprehend test cases. This
transparency promotes collaboration among stakeholders, including testers, designers,
and system specialists. Its essential principles include components, ports, and messages,
which are concurrent test system entities that perform test operations [16]. Titan is a toolset
that provides an integrated environment for TTCN tests, facilitating the development and
execution of test suites. TTCN-3’s unique traits and advantages make it the preferred choice
for the unified test description methodology.

The uniform Test Description methodology seeks to provide a uniform approach to
describe tests across various System Under Test (SUT) types and degrees of test abstraction.
The technique is broken down into three levels, as shown in Figure 2:

Layer 1: Oversees the overall testing process.
Layer 2: Implements abstracted behaviour through related test interfaces and functions.
Layer 3: Provides specific device behaviour implementations.

Layer 1: Unified Test Description and Management: This layer defines, controls, and
executes all tests consistently, ensuring uniform management of testing tasks. It uses an
abstract test case structure with phases for the preamble, test purpose, and post-amble
using identical configuration files to greatly parameterize the setup parameters. The test
control section coordinates the entire test and consists of cohesive test execution modules
that describe a test at a high level, including which components to use, how to connect
them, when to start them, how the network looks and changes, which nodes to use, and
how to coordinate them in the system. The Titan configuration file, which corresponds to
one module and parameterizes it for several profiles, may be used to configure the test
system. The objective of the abstract test case is to test just one item and to comprehend it
clearly while describing the test as similarly as possible across multiple test platforms.
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Layer 1: Unified Test Description & Management

i T

Unified Test Control Part

|

Unified Test Interfaces

Unified Test Configuration Part Abstract Test Case Part

Layer 2: Implementing Abstracted Behaviour

e -

Preamble Test case Post amble
Action 1 Action 2 Action 3

N~ 7

Layer 3 : Specific Device Behaviour Implementations

Figure 2. Concept of unified test description methodology.

Layer 2: Implementing Abstracted Behaviours: Through related test interfaces and
the execution of functionality, Layer 2 implements abstracted behaviour. Ports that only
accept particular message types make up the stated components in the TTCN-3 schema.
The fundamental operations of the majority of components may be abstracted using these
message types. In order to standardize the functionality of a technology, interfaces are also
established for the SUT control portion. All technologies and abstraction layers can use
the same abstract behaviour description. The implementation of a uniform command set
simplifies testing operations and enhances repeatability across diverse SUTs, ultimately
leading to more efficient and reliable testing methods.

Layer 3: Specific Device Behaviour Implementations: Through classes that inherited
the functions described in Layer 2, Layer 3 offers individual device behaviour implementa-
tions. The functional modules are made up of a number of functions that call the concrete
implementation using the internal device object. Depending on the device being utilized,
different device controls are implemented. The equipment normally responds to particular
requests within a predetermined amount of time. The controller verifies the outcomes,
ensuring the test proceeds only when the expected results occur within the allotted time.
The test system must also look for asynchronous communications and error messages.

In general, the unified test description methodology offers a highly customizable and
consistent way to describe tests across various SUT types and at various test abstraction
levels. By utilizing abstracted behavior descriptions and standardized command sets, the
methodology enhances the efficiency and reliability of testing procedures.

4. Prototype Implementation

To develop, test and evaluate the unified multi-abstraction-level testing methodology,
we mostly adhered to the prototyping technique. The prototype implementation details
of the unified testing methodology proposed in the previous chapter are described in
the section. The unified testing system for unified test case description and execution is
built using the Eclipse Titan framework version 8.2.0, with certain restrictions imposed
by Titan and TTCN. The test system architecture consists of the TTCN unified test case
description concept with parametrized test cases, components for running test cases, and
functions for describing underlying detailed technical functionality. The test system is
then integrated into three prototype test abstraction levels such as network simulator
(NS-3), emulated testbed (using in-house developed Automated Physical TestBed [14])
and field test environment (by integrating various NB-WWAN devices under tests and
measurement devices).
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4.1. Unified Test System Architecture

Figure 3 depicts the architecture of the unified test system and the key concepts
that were utilized to include several abstraction levels in the Titan framework, including
network simulation (NS-3), the Automated Physical Testbed (APTB), and the field-testing
environment. The integrated and unified test system consists of the run-time setup, test
suite, and a server to store and process results. It also has a unified test system interface.

Test System Multi Abstraction Level Testbed
Test system interface
shttp> % A ) e & \
‘ JESEAH Configurator
B | 8 > Run time Configuration
. <manual> I Simulation
Tester
Executor Test suite <internal> <http> T 7 NS3
SIM-Cmd . SIM-REST-API
TTCN3-MC <———>»| SimRunner |«
<internal> <http> APTB
Pre amble Aptb-Cmd APTB-REST-API »| APTB - Controller
< » APTB Runner |«
Test case : |
<|n;erna ; <tcp>/<serial> SUTs
Node-Cm i N
Postamble | €—— | device
commands
Node Runner [«
Measurement
Device
Server Field
SUTs
Results ( Raw data ) q T
Visualization tool
Results ( Visualized ) Maasurement
Device

Figure 3. Unified test system architecture.

As provided above, the main elements of the integrated and unified test system
primarily include:

4.1.1. Unified Test System Interface

The goal of the unified test interface is to provide a user-friendly and generic interface
for configuring and running test cases. A configurator component enables the tester to view
configuration options for each technology and abstraction layer and appropriately sets up
the Titan configuration file. The Executor component is in charge of displaying to the tester
the test cases that are accessible, writing the test cases to run into the configuration file, and
running the tests.

