
Citation: Munshi, A. Detecting

Unusual Repetitive Patterns of

Behavior Indicative of a Loop-Based

Attack in IoT. Sensors 2024, 24, 7534.

https://doi.org/10.3390/s24237534

Academic Editor: Alessandra

Rizzardi

Received: 12 October 2024

Revised: 22 November 2024

Accepted: 23 November 2024

Published: 26 November 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Detecting Unusual Repetitive Patterns of Behavior Indicative of
a Loop-Based Attack in IoT
Asmaa Munshi

College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia;
ammunshi@uj.edu.sa

Abstract: Given the high risk of Internet of Things (IoT) device compromise, it is crucial to discuss
the attack detection aspect. However, due to the physical limitations of IoT, such as battery life and
sensing and processing power, the widely used detection techniques, such as signature-based or
anomaly-based detection, are quite ineffective. This research extracted loop-based cases from the
transmission session dataset of “CTU-IoT-Malware-Capture-7-1” (“Linux, Mirai”) and implemented
a loop-based detection machine learning approach. The research employed nine machine learning
models to illustrate how the loop patterns of the datasets can facilitate detection. The results of this
study indicate that the XGBoost model achieves the best performance in terms of “Accuracy: 8.85%”,
“Precision: 96.57% (Class)”, “Recall: 96.72% (Class 1)”, and “F1-Score: 6.24%”. The XGBoost model
demonstrated exceptional performance across all metrics, indicating its capability in handling large
IoT datasets effectively. It provides not only high accuracy but also strong generalization, which is
crucial for detecting intricate and diverse patterns of malicious behavior in IoT networks. Its precision
and recall performance further highlight its robustness in identifying both attack and normal activity,
reducing the chances of false positives and negatives, making it a superior choice for real-time IoT
threat detection.

Keywords: malicious attacks; detection of attacks IoT loop-based attacks

1. Introduction

Loop-based malicious attacks in IoT exploit vulnerabilities in devices or networks via
repetitive, cyclical actions [1]. These activities disrupt operations, exhaust resources, or
inflict further damage [2]. Researchers have established that loop-based malicious attacks
execute repetitive malicious requests or commands, not only to overwhelm the system but
also to exploit vulnerabilities [3]. Numerous adoptions of IoT in human activities have
demonstrated loop-based attacks as the most effective way to exploit vulnerabilities [4–6].
The penetration of IoT devices is increasing swiftly, and the security issues associated
with these devices are generating significant concerns [7]. It’s crucial to acknowledge that
creating IoT devices with security issues is a common obstacle [8]. However, looping in
IoT devices presents a technical issue that is linked to the system’s programming codes [9].
Almost all loop-based cyberattacks stem from the functionality of the codes that govern
the IoT devices [10]. The failure of IoT devices in this case will result in downtime for end
users of the IoT network [11]. Lastly, the failure of IoT devices can generate significant
traffic, potentially overwhelming network infrastructure [12].

The research problems highlighted by this study stem from the fact that only a lim-
ited number of studies have examined the operational behavior of loop-based malicious
attacks [13–16]. We also observed that loop-based malicious attacks in IoT can manifest
as “Repetitive Actions”, “Resource Exhaustion”, “Disruption of Normal Functionality”,
“Exploitation of Communication Protocols”, and “Triggering Software or Hardware Vul-
nerabilities” [17]. While an IoT device or system that receives persistent malicious com-
mands or requests from attackers may result in system degradation and other adverse

Sensors 2024, 24, 7534. https://doi.org/10.3390/s24237534 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24237534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9933-0629
https://doi.org/10.3390/s24237534
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24237534?type=check_update&version=1

Sensors 2024, 24, 7534 2 of 22

effects [18,19], persistent looping attacks can impair the performance of IoT devices [20].
A specific instance of these adverse effects is that an attacker may continuously toggle
lights, lock and unlock doors, or alter temperature settings in a smart home, resulting in
disorientation and irritation [21,22]. Similarly, repeated buffer overflow in an IoT network
transmission session might lead to device malfunction or compromise [23].

Considering the issues raised that are associated with “Loop-based Malicious Attacks
in IoT”, this current research explores those concerns, specifically conceptualized loop-
based attack detection, and contributes in the following ways:

• The research was able to demonstrate that the XGBoost model has an excellent discrim-
inative ability, effectively distinguishing between normal and malicious loop-based
attacks in IoT.

