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Abstract: Climate change and water scarcity bring significant challenges to agricultural systems in the
Mediterranean region. Novel methods are required to rapidly monitor the water stress of the crop to
avoid qualitative losses of agricultural products. This study aimed to predict the stem water potential
of cotton (Gossypium hirsutum L., 1763) using Sentinel-2 satellite imagery and machine learning
techniques to enhance monitoring and management of cotton’s water status. The research was
conducted in Rutigliano, Southern Italy, during the 2023 cotton growing season. Different machine
learning algorithms, including random forest, support vector regression, and extreme gradient
boosting, were evaluated using Sentinel-2 spectral bands as predictors. The models’ performance
was assessed using R2 and root mean square error (RMSE). Feature importance was analyzed using
permutation importance and SHAP methods. The random forest model using Sentinel-2 bands’
reflectance as predictors showed the highest performance, with an R2 of 0.75 (±0.07) and an RMSE of
0.11 (±0.02). XGBoost (R2: 0.73 ± 0.09, RMSE: 0.12 ± 0.02) and AdaBoost (R2: 0.67 ± 0.08, RMSE:
0.13 ± 0.02) followed in performance. Visible (blue and red) and red edge bands were identified
as the most influential predictors. The trained RF model was used to model the seasonal trend of
cotton’s stem water potential, detecting periods of acute and moderate water stress. This approach
demonstrates the prospective for high-frequency, non-invasive monitoring of cotton’s water status,
which could support smart irrigation strategies and improve water use efficiency in Mediterranean
cotton production.

Keywords: drought stress; Gossypium; machine learning; satellite; remote sensing; Optuna

1. Introduction

Climate change is deeply affecting agriculture through a variety of mechanisms,
bringing significant challenges to agricultural sustainability. Rising global temperatures,
altered precipitation patterns, and the increased frequency of extreme weather events
(such as droughts, floods, and heat waves) are transforming the agricultural landscape,
leading to reduced crop yields and compromised production [1,2]. Adaptation strategies,
such as changing planting times, crop rotation, agroforestry, development of drought-
resistant crops and varieties, and the use of strategies to increase water productivity through
deficit irrigation, are essential to mitigate these impacts and ensure sustainable agricultural
productivity [1,3]. Climate change could significantly affect the yield and fiber quality of
cotton (Gossypium hirsutum L., 1763) [4]. Given its worldwide importance, these potential
impacts are particularly concerning. Although cotton is generally considered a drought-
resistant crop, continuous water stress can lead to reduced fiber quality; moreover, its
monoculture cultivation requires high inputs, especially water and chemicals, to maximize
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productivity [5,6]. The negative effect of drought stress on cotton yield, exacerbated by
climate change’s impact, depends on several factors, such as when water stress occurs
(phenology), its intensity, and the cotton cultivar [7,8]. For instance, thermal and water
stresses could lead to lower boll volume and dry matter, and reduced fiber length and
strength [9,10]. In this context, having methods that allow the rapid monitoring of the
water status of cotton could help avoid such negative effects, and improve water saving
and water productivity.