4.1.2. Unified Test System Components

The Unified Test System consists of three primary components: the Run-Time Config-
uration, the Test Suite, and a Server for storing and processing the results.

e  Run-Time Configuration: determines what device will be tested, what configuration
will be used, what test case will be tested, and at what abstraction layer.

e  Test Suite: comprised of Runners and the Main Component (MC). Test case flow is de-
scribed by the MC, who also coordinates the other elements. Runners are components
used in unified test execution. They include.

O SimRunner: The SimRunner component is used to communicate with the sim-
ulation server’s REST service. The SimRunner configures a test case, launches
it in the simulation server, and then retrieves the results. Through the creation
of a test verdict and local storing of the results, the simulation runner provides
feedback to the tester. The Simulation REST-API defines the interface with the
simulation server, offering endpoints for starting parameterized simulations,
creating projects and subprojects, and retrieving results.
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O APTBRunner: To set up the channel conditions, the APTBRunner communi-
cates with the APTB. The APTB runner manages the translation process from
channels to various RF elements and connects with the APTB via the APTB'’s
REST-API. This provides a simplified interface for configuring and reading
channel properties, enabling control of RF elements assigned to element con-
trollers and groups via API endpoints.

O NodeRunner: NodeRunners are used to interface uniformly with various de-
vices or implementations being tested. As a result, each device in a particular
device class implements the behaviour given as a class interface. A configu-
ration option is used to enable the usage of several devices, making it easy to
select the device without having to recompile the system.

4.2. Integration of Test Abstraction Levels to Unified Test System

The network simulator (NS-3), the internally developed emulated testbed (Automated
Physical TestBed), and the field test environment (with various NB-WWAN technologies
devices under tests and measurement devices) are the three different test abstraction levels
covered in detail in this subsection. We provide clear guidance on the integrative stages
and processes necessary to successfully merge these parts into the unified test system by
breaking down this process step-by-step like a recipe.

4.2.1. Network Simulator (NS-3) Integration

Due to its adaptability, open-source status, and pre-existing models for crucial wireless
technologies like NB-IoT, Network Simulator (NS-3) has been chosen as the appropriate
simulation platform to integrate with the unified test system. A discrete-event simulator
for Internet networks called NS-3 has undergone numerous updates and releases, each of
which included a new set of features and functionalities [15]. The following are the primary
criteria taken into account for NS-3 integration into the unified test system:

(1) Reproducing unified abstract test cases on the NS-3 platform to simulate diverse
scenarios using available models.

(2) Initiating simulations through an execution script from the Unified Test System.

(3) Building and creating simulations for a variety of test cases using preset simulation
models available in NS-3.

(4) Simulating the interaction of multiple devices based on the configuration options
provided by the test system.

(5) Retrieving data from the simulator for unified analysis and display.

The key component of the system topology shown in Figure 4 is a simulation backend.
This takes domain-specific language simulations but does not run the simulations; instead,
it creates an SSH connection with the simulation runner. The NS-3 simulation environment
is hosted by the simulation runner. When the simulations are complete, the simulation
backend may read out the results using SSH, analyze them, and save them in a database.
The source is irrelevant as long as the simulation description follows the domain-specific
description. Potential sources include but are not limited to, a simulation frontend or a
description written in the TTCN-3 description language from the unified test system. In
addition to simulation, the simulation environment also includes the creation of projects
and subprojects, which are used to plan test campaigns and parametrize simulations.
Access to the simulation environments’ functionality is made possible through a REST APL
This APl is used to create new projects and simulations, carry out such simulations, and
obtain the results of those simulations. The steps for testing with these integrated NS-3
simulations include:
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Figure 4. NS-3 architecture for integration with unified test system.

1.

Creation of NS-3 simulations in the simulation backend: Different capabilities and
use case scenarios are created to simulate various NB-WWAN technologies. Aspects
including network configuration with User Equipment (UE) and Base Stations, radio
propagation circumstances, device placement, communication patterns, and packet
transmission monitoring are all taken into account in the simulations. Additionally,
they make it possible to measure various network events, assess those measurements,
and save the results.

Execution of Simulations by the Simulation Runner: This is used by both the TTCN3-
Testsystem and a frontend that enables direct user participation. The Test system uses
Titan’s HTTP test port to implement the various REST Endpoints. When using the
REST-API, projects follow the path depicted in the sequence diagram in Figure 5. New
projects and simulations are created, carried out, and their outcomes are accessed via a
REST-API using the TTCN-3 test system. This interaction takes place in the following
order: setting up projects and subprojects, sending parameter combinations, starting
a simulation run, checking on the progress of the run, and recording the outcomes
locally and on the simulation server.

K

Simulation Backend

!

Domain-Specific Language Descriptions | ‘ NS-3 Simulation Environment | REST Endpoints

1. Creation of ns-3 simulations in the Simulation Backend

Unified TTCN-3 Test System

\\ 2. Execution of Simulations using Simulation Runner
—

\f Simulation Runner P Titan's HTTP Test Port

e

]
Automated Visualization and Analysis Tool Data Analysis Manage Projects

3. Resylts Visualization and Analysis

l

Database

Figure 5. Steps in unified testing using integrated NS-3 to unified test system.

3.

Results Visualization and Analysis: The simulation server is equipped with an
automatic visualization and analysis tool that gives the user immediate access to the
outcomes of a single test run. Overall, through numerous simulations in a single test
system, this integration encourages a methodical and comparative analysis of various
NB-WWAN systems.