• The research was able to establish that Loop-based attacks are a Threat to IoT Sys-
tems based on the fact that “Resource Constraints” of most IoT devices have limited
computing, memory, and energy resources. Loop-based attacks can quickly drain
these resources, making the devices non-functional [23]. Similarly, a widespread
impact can emerge as IoT devices are often interconnected in smart environments
(e.g., smart homes, factories), a loop-based attack on one device can potentially affect
the entire IoT ecosystem, causing a cascading failure or system-wide disruption. An-
other issue lies with “Limited Security” as many IoT devices lack advanced security
features due to their constrained nature, making them more vulnerable to simple,
repetitive attacks [24,25].

• Finally, the research was able to establish that “Real-time Operations” is an IoT systems
that is often designed for real-time operation, such as controlling industrial machinery,
healthcare devices, or smart city infrastructure. A loop-based attack that disrupts
real-time communication can lead to safety risks or service interruptions.

Below is a description of the subsequent sections in this paper: Section 2 presents the
related work. Section 3 outlines the models utilized for this study. Section 4 presents the
research methodology, followed by the experimentation and results obtained. Section 6
presents the discussion and future work, and finally, Section 7 concludes the research study.

2. Related Work

There are many previous research studies associated with “systematic reviews” and
general surveys within IoT that provide valuable insights on the current state of IoT ap-
plications. Among the crucial studies associated with this is the work of Imran et al.
Imran et al. [1] conducted a comprehensive review of the existing literature and presented
challenges in IoT and sensor networks. Al-Hadhrami and Hussain [2] undertook a sys-
tematic literature review that compiles research on Distributed Denial of Service (DDoS)
attacks in IoT networks. Similarly, Tahsien et al. [3] conducted a survey of machine learning
techniques used in IoT security applications. Mishra and Pandya [4] conducted a systematic
review of IoT applications and security challenges in another research study. Additionally,
Mittal et al. [7] conducted a systematic review of deep learning methods designed for
detecting DDoS attacks in IoT environments. All this previous work requires significant
computational resources, which can be a limitation for IoT systems.

Numerous research studies are also involved in the design and development of IoT
security, with a focus on its implementation. Zhou et al.’s work [13], which designs and
evaluates an intrusion detection system for heterogeneous IoT networks, is crucial in this
regard. The proposed system effectively identifies attacks in complex IoT environments,
though its performance varies depending on the heterogeneity and size of the network.
Similarly, Arshad et al. [14] proposed a framework and conducted simulations to evaluate
their IoT performance framework. The results effectively detect intrusions while mini-
mizing energy consumption, making the framework suitable for IoT devices with limited
resources. Another study from Alhowaide et al. [18] presents an ensemble-based model
and evaluates its performance through experimental validation. The model demonstrated
improved accuracy and reduced false positives in detecting IoT-based intrusions when

Sensors 2024, 24, 7534 3 of 22

compared to individual detection methods. The study of Reza et al. [22] used a real-time
detection approach and evaluated it through experiments. The findings indicate that the
real-time detection system provided timely and accurate intrusion alerts, improving re-
sponse times in IoT security scenarios. Another study by Noman and Abu-Sharkh [25]
combines a comprehensive review of code injection attacks with practical implementations
and analysis. The paper demonstrated that code injection attacks pose a major threat
to wireless IoT systems, with severe consequences such as denial of service (DoS) and
data breaches.

Patel et al. [26] offered a dynamic loop-based methodology to enhance the robustness
of wide-area damping control systems against cyberattacks. The authors employ control
theory and dynamic feedback mechanisms to develop a system capable of detecting and
alleviating cyberattacks that threaten power system stability. The methodology entails
modeling the cyber-physical system and integrating redundancy to endure harmful inter-
ferences. The proposed solution effectively improves the resilience of wide-area damping
controls, demonstrating that the system can sustain stability even amid cyberattacks. The
dynamic loop methodology successfully alleviates delays and disturbances resulting from
attacks, enhancing the reliability of power grid operations during adverse conditions.

Shang et al. [27] proposed a network design model employing a loop-based methodol-
ogy for the allocation of defense resources in IoT systems amid uncertain environments.
The authors quantify the uncertainty in network operations and include it in the resource
allocation model, employing game theory and optimization to develop a resilient system
against future cyber threats. The loop-based network design paradigm enhances the efficacy
of defense resource allocation in unpredictable IoT environments. The results demonstrate
that the approach improves the system’s resilience against unforeseen attacks by carefully
distributing resources to critical areas, thereby diminishing the system’s susceptibility.

Oruganti et al. [28] specifically designed a hardware-in-the-loop (HIL) testbed to
evaluate the cybersecurity of automotive embedded systems. The testbed facilitates realistic
evaluation of security vulnerabilities and the effects of cyberattacks on automotive systems
by integrating physical hardware components with virtual settings. The HIL testbed
demonstrates efficacy in identifying vulnerabilities within automobile embedded systems.
It facilitates a comprehensive evaluation of cybersecurity protocols, offering a regulated
setting to replicate assaults and assess system reactions, which is essential for enhancing
the security of automotive systems.