Traditional methods for assessing cotton’s water status include measurements of
soil moisture, leaf water potential, stomatal conductance, and stem water potential. Soil
moisture sensors, such as tensiometers and capacitance probes, provide data on the water
content of the soil profile but may not accurately reflect the plant water status due to factors
like root distribution, soil heterogeneity, and depth [11]. Leaf water potential, measured
using a pressure chamber technique [12], offers insight into the water tension within the
leaves but can be influenced by environmental conditions and diurnal variations [13].
Stem water potential has emerged as a more stable and reliable indicator of plant water
status, integrating the overall water balance of the plant [14]. The measurement involves
enclosing a leaf in a foil bag for equilibration before determining the water potential using
a pressure chamber [14]. This method provides a direct assessment of the plant’s hydration
status; research has shown that the stem water potential is highly sensitive to water stress,
making it a reliable parameter for irrigation management [15]. However, the technique is
labor-intensive and time-consuming, and requires specialized equipment and expertise,
limiting its practicality for large-scale or frequent monitoring [16]. Therefore, taking a
sufficient amount of stem water potential measurements to be representative within the
field and throughout the growing season could be difficult for irrigation scheduling. The
integration of remote sensing and machine learning techniques could allow the fast mon-
itoring of several parameters that are useful for crop irrigation management, including
stem water potential [17,18]. Remote sensing technology enables the observation and anal-
ysis of the Earth’s surface characteristics by measuring the radiation reflected or emitted
from objects, without direct physical contact [19]. This data collection is mainly achieved
through satellites, aircraft, and, increasingly, unmanned aerial vehicles (UAVs), providing
accurate results at variable costs depending on the platform used. In recent years, the
agricultural sector has seen a significant increase in the adoption and application of these
remote-sensing technologies [19]. Sentinel-2 is a mission of the Copernicus program of
the European Space Agency; it involves two satellites, 2A and 2B, with a revisit time of
5 days [20]. Sentinel-2 data can enhance precision agriculture and crop monitoring by
providing high-resolution multispectral images that support multiple agricultural appli-
cations. For instance, Hassanpour et al. [21] used Sentinel-2 time series to monitor leaf
area index, fractional vegetation cover, and canopy water content at the field scale. Also,
Sentinel-2 imagery can be used to estimate important agronomic parameters such as the
aboveground biomass of crops [22]. In crop monitoring and analysis, remote sensing data
are utilized through three approaches: parametric, non-parametric, and physically based.
Parametric approaches study the direct relationship between remote sensing data and
crop traits but require certain statistical assumptions to be satisfied (e.g., linear regression);
non-parametric approaches (e.g., machine learning algorithms, such as random forest)
can capture non-linear and complex relationships, and can also handle non-normal dis-
tributions; physically based approaches are based on physical criteria, but their intricate
nature often limits their practical application [23]. The use of machine learning algorithms
is continuously increasing in agriculture, especially in remote sensing applications [24].
Machine learning utilizes statistical models and algorithms to analyze and identify patterns
in data, in order to make predictions or decisions based on that data [25]. Machine learn-
ing in agriculture can help in monitoring crop parameters, improving productivity and
resource efficiency [26]. For example, Narmilan et al. [27] compared different algorithms to
predict sugarcane’s chlorophyll content, obtaining good results with the extreme gradient
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boosting algorithm. Choudhary et al. [28] used random forest to map rice yield from
Sentinel-2 imagery.

For monitoring cotton’s water status, different studies investigated the use of remote
sensing data. For instance, Bian et al. [29] used a drone to measure cotton’s crop water
stress index under different irrigation treatments. Ballester et al. [30] used drone imagery to
monitor the effects of water stress on cotton through the computation of vegetation indices.
While different studies have utilized remote sensing and machine learning to assess cotton
traits, few studies have investigated the integration of remote sensing data from satellite
and machine learning techniques in monitoring cotton’s stem water potential, especially in
the Mediterranean area [31].

This study aimed to investigate the feasibility of the integration of remote sensing
and machine learning to predict cotton’s stem water potential in the Mediterranean area
(southern Italy). Different machine learning algorithms have been tested and compared,
with the aim of identifying the best-performing one for estimations of cotton’s water status.
Furthermore, in this study, explainable machine learning techniques have been used to
understand the role of the different variables in predicting stem water potential, thus
providing insights into the driving factors influencing the model’s decision.

2. Materials and Methods
2.1. Experimental Area and Crop Management

The trial was carried out during the 2023 season in Rutigliano in the south of Italy
within the experimental farm belonging to the Council for Agricultural Research and
Economics (40◦59′ N; 17◦01′ E; 147 m a.s.l) (Figure 1A). The climate is Mediterranean, with
hot summers and warm and not very cold winters. According to the Köppen and Geiger
classification, the climate in the region is categorized as CSa (hot-summer Mediterranean
climates) [26]. Average annual precipitation is 535 mm, mainly concentrated in autumn and
winter, and almost absent in the summer period; therefore, most species can be successfully
grown in the spring–summer period in this area only by providing irrigation water supply.
The agrometeorological data were recorded by the agrometeorological station installed
within the farm.
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Figure 1. (A) Location of the experimental farm in Rutigliano (green arrow), Apulia region (red
boundaries). (B) The cultivation area of cotton with the sampling points where stem water potential
was determined (blue rings).