Sensors 2024, 24, 7579

12 of 29

4.2.2. Automated Physical TestBed (APTB) Integration

Before detailed implementation and during the development cycle, these communica-
tion technologies must be tested and validated. For this, our unified testing methodology
utilizes the in-house developed Automated Physical TestBed (APTB) and integrated with
the unified test system, as illustrated in Figure 6, in conjunction with emulation platforms
and other necessary tools for analysis. These emulate RF environments that are close to
real-world conditions, enabling controlled and systematic testing. Further details on the
APTB design and implementation are provided in our previous works [8,9]. Integrating
APTB with a unified TTCN-3 test system, along with dedicated automated control inter-
faces, allows seamless configuration of diverse spatially distributed topological setups and
channel conditions. The APTB architecture prioritizes modularity, extensibility, scalability,
portability, and ease of setup and dynamic configuration, fostering adaptable testing across
various conditions.

1., Unified Test Case Definition and Execution

Unified TTCN-3 Test System

l

TTCN-3TCs

l

| AptbRunner

|

ChannelAPT & AptbaPT

l

HTTP Maodule

2, AFTE Controller and Ela#went Configurations

Main Controller

f kwemem 4. Addifonal Tools

Node-RED | MongoDB | Portainer Visualization Tool Analysis Tool
Elements Controllers ongo Express

|

RF Element Configurations

l

Channel

I

HF-elements

l

Element Controller

Figure 6. Architecture for integration of APTB to unified test system.

Software Architecture of APTB Integration to Unified Test System

The overall software architecture of APTB, depicted in Figure 6, consists of a Main
Controller, multiple Element Controllers, and communication management via Node-RED.
In the implementation, a Raspberry Pi serves as the Main Controller, running multiple
Docker containers to streamline control and integration. The Element Controllers register
RF element configurations with the Main Controller, which manages these configurations
through a centralized Node-RED interface. This platform arranges data flows between
TTCN-3, the APTB, and external scripts, with all metadata stored in a MongoDB database
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managed by Mongo Express. Additionally, through Portainer, a container management
solution that provides the viewing of the containers, images, volumes, and networks, all of
the Main Controller Docker containers may be handled.

APTB Channel Configuration and Characteristics

The APTB supports bidirectional channel configurations, consisting of multiple nodes
(DUTs) and channels that connect the nodes. APTB channels are designed to ensure
symmetry in both communication directions, effectively modeling an undirected graph
where edge values are set by configurable parameters. Channel characteristics, illustrated
in Figure 7, include options for attenuation, on/off switching, multipath settings, delay
lines, and noise control. Each of these parameters is implemented through distinct HF
elements, each controlled by its own Element Controller.

Switch

+ state: boolean
0.1 .n

0.n
: 2 0.
Channel 0.1 + setState(boolean): boolez n ElementController

APTB + getState(): boolean
Node \

Attenuation 0.n
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+ getAtt(): ionteger

Multipath

+num_paths: integer
+ path_length: [J integer

+ states: [] boolean

+ selState(integer, boolean)

+ setStates(): | boolean

DelayLine

+num_paths: integer

' + path_length: [J integer
change H
network + + chosen_path: integer : add new
configuration i HF-
H + setPath(integer): boolean Eelements

Figure 7. APTB channel characteristics and relations.

APTB Component Interactions and Control

The test system’s AptbRunner components continuously monitor for messages from
test cases, conveying abstract descriptions of APTB configurations. These messages un-
dergo processing within the Channel API and AptbAPI modules before dispatch through
HTTP requests to the APTB, as shown in Figure 8. The AptbRunner accepts a variety of
configuration formats, such as single-channel setups, node-to-node configurations, and
time-based configurations.
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Figure 8. TTCN-3 module structure to control APTB.

An example APTB configuration is structured as Listing 1:

Listing 1: APTB configuration format

Aptb:={

}

)

hf_elements:= {
{channel_id:= “13”, switch_state:= true, attenuation_db:= 5, delay:= omit, multipath:= omit},
{channel_id:= “511”, switch_state:= omit, attenuation_db:= 5, delay:= omit, multipath:= omit},
{channel_id:= “26”, switch_state:= false, attenuation_db:= 5, delay:= omit, multipath:= omit}

APTB Unified Control and API Abstraction

The control software of the APTB is implemented in a layered API structure to manage
communication and operations across its diverse RF components. At a topmost level, the
ChannelAPI module provides an abstract interface for REST API requests, providing a
systematic mechanism for setting up and manipulating channels between nodes. This
abstraction allows the user to configure channel parameters, such as attenuation or delay,
without needing direct interaction with each hardware component and makes the test
environment easily reproducible.

The AptbAPI module, on the other hand, operates at a more granular level, managing
the specific REST commands for each type of RF element within the system. This design
approach encapsulates functionality within distinct API calls, ensuring that each RF element
(e.g., attenuators, delay lines) is individually controlled according to its parameters and
test case operational requirements. For example, the system sends a targeted request
that modifies only the relevant RF element’s parameters, while maintaining the overall
channel configuration, to adjust the attenuation value on a specific channel. This modularity
allows for systematic control over the APTB, which facilitates real-time reconfiguration and
nuanced adjustments during testing phases.

APTB Unified Configuration and Mapping

Configuring the APTB channels necessitates a careful manual setup process, primarily
due to the structural asymmetry in the arrangement of RF elements. This asymmetry means
that connections between nodes may require distinct RF elements to achieve the desired
channel characteristics, making a systematic channel characteristic essential. The mapping
process involves assigning each channel to specific RF elements, which are then controlled
to achieve the defined channel attributes (e.g., attenuation, on/off states, multipath, and
delay options).