For the cyber–physical layer of the smart grid, Gupta et al. [29] presented an in-
trusion detection system (IDS) that uses an artificial neural network (ANN) based on
loop-based learning methodologies. The model perpetually observes network traffic and
identifies irregularities suggestive of cyberattacks instantaneously. The loop-based artifi-
cial neural network method enhances detection accuracy and diminishes false positives
in the identification of cyberattacks on the smart grid. The intelligent loop-based learn-
ing approach improves the adaptability of the IDS, increasing its efficacy in identifying
various intrusions.

Brindha Devi [30] developed optimized deep learning techniques for IoT attack de-
tection and mitigation. The optimized deep learning models achieved high accuracy in
detecting various types of attacks, including DDoS and data breaches, with improved
computational efficiency. The study highlights the importance of model optimization for
resource-constrained IoT devices.

Alangari [31] introduced an unsupervised machine learning algorithm for detect-
ing attacks and anomalies in IoT sensor data. The unsupervised learning approach was
effective in detecting unknown and evolving threats without labeled data. The model
showed promise in identifying anomalies in IoT sensors, enhancing detection in scenarios
where supervised learning models fall short. Paganraj et al. [32] proposed a machine
learning-based technique (DAIR-MLT) for detecting and avoiding routing attacks in IoT
networks. The DAIR-MLT model significantly reduced routing attacks, such as blackhole
and grayhole attacks, improving overall network performance. The study emphasizes

Sensors 2024, 24, 7534 4 of 22

the importance of integrating such models into IoT network protocols to enhance security.
Kumar and Singh [33] employed reinforcement learning to develop a DDoS detection and
prevention system for edge computing environments in IoT networks: The reinforcement
learning model showed significant success in mitigating DDoS attacks, especially in edge
computing scenarios where resource constraints are critical. The system dynamically
adapted to network changes, reducing false positives and improving attack response times.

The review of research regarding IoT network security underscores the efficacy of ma-
chine learning and deep learning models in identifying cyber-attacks, while also exposing
significant limitations, including restricted generalizability, dependence on labeled data,
absence of real-time application, susceptibility to adversarial attacks, and energy ineffi-
ciency in resource-constrained IoT settings. Future research must to concentrate on creating
generalizable, unsupervised, and lightweight models that exhibit resilience to adversarial
threats and can function in real-time without high energy consumption. The exploration
of federated learning and comprehensive threat detection across diverse attack vectors is
essential for improving IoT security. Devi et al. [30] exhibited superior performance, as
their optimized deep learning model achieved a balance between detection accuracy and
computational economy, rendering it advantageous for actual IoT applications.

3. The Architectures of the Models

More and more organizations rely on machine learning to protect their systems. Sev-
eral algorithms have been used in loop-based counter-attack systems in recent years, but
selecting the most effective algorithm remains a challenge due to the different types of
applications and systems [34]. This research adopted the following machine learning algo-
rithm: “Logistic Regression”, “Random Forest”, “XGBoost”, “Support Vector Machine”,
“Neural Network”, “K-Nearest Neighbors”, “Decision Tree”, “Naive Bayes”, and “Ad-
aBoost”. The justification for the selection of the nine models start from the analysis of
the problem to the model selection. While loop-based malicious attacks in IoT manifest
as repetitive actions, which leads to resource exhaustion, this can be linked to machine
learning ability for learning repetitive events. Machine learning can provide a detection
scene towards persistent malicious commands or requests from attackers that may result
in system degradation and other adverse effects for persistent looping attacks which can
impair the performance of IoT devices.

The classification and features of these models are selected based on their good
performance in prediction and detection capabilities. Furthermore, classical networking
security mitigation techniques can become inefficient due to their manual nature or due to
the inability to simultaneously deploy in real-time on a specific network. To remove these
limitations, machine learning could become an efficient method of improving network
security by actively monitoring patterns and making predictions or taking actions when
certain patterns induce harmful behaviors [35]. In the context of computer networks, ML
models are used to classify and accelerate arbitrary input data to reduce or prevent the
output of critical events or data from crossing predetermined thresholds [36]. Specifically,
loop detection refers to the capability of the algorithm to predict the characteristics of
the network traffic after being trained with ordinary events and behavior recordings,
allowing a network to isolate more immaculate traffic and minimize the time to respond to
security vulnerabilities [37,38].