Cotton (Gossypium hirsutum L., 1763; cultivar ST402, Pioneer) was grown on an area
of 0.8 ha (Figure 1B). The soil of the field was classified as clay loam (USDA classification)
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and Lithic Ruptic Rhodoxeralf (FAO classification). Cotton was sown on day of the year
(DOY) 150 with a plant density of 10 m−2; it was fertilized with 50 kg ha−1 of N, 25 kg ha−1

P2O5, and 20 kg ha−1 K2O through fertilization. Irrigation was managed to replace the total
amount of water lost through the evapotranspiration of the crop (ETc), which was quantified
following the methodology indicated by Allen et al. [32]. Tabulated crop coefficients were
adopted, namely Kcini = 0.15, Kcmed = 1.10, and Kcend = 0.50; a depletion fraction value of
0.50 was also used. Corrections to Kcini (for precipitation events) and to Kcmed and Kcend
for climatic conditions and crop height were carried out following the abovementioned
Allen methodology. A drip irrigation system was adopted with a flow rate of 4 L h−1 per
dripper applied to a 0.30 m dripper.

Cotton was harvested by hand during the first weeks of October.

2.2. Water Status of Cotton

The water status of the cotton was determined by measuring the stem water potential
(SWP; MPa). SWP was determined during the season on cotton plants across 16 random
points (Figure 1B). Measurements were carried out between 11.00 and 13.00 h solar. Before
SWP determinations, adult and fully expanded leaves were placed into aluminum bags for
60 min, and then a Scholander-type pressure chamber connected to a cylinder containing
nitrogen (Soil Moisture Equipment Corp., Santa Barbara, CA, USA) was used to measure
SWP, by insufflating nitrogen until reaching equilibrium [3]. SWP was measured on DOYs
194, 199, 204, 209, 224, and 234, according to the time of Sentinel-2 crossing over the area.

2.3. Satellite Images

Images from Sentinel-2 were used in this study. Sentinel-2 satellites provide multi-
spectral images with 13 spectral bands (S2-Bs) and high resolution (from 10 m to 60 m,
depending on the band) [33]. Bands B01 (coastal aerosol), B09 (water vapor), and B10
(SWIR—cirrus) were not used in this study because they are not usually used for agricul-
tural purposes [33]; all the remaining S2-Bs (B02, B03, B04, B05, B06, B07, B08, B8A, B11,
and B12) were used as predictors in the analyses. Before reflectance data extraction, the
Sentinel-2 images were resampled at a spatial resolution of 10 m using the library “rasterio”
within the Python environment [34] (Python version: 3.11.5 64-bit) through the nearest
neighbor method. For each field point where cotton’s SWP was measured, the reflectance
values of the corresponding pixels were extracted for all the S2-Bs considered, using QGis
(v. 3.28.15-Firenze for Windows) and the plug-in “Value Tool” (v. 3.0.19). This process
was repeated across all 16 field points for each measurement date, building the dataset
needed for the analyses, where SWP was considered the target variable and the S2-Bs as
predictors [35]. All the Sentinel-2 images (n = 6) were downloaded from the online tool of
Copernicus [36] as Level 2A products (atmospherically corrected surface reflectance).