Once the channels are parametrized, the test system must interpret this parametriza-
tion and translate it into REST requests, effectively linking the logical channel configuration
with the physical RF elements. A precise, node and channel-based notation system is im-
plemented on the GUI side and is used to represent each channel, enabling straightforward
identification and differentiation between channels based on their node associations within
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the APTB structure. This notation enhances usability, as it allows the testbed users to man-
age complex configurations by referring to easily identifiable node names and attributes
rather than raw element IDs. This systematic testing approach ensures that each channel is
distinctly mapped to its RF elements, thus facilitating accurate, repeatable testing across a
range of communication scenarios.

4.2.3. Integration of Real-World Devices and Measurement Equipment for Field Tests
Using Unified Test System

For real-world field testbed implementation, we gathered and integrated the commer-
cially available NB-WWAN, 4G, and 5G network communication devices into the Unified
Test System as illustrated in Figure 9 to analyze the effectiveness of various competing
wireless networks. These devices can be separated into two categories: base stations, which
are frequently referred to as gateways, and various end devices.

Q \ )

IS
Control PC Test-PC

Gatewa RF interface .
Base Stat\;o/ ’ ( emulated wired RF connection — End Device
/ wireless)
=== 1 "“""'...I ! 4
: SR |

LoRaWAN Evaluationboards

[

LoRaWAN Gateway MIOTY M500
basestation
% ﬁ: A S
NB-10T/4G/5G MIOTY M200 NB-loT Evaluationboards 4G/5G Evaluation Board

basestation basestation

Figure 9. Various NB-WWAN Device Under Tests (DUTs) integrated into the test system.

Unified Test Interface for DUTs and Control by Unified Test System

The goal of unified test interfaces is to enable the execution of test cases in a technology-
independent manner, ensuring consistency across different devices and technologies
(Figure 9 summarizes the devices used for these prototype evaluations). The test cases are
designed to be as generic as possible, allowing them to be executed independently of the
specific technology. However, for certain technology-specific tests, additional details and
functionalities can be accommodated through corresponding interfaces. To interface with
different devices that have different command sets, a unified test interface with a mapper
component is utilized. This component allows the use of generic commands that can be
adapted to the specific command sets of each device. By providing specific implementations
for each device, the unified test system can interact with the DUTs effectively.

Hardware and Application-Level Interfaces: At the hardware interface level, the uni-
fied test system supports various communication protocols, such as serial and TCP-based
interfaces. The selection of the appropriate interface is determined by the configuration
file. Each device implementation utilizes methods for sending and receiving data via
these interfaces. The test port records communication timestamps, capturing the timing
of message transmission and reception. At the application level, the received messages
are checked for successful transmission and the type of message, enabling the system to
generate appropriate events for further analysis.

For example, the unified test interfaces in NB-IoT provide a standardized approach
to interact with different devices under test, ensuring seamless integration and consistent
test methodologies. By unifying the interfaces, test cases can be developed and executed
independently of the specific technology, promoting interoperability and efficient testing
processes. This approach streamlines the testing of NB-IoT systems, simplifies test case
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development, and allows for comprehensive analysis and evaluation of performance and
functionality.

Integration of Measuring Devices and Analysis Tools to Unified Test System

In addition to the automation of Devices Under Test (DUTs), the integration of mea-
suring devices and analysis tools is crucial for comprehensive testing and analysis. These
devices provide the capability to measure and analyze various network parameters, signal
quality, coverage, latency, and other relevant metrics. To ensure seamless integration and
automation, standardized interfaces and protocols are utilized, and a detailed overview of
the flow of unified interfaces and controlling architecture for measurement devices and
DUTs. Measurement devices often employ the Standard Commands for Programmable
Instruments (SCPIs) protocol as the digital interface. As part of the automation efforts, the
SCPI interface of the proprietary tools like Rohde and Schwarz CMW500 communication
tester is implemented in TTCN-3. A SCPI controller is defined to handle the SCPI protocol,
and a class for the CMW500 is created to implement its functionality. While not all func-
tions of the CMW500 are implemented due to their abundance, essential capabilities such
as setting network parameters, activating cells, and introducing noise on the downlink
channel are supported. The CMW500 component can be controlled from test cases through
a defined port interface, allowing for the configuration of technology settings and noise
configurations.

To enable analysis and measurements in the test system, various measurement devices
and analysis tools are integrated. These devices range from generic measurement devices
such as signal generators, and signal and power analysers to specific measurement tools
tailored for NB-IoT testing. The integration of these devices into the existing infrastructure
provides a fully automated test and measurement environment. For example, in our
recent NB-IoT test campaign, we utilized various testing tools such as the CMW500 with
specific testing options [26], Anritsu MT8821C with dedicated testing options [27], and
Keysight’s Nemo analysis Tool [28]. These measurement devices and analysis tools come
with their own specific interfaces, which are seamlessly integrated into our unified test
system. Through the standardized interfaces, measurements related to signal quality,
network coverage, latency, and other relevant metrics can be configured and retrieved.
This integration enables comprehensive measurement and analysis of NB-IoT network
parameters, ensuring accurate evaluation of performance and functionality.

4.3. Unified Test Suite Implementation

An in-depth discussion of the Unified Test Suite Implementation’s layers and individ-
ual components is provided in this Section. The unified description of tests is managed by
Layer 1, also referred to as the Unified Test Description. It establishes an abstract test case
with a preamble, a test purpose, and a post-amble phase and heavily relies on configuration
settings parameterized through identical configuration files. The three main components of
this layer are Test Control, Test Configuration, and Abstract Test Case. This chapter also
provides a practical scenario using the “Periodic Uplink” test case as an illustration. The
system implements an abstraction of behaviour in Layer 2, or Abstract Behaviour, by using
corresponding test interfaces and the execution of functionalities using components and
interfaces.

4.3.1. Layer 1—Unified Test Description and Management

By describing and controlling tests uniformly, Layer 1 controls the unified testing task.
The configuration settings are strongly parameterized using identical configuration files,
and a preamble, test purpose, and post-amble phased abstract test case is created. This
layer primarily consists of the Test Control part, Test Configuration part, and Abstract Test
Case part as shown in Figure 10 and detailed as follows:
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Figure 10. Unified test description procedures at Layer 1.

Unified Test Control Part: The test control part orchestrates the overall test and
consists of coherent test execution modules that describe a test at a high level, including
which components to use, how they should be connected, when they should be started,
how the network should look and behave, which nodes should be used, and how they
should be coordinated. Additionally, it describes the intended test behaviour.

Test System Configuration: The Titan configuration file, which corresponds to one
module and parameterizes it for various profiles, may be used to configure the test system.
Device-specific parameters, wireless parameters, and technology-specific parameters can
all be set in the existing framework. Without specifically altering the configuration file, the
test may be configured using profiles. The pertinent parameters, such as the test application,
devices utilized, technological setup, network configuration, and wireless environment,
differ depending on the layer being evaluated. For instance, concrete devices must be
mentioned in the APTB and field layer, while other parameters are used in the simulation
to describe these devices.

When it comes to technology, all technologies employ the same characteristics. Nodes
are put at precise locations in the field and simulation, but in the APTB, only the channel
conditions change. In the simulation, path loss models and building models are utilized to
represent the wireless environment, and the wireless environment parameter is used to
summarize the node position and the wireless environment. The test system configures the
parameters, which are generated by an external component, using Titan’s configuration
file. The test suite’s unified configuration types include parameterizing test ports (such as
node IP addresses), selecting the SUT type, network, and test case, deciding where to save
the data-acquisition file, and configuring test and technology parameters (such as packet
counts, operation modes, and test cases).

e  Abstract Test Case Part: The goal of the abstract test case is to express the test as
consistently as possible across different test platforms while being as explicit as is re-
quired to test only one item and comprehend it. Additionally, using the accompanying
configuration file, it ought to be extremely parameterizable. The test case goes through
three phases: the preamble, the test purpose (primary test), and the post-amble to
converge the test description. A test case must always begin with a preliminary part
that correctly configures the SUT and the testing environment.
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Unified_Test_System

Configure and power up

Example Test Scenario: “Periodic Uplink” Test Case: To detail this concept of unified
test description, let us consider an example test scenario of the “Periodic Uplink”
test case and demonstrate how it can be described to run on multiple DUTs and test
abstraction levels. The “Periodic Uplink” test case focuses on assessing the system’s
ability to establish network registration and maintain an uplink connection between
the endpoint devices (EDs) and the base station (BS) in a periodic manner. In the
context of using an NB-IoT device under test for a periodic uplink test case, the test
Control Part would outline and manage various aspects of the test. Figure 11 details
the concepts of this example abstract test case with a sequence diagram of the entire
test procedures, corresponding implementation details on the three stages for a unified
abstract test case and outlining how it is mapped for uniform execution to different
test abstraction levels.

NB_IoT_Device Base_Station Analysis_Tools

Configure network for registration

Begin periodic uplink transmission

Initiate Registration

Registration acknowledgement

Log registration process

Unified_Test_System

> Uplink transmission

Acknowledge uplink

transmission Log uplink transmission data

Repeat uplink transmission as per Unified Test System Schedule
1

NB_IoT_Device Base_Station Analysis_Tools

(a) Sequence diagram of unified test case flow of NB-IoT registration and periodic uplink test case.
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(b) Detailed implementation steps of corresponding abstract test case

Figure 11. Cont.
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(c) Test sequence within the unified test system and mapping the abstract test case with different test
abstraction levels.

Figure 11. Detailed implementation concept of unified abstract test case example of periodic uplink.

4.3.2. Layer 2—Abstract Behaviour

Layer 2 of the proposed system implements abstracted behaviour via corresponding
test interfaces and the implementation of functionalities. As shown in Figure 12, several
components and interfaces are developed to abstract common functionality. Each com-
ponent represents a component type with specific capabilities, playing a unique role in

the system:
Components Interfaces <<rait>>
Commoninterface
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<abstract> read_bytes(len)
M CommonNode_CT Writer_CT <abstract> send_bytes(len, pi
o | Nodeont writer sink_location / V\
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w[]  wtecr UdpServerCT Highode_CT e R
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NBloTinterface siment LJ AptbCat [] <abstract> send_rai(len, payh <abstract> set_ack(ack) <abstract> set_region(region;

Figure 12. Example components and interfaces to define abstract behaviour.

e  MC (Main Controller): This is the principal component controlling various abstraction
levels. It is responsible for coordinating all the other elements and directing the overall
testing process.

e  Writer: This component is responsible for the logging of concurrent activities across
various components. It receives specific Write-Events and calls C++ functions to
store the data safely, thus providing a comprehensive record of testing activities and
outcomes.

e Common node: As the name suggests, this component embodies common concepts
and ports, including a node control port (for control from the Main Controller) and a
writer port (to write asynchronously to the writer component). It acts as the baseline
model for all nodes, defining the minimum set of interfaces required.

e Node: This component is specifically designed to interact with real devices. It has
TCP and serial interfaces for diverse communications. Furthermore, it maintains an
internal state regarding the device in use and the protocol employed, enabling it to
select the appropriate functionality as needed.
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e  UDP-Server: This node type has an added UDP port, allowing it to communicate
using the UDP protocol, thereby increasing the communication possibilities within the
testing environment.

e HttpNode: This component has an HTTP port, enabling it to communicate with
external systems via HTTP protocol, thus enhancing the system’s interoperability.

e AptbNode: This node type possesses an additional APTB Control message, as de-
scribed earlier, to manage the APTB. This gives it the capability to control and interact
with APTB-related tests.