2.4. Machine Learning Analyses

Modeling approaches compared in this study involved different machine learning
algorithms: adaptive boosting (AdaBoost), support vector regressor (SVR), least absolute
shrinkage and selection operator (Lasso), ridge regression (ridge) partial least square regres-
sion (PLSR), random forest (RF), and extreme gradient boosting (XGBoost). AdaBoost is an
ensemble learning technique that combines multiple weak learners (i.e., decision trees) to
enhance prediction; the central idea of AdaBoost is the iterative regulation of the weights of
the training samples based on the errors of the previous models, thus focusing more on the
hard-to-predict instances in subsequent iterations [37]. SVR is a popular machine learning
technique used to solve regression problems by finding a hyperplane that minimizes the
prediction errors; it is based on support vectors (the data points closest to the hyperplane)
that are used to define the position and orientation of the hyperplane [38]. Lasso regression
is a linear regression technique incorporating L1 regularization to improve the accuracy and
interpretability of the model. Introduced by Robert Tibshirani [39], Lasso adds a penalty
equal to the absolute value of the coefficients, promoting sparsity and reducing some
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coefficients to zero. This feature allows for efficient variable selection, making Lasso par-
ticularly useful in high-dimensional datasets where multicollinearity may be present [40].
Ridge regression is a regularization technique used to address multicollinearity in multiple
regression models by adding a penalty to the loss function; this technique improves the
estimation of coefficients by shrinking them towards zero, which reduces variance at the
cost of introducing some bias, thereby enhancing the model’s performance [41,42]. PLSR
is a multivariate method for modeling relationships between sets of observed variables
when the predictors are highly collinear or when the number of predictors exceeds the
number of observations. PLSR combines the characteristics of principal component analysis
and multiple regression, allowing the extraction of latent variables that capture the most
variance in the predictor variables and are also relevant to the prediction of the response
variable [43,44]. RF is another supervised ensemble learning technique. RF improves
regression by combining several decision trees to enhance the model’s performance and
its generalization [35,45]. RF builds multiple randomized decision trees and averages the
predictions of the single trees; this ensemble method improves the stability and accuracy
of the model [46]. XGBoost is a highly efficient and scalable implementation of gradient
boosting, a machine learning technique that combines predictions from multiple weak
models (decision trees) to create a more powerful predictive model. Developed by Tianqi
Chen and Carlos Guestrin [47], XGBoost has gained popularity for its performance and
ability to handle large-scale data. XGBoost builds decision trees sequentially, and each
tree is trained to correct the errors made by previous trees, focusing on the residuals of
the predictions. This sequential training allows XGBoost to optimize the model iteratively,
adjusting the predictions based on the performance of the ensemble as a whole [48,49].

All the analyses were carried out within the Python environment using the scikit-
learn library (v. 1.3.0) (www.scikit-learn.org). For each model, fine-tuning of the hyper-
parameters was carried out using the “Optuna” library (v. 3.6.1). Optuna consists of an
automatic hyper-parameter optimization framework that efficiently researches the parame-
ter space to identify the best-performing configuration. In this process, 50 optimization trials
were performed for each model, using a combination of Bayesian optimization with the
Tree-structured Parzen Estimator (TPE) sampler [50]. Table 1 reports the hyper-parameters
fine-tuned for each model using Optuna.

Table 1. Hyper-parameters fine-tuned using Optuna for each model.

Algorithm Fine-Tuned Hyper-Parameters

AdaBoost Learning rate; loss; number of estimators
SVR c; γ; epsilon

Lasso α; maximum number of iterations
Ridge α; maximum number of iterations
PLSR Number of components

RF
Maximum number of features; maximum depth; minimum samples to split
an internal node; minimum number of samples of a leaf node after the split;

number of estimators

XGBoost Learning rate; γ; minimum child weight; column sample by tree; subsample;
maximum depth

To ensure robust and unbiased model evaluation, the dataset was randomly divided
five times into training and testing sets, with each split allocating 70% of the data for training
and 30% for testing. This approach allows each model to be trained on different subsets
of data and evaluated on distinct testing sets, providing a comprehensive assessment of
the model’s performance and generalization capabilities. This random split approach is a
common practice in machine learning to enhance the reliability of model comparisons [51].
With the optimized hyper-parameters, each model was trained on the 70% training subset
from each of the five random splits. This training process enabled the models to learn
patterns and relationships between the S2-Bs’ reflectance values and the cotton’s SWP.

www.scikit-learn.org
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After training, the models were evaluated on the 30% testing subset corresponding to each
split, using the ground truth data—the actual observed values not included in the training
phase—to assess the predictive accuracy and performance. To evaluate and compare the
models, the coefficient of determination (R2; Equation (1)) and root mean square error
(RMSE; Equation (2)) were calculated as follows

R2 = 1 −
(

SSres

SStot

)
(1)

RMSE =

√
1
n∑n

i=1(Si − Oi)
2 (2)

where SSres is the sum of the squares of the residuals, SStot is the total sum of the squares, Si
is the simulated values, Oi is the observed value, and n is the number of observations. The
models’ performance parameters were compared using Tukey’s test (α = 0.05) following
an analysis of variance (ANOVA) conducted on the results of the 5 random splits of the
dataset. All the analyses were carried out using Spyder © IDE (v. 5.4.3 for Windows).

2.5. Machine Learning Inference and Explainability

Once the best model among the calibrated ones had been found, it was applied
to the available (and cloud-free) Sentinel-2 images (n = 12) for the period from the full
development of cotton plants (early July 2023) to the ripening stage (mid-September); then
the simulated values of SWP for each image were used to model the temporal variability in
the cotton’s water status during the season.

Machine learning explainability is becoming more widely recognized as a critical
component in the development and spread of machine learning systems; as machine learn-
ing models gain in complexity, comprehension of their behavior and outcomes becomes
essential for users, stakeholders, and policymakers [52,53]. In this research, two methods
were used to explain the predictions: permutation importance and the SHapley Additive
exPlanations (SHAP) method. Permutation importance is a technique for understanding
which features are the most influential in the predictions of a machine learning model. The
process involves calibrating a model on the original dataset, defining a performance base-
line, and then randomly changing the values of a specific feature to interrupt its association
with the target variable. The model is then applied to obtain predictions on this altered
dataset, and the importance of the feature is determined by the difference in the model’s
performance before and after the permutation [54]. SHAP applies the concept of “Shapley
value” from cooperative game theory, which quantifies the average marginal contribution
of a player among all possible coalitions [55]. In the field of machine learning, it is applied
to clarify the importance of features in relation to a predicted variable, highlighting how
each feature influences the prediction [56,57]. Partial dependence is another technique that
increases models’ interpretability. It was calculated for the four most important variables
(from permutation and SHAP analysis) to illustrate their relationship with the target [58].

3. Results
3.1. Field Data

In June, the average temperatures ranged between 18 and 29 ◦C, and a peak of
maximum temperature of 36.56 ◦C occurred on DOY 174. July and August were the months
with the highest temperatures recorded. During the second and third weeks of July, the
average temperatures were stably above 25 ◦C, and the maximum temperatures reached
39.59 ◦C on DOY 194, 40.73 ◦C on DOY 204, and 41.83 ◦C on DOY 205. During August,
temperatures were slightly lower than in July; nonetheless, the average temperatures were
above 20 ◦C. In the second week of August, maximum temperatures were relatively low,
ranging from 26 to 29 ◦C; they increased from DOY 233 (>~30 ◦C; 37.93 ◦C on DOY 239)
and they slightly decreased again from DOY 240 (the end of August). In September, the
average temperatures ranged, similar to June, between 18.47 ◦C and 28.19 ◦C. Rises in
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VPD were recorded throughout the entire season, but notable peaks occurred on DOYs 193
and 194 (~3 kPa), 205 (3.24 kPa), and 206 (3.85 kPa). As typical for the region, rain events
were few and infrequent; 95.40 mm of precipitation occurred during the growing season
of cotton, 37% of which fell during the final phase of the cycle (second half of September)
(Figure 2). The total amount of ETc for the growing season was 460 mm.
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Figure 2. (A) The seasonal trend of average, maximum, and minimum temperatures, and vapor
pressure deficit (VPD). (B) The seasonal trend of crop evapotranspiration (ETc), and the amount of
rainfall and irrigation water applied.

Table 2 reports the descriptive statistics of the SWP measured during the growing
season, per DOY, and for the full dataset. The overall average SWP was −0.43 (±0.29) MPa,
the median was −0.33 MPa, and the minimum and maximum values were −1.48 MPa
and −0.15 MPa, respectively. The lowest mean values of SWP were detected on DOY 204
(−0.95 MPa). The Supplementary Materials (Table S1) report the descriptive statistics of
the S2-Bs used as predictors in this study.