Standardized Interfaces and Implementation: It is worth noting that these interfaces
merely define the blueprints for device capabilities. They are then implemented in the
actual devices, using the TTCN interfaces to ensure that each device must fully implement
its associated blueprint. This standardizes the implementation and ensures uniformity
across multiple devices, contributing to the overall effectiveness and dependability of the
test processes.

Ports that only accept particular message types make up the stated components in
the TTCN-3 schema. The fundamental operations of the majority of components may
be abstracted using these message types. To standardize the functioning of a technology,
interfaces are also established for the control portion of the System Under Test (SUT). All
technologies and abstraction layers can use the same abstract behaviour description.

Examples of abstracted modules are as follows:

Node: The abstraction of node activity without regard to a particular technology.
Test ports: Test ports are used to interface with SUTs that are stored in the Titan-Gitlab
repository.

e Testlayer: abstracted behaviour of the test layers, such as field testing, simulations,
and Automated Physical Testbed (APTB).

e  Utilizing external C/C++ code, such as timestamping, CSV writer, and *.asn: Generic
Command and Event Specification, are examples of common utility and external
modules.

Unified Test Interfaces for SUTs

To provide a consistent approach during testing, it is required to abstract the com-
mands and interfaces utilized by the System Under Test (SUT). Using a command set that
abstracts the functions of several SUTs can help with testing and boost productivity in this
respect. As an illustration, the functionality of the SUT is abstracted at the device level in
the case of NB-IoT (refer to Figure 13). A command that corresponds to the specific NB-IoT
modem utilized is issued when a reference to the NB-IoT interface is called during the
execution of a particular function. Despite the particular device being tested, this enables
the usage of a common command set.

The setup function needs to be called before running the instructions to utilize the
right test port and device. The interface type corresponds to the appropriate device
implementation class, and the configuration file defines the device and test port interface to
be utilized. Overall, the implementation of a uniform command set can streamline testing
operations and enhance repeatability across many SUTs, eventually resulting in testing
methods that are more effective and dependable.
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Figure 13. Unified test command mapping for an NB-IoT test case.
Unified Abstracted TTCN-3 Component Types for Technology Functionalities
The Test System is made up of many TTCN-3 Test Components, each of which is in
charge of one job that may be carried out in parallel and is connected to other components
via test ports. For the port definitions to connect with the components, message types must
be established. The Titan framework naturally supports parallel test execution and event
queues. Figure 14 depicts the components and their ports. Execution of test cases on Layer
1 and other components is managed by the MC component. It has ports for controlling
Aptb, Simulation, and Node Components that carry out device-testing behaviour.
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Figure 14. Mapping of components to port types.
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The Test Components can communicate events, their decision, and a reference to a
Common_Node_CT back to the MC using the NodeCnt_PT port, as shown in Figure 14.
The Test Components can also initiate and halt test execution via the NodeCmd. Depending
on the needs of the user, the APTB port specifies a variety of message formats to control the
APTB channels. For the port types towards external components (udp, tcp, http, serial),
the test ports that are already accessible from the Titan gitlab repository are utilized. To
abstract the behaviour of multiple capabilities, TTCN-3 Test Components are built. Here
are a few instances:

A node in a test might be an SUT or an endpoint, such as an udp/tcp server or an
MQTT broker. This component abstracts common node behaviour.

o  To receive start/stop instructions, and general directives, or to relay back the outcome
of a behaviour step, it communicates with the MTC via the NodeCnt_PT.

e  Several Node-Types, including TCP, Http, Node, and UdpServer, derive from this
component. The SUT’s controlling node is referred to as an abstracted specific node
component.

e Ithasa TCP port and a serial port for communicating with the SUT, and the configura-
tion file must specify the specific port to be utilized.

From this type, technology-specific components must be derived.
Abstracted UDP Server Component: Inherits from Common_Node_CT and extends it
by udp port to establish a UDP endpoint for the tests.

e  Abstracted TCP Node Component: Inherits from Common_Node_CT and extends
it by tcp_port, used by all components that need a TCP port, such as SCPI measure-
ment devices.

e  Main Component: Component type for Layer 1 that communicates with all compo-
nents.

4.3.3. Layer-3—Concrete Functionality Implementations

Classes that inherit the features described in Layer 2 are used to create particular device
behaviour in Layer 3, the flow relation between the abstracted and concrete implementation
is described in Figure 15. Due to the necessity of running numerous components simultane-
ously, single functions are used to start tiny “atomic” behaviours. Every technology-specific
behaviour is put into practice in a different module. The functional modules are made
up of several functions that call the concrete implementation using the internal device
object. Depending on the device being utilized, different device controls are implemented.
The equipment normally responds to particular requests within a predetermined amount
of time. The controller is in charge of confirming the outcome and making sure that the
test only proceeds when the anticipated outcome occurs within the allotted time. The
test system must also look for asynchronous communications and error messages. For
instance, the functionality module provides the function to set up a UDP socket using the
device object, which entails generating and connecting the socket, when building a UDP
socket. The general send command, which is in charge of using the selected interface and
timestamping, is used in the concrete implementation to transmit a particular command. A
generic receiving function is used to verify the anticipated event, and the test only continues
when the socket has been successfully constructed.

Asynchronous responses can also happen in addition to instantaneous answers, inde-
pendent of whether the controller issues a command. Users can explicitly activate call-backs
to catch such events. Call-backs can only be defined in the test system because the emphasis
is on black box testing of different devices. Some events can happen at any time, in contrast
to device events, which are instantaneous replies, and they are detected by the test system
using a function that specifies the event type and potential action. The act_cbk command
may be used to activate preset call-backs in an IUT so that it can be tested. For instance,
depending on the base station setup in NB-IoT, a function may be notified of a modified
PSM status, and it is the responsibility of the function to recognize the change and update
its internal state.



Sensors 2024, 24, 7579 23 of 29

Interfaces. <<trait>>
Commoninterface
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Functionality

Figure 15. Concrete functionality implemented module example.

4.4. Unified Test Case Execution and Analysis Across Multiple Abstraction Levels

The processes necessary for the coordinated execution of test cases across various
abstraction levels are described in Figure 16. First, test components are developed and con-
figured to communicate with various test system components. For example, the NodeRun-
ner component is configured for a specific device to ensure the correct instructions are
issued. The right starting state is then configured by delivering the required commands
to the external test system components, such as the Simulation server, APTB, or SUTs.
For instance, customizing the APTB could entail adjusting the channel attenuation, but
configuring SUTs might involve turning on a certain frequency band. In contrast, the
Simulation’s settings are established in the step just before the test is launched.

preamble main-test postamble
Common | Internal | External : . ) <o
setup setup : Test : Cleanup
call REST endpoint : p
. . for Project/ * | call REST-Endpoint * | close components
Si create Si Subproject creation : | for starting testcase gelResults —‘_’ and save data
on Simulatoin server .
: . set default sut and
Emulation | créate APTBRunner, | | setthe device type, setthe aptb in its setup sutin required | - | ﬁ:gm’:&;’:‘:&fj‘ - aptbstate, close
create NodeRunners and map to aptb-box initial state state . components and
. | change APTB config
save data
. . . . - | set default sut state,
Field  |create NodeRunnersi—> setthe device type setup sutin required > call appropriate test > close ¢ t
slate functionality and save dala

Figure 16. Unified test execution process in implemented test system.

The primary test starts as a series of function calls with each function explaining a
specific feature of the capability of the technology after all the components have been set
up. The test system handles events that arise during test execution, and pertinent data
are logged. When a simulation is engaged, the simulation server automatically delivers
the results back to the SimRunner Component and puts them in the database. Setting the
decision and preserving the data are the responsibilities of the SimRunner. The default state
of the device is restored once test cases have been run, components are shut down, and
all data and logs are saved. A Mapper Component is used to communicate with multiple
devices that have distinct command sets.
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With the help of the Mapper Component, it is possible to interface with many DUTs
using generic commands, but this requires both a general command definition and a
device-specific implementation. The Mapper is now incorporated into the NodeRunner
components. The main component (MC) coordinates the test system’s overall behaviour.
Titan employs Parallel Test Components (PTCs) to distribute, log, and interact with these
components to operate many devices. One NodeRunner per device, parameterized for a
particular kind (such as ublox-sara-r5), is used for separate control of each device. The APT-
BRunner is used to operate the APTB, which is used to regulate channels between nodes.

An APTB-API is designed as an abstraction to these RF elements since the APTB is
equipped with certain parameterizable RF elements. It is required to comprehend the test
system’s usage, including the configuration file format, how to activate test cases, and
how to launch the program using the command line. An essential part of automating
test system execution is the front end of the tests. To increase usability, a REST API
was created that outlines the main features of the test system. These features include
selecting the abstraction level (field, emulation, and simulation), a technology and device,
one or more test cases, predefined profiles, configuring data traffic and environmental
conditions, automating test execution, and providing feedback on the results of completed
tests. Figure 17 shows the front end that was built. The interface presents all choices as
opposed to having to manually update the configuration, preventing the selection of test
modules and incompatible technologies.

Abstraction layer Abstraction layer setting
Run Batch
field «  description Test1
Testcase Selected Testcases

Mark testcases: 1. TC_gen_uplink.TC_PU_STATIC_1_SUT

v C_PU_STATIC_1_SU v

Technology Device Profile Traffic
Configure all
Select an option: Select an option: Select an option: packet_size
Abiot v commsolid_grs81 v default SE
num_packets
:
response_packet_size
0
transmit_int

Test Results Measurements Analysis Plots

latency 2655 Latency &
latency-max 439.0

latency-min 1790

latency-std 103.22184846242583

pek_loss
registration_time
rstp

rsrp-max
rsrp-min
rsrp-std

snr

snr-max

Figure 17. Unified test execution and visualization frontend of implemented test system.
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Use Case
Environment

5. Performance Evaluation

This section contains a case study evaluating the effectiveness of our suggested multi-
abstraction-level, unified testing methodology. To determine the methodology’s consistency
and efficacy across various abstraction levels, it was tested in three separate environments:
simulation, emulation, and field testing. These were chosen as the test campaign environ-
ments. The case study was initially intended to record a thorough baseline of network
performance measurement under diverse real-world circumstances. To comprehend how
various factors might affect network performance, we described the distinctive characteris-
tics of each testing set. We developed a mapping technique to enable seamless transitions
by running the same test cases across different test abstraction levels. We then continuously
monitored the state of each environment to obtain the most recent performance data. The
findings of this comprehensive research serve as the basis for further, more in-depth testing.