Table 2. Descriptive statistics of the stem water potential (MPa) of cotton measured during the season for
each day of year (DOY) considered in the study and for the whole dataset (overall). sd = standard deviation.

DOY Count Min Max Mean sd Median

194 16 −0.35 −0.15 −0.26 0.06 −0.27

199 16 −0.56 −0.30 −0.41 0.06 −0.40

204 16 −1.48 −0.18 −0.95 0.31 −1.00

209 16 −0.50 −0.30 −0.38 0.06 −0.40

224 16 −0.40 −0.18 −0.26 0.06 −0.28

234 16 −0.46 −0.16 −0.29 0.07 −0.28

Overall 96 −1.48 −0.15 −0.43 0.29 −0.33

3.2. Models’ Evaluation

The model that yielded the highest average R2 was RF (0.75 ± 0.07), and it also
achieved the lowest RMSE (0.11 ± 0.02), followed by XGBoost (R2: 0.73 ± 0.09, RMSE:
0.12 ± 0.02) and AdaBoost (R2: 0.67 ± 0.08, RMSE: 0.13 ± 0.02). The other machine learning
algorithms demonstrated lower or even negative performance, for instance, Lasso had an
R2 of −0.02 (± 0.04) and an RMSE of 0.24 (±0.02). Figure 3 present boxplots illustrating
the distribution of the performance metrics of the tested models and the results of Tukey’s
test for means comparison. Specifically, while Table 3 reports the average values and their
standard deviations for each model, Figure 4 shows the regression plot of the considered
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models across the five random splits of the dataset. The tree-based algorithms—AdaBoost,
RF, and XGBoost—had a significantly higher performance for both R2 and RMSE than the
other models. Nonetheless, we chose to select the RF model as the best model to apply,
due to the higher average R2 and lower standard deviation compared with AdaBoost
and XGBoost.
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random splits (total: n = 144) of the machine learning models used in this study. The black line within
the box represents the median. Different letters denote statistically significant differences among the
models at p < 0.05, as determined by Tukey’s test.

Table 3. Performance parameters of the machine learning algorithms used in this study for predicting
cotton’s stem water potential, using the Sentinel-2 spectral bands as predictors. sd = standard deviation.

Model Average R2 R2 sd Average RMSE (MPa) RMSE sd (MPa)

AdaBoost 0.673 0.087 0.137 0.023

Lasso −0.027 0.047 0.246 0.020

PLSR 0.452 0.119 0.178 0.023

RandomForest 0.756 0.072 0.119 0.026

Ridge 0.252 0.118 0.210 0.029

SVR 0.582 0.112 0.154 0.014

XGBoost 0.730 0.091 0.125 0.024
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3.3. Features’ Importance

The permutation plot (Figure 5) shows that the most important S2-B for the prediction
of cotton’s SWP using the RF-based model was B02 (blue region), followed by B04 (red),
B06, and B8A (red edge regions). The least important for the prediction of SWP was B08.
The SHAP method confirmed the importance of the same bands in this modeling approach
(Figure 6); furthermore, the SHAP summary plot shows that higher values of B02 had a
positive impact on the RF model’s outcomes. For B04 and B06, low and medium values
had a positive impact on the model; in comparison, lower values had a negative impact. In
the case of B8A, it seems that high and low values improved predictions, while medium
values did not.
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Figure 7 shows the partial dependence graphs for the four most important S2-Bs in
the prediction of cotton’s SWP using the RF model. The partial dependence for the B02
band shows a relatively stable trend with values of around −0.52 up to about 0.130. After
this point, there is a sharp increase in the partial dependence, reaching −0.38 at 0.135.
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This indicates that as the values of B02 increase, the partial dependence increases; as the
B02 values increase above 0.130, partial dependency becomes less negative, increasing
the predicted SWP. The partial dependence for the B04 range starts to be stable around
−0.42 but shows oscillations. The partial dependence decreases sharply from around −0.48
to around 0.165 and then gradually increases to −0.44 at 0.18. These variations could
indicate thresholds in B04 that may negatively influence the SWP predictions. The partial
dependence for B06 is relatively stable around −0.40 from 0.42 up to about 0.33, after
which, there is a sharp decline to about −0.56 at 0.36. This indicates that higher values
in B06 may negatively influence the prediction of SWP, and then higher values in B06 are
associated with a significant reduction in the prediction of SWP. The partial dependence
for B8A shows significant variations, starting at around −0.43, dropping sharply to about
−0.49 around 0.42, and then increasing again to −0.43. This variability indicates that the
B8A band has a complex impact on the prediction of the SWP.
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3.4. Predicted Stem Water Potential

The trend of cotton’s SWP was simulated using the RF model and the Sentinel-2
images available for the period from July (the beginning of the development phase) to
mid-September (the beginning of the ripening phase) (Figure 8). During the first phase
of development, the predicted SWP of cotton remained relatively stable at ~−0.37 MPa
and started to drop on DOY 199 (−0.46 ± 0.04 MPa). Thereafter, it decreased markedly to
−0.71 ± 0.05 MPa by DOY 204. Subsequently, on DOY 209, the predicted SWP increased
to −0.49 ± 0.02 MPa and maintained this level until the latter half of August, except for
DOY 229, when it had a slight rise to −0.45 ± 0.02 MPa. On DOY 234, the predicted
SWP dropped again to −0.51 ± 0.06 and remained stable until DOY 249, when it rose to
−0.45 ± 0.01 MPa. Finally, on DOY 254, a further decrease in SWP was observed, with
values falling to −0.52 ± 0.07 MPa.
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4. Discussion

This research work investigated the application of machine learning techniques for
estimating the stem water potential of cotton in the Mediterranean area by using multi-
spectral data from Sentinel-2 imagery. The results provided significant insights into the
feasibility of this approach in the efficient monitoring of cotton’s water status, especially
in a context affected by global warming and water scarcity such as the regions of the
Mediterranean basin.