Three separate contexts were used to carry out the testing campaign: a field test in
the real field environment at the University campus, an emulation environment using
the APTB channel characteristics, and a simulation environment utilizing NS-3 tools and
models (refer to Figure 18). Industry 4.0 use case ecosystem is used to characterize the
test cases uniformly. Each environment underwent testing using a typical Industry 4.0
communication use case, which involved successfully attaching a user device (UE) to a base
station (BS) and then periodically sending uplink UDP packets. Using the same test case
across different levels of abstraction enabled a time-effectiveness and flexibility analysis of
our unified testing methodology. This analysis provided important insights into the subtle
distinctions between the various levels of abstraction.

Supplementary Field Emulation Simulation

abstract

. > A > .
Environment anaylze Environment Environment
results

Figure 18. Unified test campaign environment.

The findings highlighted the consequences of abstraction in Figure 19 by revealing
significant variations in the key performance indicators (KPIs) throughout the simulation,
emulation, and field tests. However, the results from the simulation environment nearly
matched those from the field tests conducted in the actual world, proving the effectiveness
of the system for conducting carefully monitored, repeatable trials. To further assess the
success of the methodology, a thorough comparison of the Reference Signal Received Power
(RSRP) and Signal Noise Ratio (SNR) between field and emulation conditions was made.
As shown in Figure 20, the SNR in the emulation environment was found to be consistently
greater than in the field tests, indicating that there were no real-world elements present in
our emulation system, such as multipath propagation or background noise. However, by
modifying the RSRP in the emulation environment, we were able to obtain nearly equal
median RSRP values in both environments.

Key Insights from the Case Study: The case study results show the unified testing
methodology’s impressive efficacy at various levels of abstraction. The testing circum-
stances varied, but the process was applied consistently and produced trustworthy findings.
The methodology’s capacity to smoothly switch between several levels of abstraction and
its ability to be successfully deployed in a variety of test contexts without exposing the in-
tegrity of the testing process or the validity of the results were both demonstrated. However,
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a few prerequisites were found to guarantee the methodology’s applicability at various
levels of abstraction. These include undertaking thorough result analysis, assuring correct
abstraction and dependable emulation, providing consistent parameter settings throughout
testing environments, and including actual field-testing situations. The effectiveness of
the methodology could be increased by putting more emphasis on precisely simulating
actual situations, such as reflections, multipath components, and interference sources. Un-
derstanding the applicability and efficacy of various test cases across multiple abstraction
levels for the NB-WWAN depends on test coverage analysis and abstraction layer mapping.

latency comparison Comparison between different abstraction levels
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Figure 19. This figure represents a comparative analysis of KPIs: for an NB-IoT test across different
levels of abstraction. The results indicate a significant deviation in performance, most notably in the
simulation results, emphasizing the effects of abstraction.
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Figure 20. Comparison of RSRP and SNR in field and emulation environment.
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With the aid of this knowledge, the ideal abstraction level for each functional test case
and performance metric can be determined, enhancing the testing strategy as a whole. For
instance, network simulations may not fully reflect real-world conditions due to simplified
models, although they are good for first functional tests. The majority of test cases can be
used using network emulation since it balances controlled settings and real-world char-
acteristics and typically produces great results. Field tests, though they might be difficult
and time-consuming due to unpredictable real-world circumstances, offer the most realistic
testing conditions. The limitations of each platform are often a result of these fundamental
qualities; for example, outdoor experiments may include uncontrollable variables that affect
results, while emulations may not be completely accurate in simulating specific situations.
As a result, this mapping aids in determining the best degree of abstraction for each test
case, guiding a thorough testing strategy that guarantees complete coverage for the NB-
WWAN network. The case study findings reported in this paper serve as a first assessment
of our unified multi-abstraction-level testing technique and offer insightful information for
upcoming investigation and analysis. To fully understand how the methodology performs
in various testing environments, more in-depth comparisons and tests will be made in
subsequent case study results and analysis, to ensure the consistency, adaptability, and
reliability of the methodology. Through these initiatives, we hope to increase the resilience
and efficiency of the unified testing approach in a range of testing situations.

6. Conclusions

As demonstrated in this study, a unified and integrated testing methodology for
spatially distributed wireless systems, in Industry 4.0 and Industrial IoT (IIoT) was pro-
posed. This test methodology enables the use of the same test case description, execution,
and visualization tool across multiple abstraction levels, including network simulation
environments and physical testbed environments (in emulated testbed and field testbed
environments). The significance of this infrastructure in comparing rival geographically
dispersed wireless networking technologies—a critical need in IloT applications such as
remote monitoring, industrial automation, and smart manufacturing—was demonstrated
through our NB-WWAN test campaign utilizing this implemented unified test system. This
systematic examination and mapping of different test cases to the most suitable testing
method form an essential part of our overall testing strategy, driving the effectiveness
and efficiency of our NB-WWAN testing processes. By understanding the relationship
between different testing methods and identifying the most suitable platforms for different
test cases, we can ensure robust and reliable NB-WWAN network deployments. Future
research should focus on improving the realism of network simulations and the flexibility
of emulations, further enhancing their applicability across a broader range of test cases.
Additionally, there is a need to refine our field-testing strategies to manage and control
real-world variables better, ultimately increasing the reproducibility and reliability of the
tests. By continuously refining our testing methodologies and adapting to technological
advancements, we can ensure the seamless operation of NB-WWAN networks, laying the
groundwork for a truly interconnected world. The authors utilize this unified testbed and
testing methodology for many different test campaigns in different research projects; more
performance assessment results are available and have been submitted for other publica-
tions [14]. Extension of this testbed will be carried out in the future to allow for smooth
testing of time-synchronized wireless networks and 6G networks, further addressing the
evolving needs of Industrial IoT.
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