Among the machine learning algorithms tested, the RF model showed higher per-
formance. This result is in line with findings from research work on other crops and
biophysics parameters. For instance, Minaei et al. [59] reported better performance for RF
compared with SVR in estimating the leaf nitrogen content of sugarcane at field scale using
Sentinel-2 data. Also, the findings of Garofalo et al. [3] highlighted that RF outperformed
SVR and linear regression for the estimation of olive’s water status with Planet satellite
images. Pôças et al. [60] et al. compared different machine learning algorithms—including
RF—to predict grapevine’s predawn leaf water potential in Portugal, showing an R2 of 0.77.
The robustness of RF in handling non-linear relationships and the complex interactions
among the variables typical of remotely sensed data is well documented [61]. In a work
from Lin et al. [31], the machine learning-based prediction of SWP was carried out in a
different agro-climatic context (Texas, USA). This is a key point, since it could confirm
the applicability of the approach, increasing its potential generalization. In our work, we
extended this approach by evaluating a broader spectrum of machine learning algorithms
(AdaBoost, SVR, Lasso, Ridge, PLSR, RF, and XGBoost) to offer a more comprehensive
insight into the potential and limitations of various modeling techniques for this specific
application. Lin et al. found better model performance using Sentinel-2 spectral bands
rather than vegetation indices. In the present research work, only S2-Bs have been used as
predicting variable, without calculating the vegetation indices. Other research has shown
that better results can be obtained when using spectral bands as predictors rather than
vegetation indices [62,63]. This could be because the use of the reflectance value of all
bands in Sentinel 2 allows all information included in the spectrum to be considered [64].
Furthermore, although there are undoubted advantages in using vegetation indices, some
problems may arise, such as saturation of the NDVI at high LAI values [65], which may
lead to worse performance when using vegetation indices, compared with bands. In this
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research, techniques for explainable machine learning have been applied to provide insights
into mechanisms driving the models’ predictions. The analysis of the importance of the
variables showed the predominant role of the visible bands (blue B02 and red B04) and the
red edge (B06, B8A) in prediction of the SWP. These results are consistent with previous
studies that have demonstrated the sensitivity of these spectral regions to plant water
status and stress but provide new insights specific to cotton in the Mediterranean environ-
ment [58,66]. The predominance of the blue band (B02) as the most important predictor is
particularly relevant from an ecophysiological point of view. This band is known for its
sensitivity to changes in the content of ancillary foliar pigments, e.g., carotenoids, which are
often associated with water stress, as they act as antioxidants under stress conditions [67,68]
In cotton, the accumulation of these pigments in response to various environmental stresses
has been documented and represents a crucial photoprotective mechanism under high
radiation and water deficit conditions [69,70]. According to the results of partial depen-
dence, the B02 is particularly influential in predicting higher SWP levels when its values
are within the range of 0.130 to 0.135; this could be related to the model’s ability to detect
specific changes in reflectance corresponding to different water states in the cotton. The
second most important band in the RF model was the red band (B04). The B04 band is
critical for predicting lower SWP levels around 0.165. These fluctuations might reflect the
absorption of red light by vegetation, which is sensitive to changes in plant conditions and
thus to their water status; water stress could lead to higher reflectance in the red band [71].
The red edge band (B06) confirmed their usefulness in estimating vegetation and crop
conditions, including water status [72,73]. The sensitivity of this spectral region could
be related to changes in the chlorophyll content and internal leaf structure that occur in
response to water stress [74]. The B06 band is important for determining lower SWP levels
when its value exceeds 0.33. The reduction in partial dependence values suggests that
this band is effective in detecting water stress conditions, as the red edge is sensitive to
variations in chlorophyll content and overall plant health. In cotton growing, the red edge
region has been used to monitor drought stress using vegetation indices [30]. The minor
importance of the NIR band (B08), on the other hand, is contrary to the literature, as it is
usually used for estimating water status [75]. However, in another study by Garofalo et al.
on carob tree [35], the NIR region had the lowest importance in predicting the stomatal
conductance, a physiological parameter related to plant water status, with RF. This could
suggest that with more complex algorithms, the role of the spectral bands as predictors
and their importance could depend on the model, the specific crop, the dataset, and the
field-related parameters [76,77].

5. Conclusions and Future Research

The accurate estimation of cotton’s stem water potential using remote sensing and
machine learning offers significant opportunities for the implementation of advanced
precision irrigation strategies in cotton. High-frequency monitoring of cotton’s water status
can drive timely and targeted irrigation interventions, supporting the implementation of
deficit irrigation strategies (e.g., regulated deficit irrigation, sustained deficit irrigation)
to maximize water use efficiency. The random forest algorithm has been confirmed as
one of the most suitable for the detection of water-related crop conditions. Explainable
machine learning techniques highlighted the role of the different features in the prediction
of cotton’s stem water potential with the random forest model. Despite the promising
outcomes, this study has certain limitations that open avenues for future research. As
the study was conducted on a single field over one growing season with a relatively
small dataset, the findings may be specific to the particular agro-environmental conditions
of the study area. This controlled setting allowed for a focused analysis but may limit
the generalizability of the results to other regions with different climatic conditions, soil
types, or management practices. Future research should aim to validate and enhance the
robustness of the proposed models by including multiple fields across diverse geographical
locations and extending the study over multiple growing seasons. Expanding the dataset
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would not only strengthen the statistical power of the models but would also enable the
exploration of the temporal dynamics and spatial variability in cotton’s water status. Future
research perspectives also include the integration of multi-sensor data, combining spectral
information from Sentinel-2 with thermal data (e.g., Landsat 8) or from high-resolution
satellite images (e.g., Planet SuperDove images). In addition, it would be useful to assess
the economic impact and water-saving potential of implementing this approach on a
larger scale. Quantifying the possible reductions in water use and the associated energy
costs could provide insights into the practical benefits of a large-scale adoption of the
proposed framework.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants13233325/s1, Table S1: Descriptive statistics of the reflectance
value of the Sentinel-2 spectral bands used as predictors, per each day of year (DOY) considered in
the study, and for the whole dataset (overall). sd = standard deviation.
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