3.1. Logistic Regression

These are some of the characteristics of logistic regression: It handles non-linear
relationships as it utilizes a transformation function to find the best fitting model to predict
the binary outcome over the independent variables. Even if the binary outcome is assumed
through a linear model in maximum likelihood, logistic regression results would still be
accurate. For the responses that are jointly caused, independence between the residuals
need not be. These are some of the characteristics of logistic regression: it handles non-
linear relationships as it utilizes a transformation function to find the best fitting model

Sensors 2024, 24, 7534 5 of 22

to predict the binary outcome over the independent variables [39]. Even if the binary
outcome is assumed through a linear model in maximum likelihood, logistic regression
results would still be accurate. The logistic regression model estimates the probability that
a given instance belongs to a class y = 1. The probability is modeled using the logistic
(sigmoid) function presented in Equation (1) [39]:

P(y = 1|x) = 1
1 + e−(ωx+b)

(1)

where ω is the vector of weights, x is the input feature vector, and b is the bias term. The
cost function for logistic regression is the binary cross-entropy (or log-loss) presented in
Equation (2) [39]:

J(w, b) = − 1
m

m

∑
i=1

[yilog(h(xi)) + (1 − yi)log(1 − h(xi))] (2)

where h(xi) is the predicted probability of the sample i. Finally, the gradient descent update
is resolved by Equation (3) [39]:

wj = σ
τ J(w, b)

τwj
(3)

where σ is the learning rate and τ J(w,b)
τwj

is the gradient of the cost function with respect

to wj.
τ J(w,b)

τwj
is the partial derivative of the cost function J(w, b) with respect to wj; this

indicates that wj is updated by subtracting σ
τ J(w,b)

τwj
. This process is repeated iteratively for

each weight wj. τ represents the current step in the iterative optimization process. At each
step t the weight wj is adjusted to gradually minimize the cost function J(w, b).

3.2. Decision Tree

Decision trees are employed in aiding both binary and real classification tasks. They are
created by recursively dividing the dataset according to the attribute related to the dataset;
the missing value case is solved by inserting testing patterns placed at each leaf node for
both branches of a node. The tree stops growing when the leaf does not contain either the
patterns left or when it contains entirely a single purpose. However, the stopping method
should also be included, otherwise, the overfitting problem might be encountered [40,41].
For that, the pruning concept is usually applied to the tree regarding a concept known
as Minimal Description Length, which is essentially an application of this principle to
decision trees.

In a tree representation, two outcomes or branches and results in the appropriate
function covering the sub-condition. Additionally, an internal node represents a test on a
specific attribute, and branches from the node indicate the results of the test. Lastly, leaf
nodes represent decision alternatives. Trees are commonly used for many machine learning
problems with the greatest benefit [42]. They are devised by partitioning the higher to the
lower branch of the tree based on a given attribute at each line. An entropy function in any
given dataset S is the only classification trees that represent the simplest form of decision
trees by Equation (4) [42]:

S = −
n

∑
i=1

pilog2 pi (4)

where pi is the probability of class i in dataset S. This proceeds with information gain A
or the features, where sharing information on how a set of characteristics of the dataset is
structured in Equation (5) [42]:

S, A = S = − ∑
v∈A

|Sv|
|S| (Sv) (5)

Sensors 2024, 24, 7534 6 of 22

where Sv is the subset of S and A is the features value v. These structures are mainly the
splitting trees since the nodes are divided into two or more subsets by attributes. In advance,
when the amount of predictors is detected as independent of the particular target variable,
predictions are made by the most popular level of the terminal in the ideal example in the
partitioned pattern recurrence.

3.3. Random Forest

Random forest is a popular machine learning algorithm mostly used in classification
and function approximation problems. This algorithm is an extension of the classification
and regression tree decision forest learners [43]. The algorithm requires a number of
parameters to be set during its creation. Although it has been widely used, our initial
analysis indicates that a poor choice of parameters can badly impact the learning phase. In
this section, we explain the random forest parameter choice and searching algorithm we
implemented to achieve good performance in the detection of loop-based DDoS attacks.
Random forest constructs a number of decision trees based on bootstrap input data [44].
Each model is trained on a subset of predictor features available for the dataset, called
features bagging. Each training process is repeated recursively for a predefined number
of levels in the tree. When comparing with the regular decision tree, the difference in
random forests is that during a split, each candidate feature is chosen randomly, and the
best one is selected among them. This feature criterion is used to narrow the trees down to
a small depth.

In the training and bagging of trees process, the algorithm requires different parame-
ters to be defined by the system implementer. One parameter to choose is the number of
candidate features randomly selected in each split. In the context of the monitored dataset,
not all features are equally important [45]. Thus, it becomes relevant to measure the average
importance of all features and focus on the most important ones. While the decision tree
selected the available branches, in “Random Forest” the decision to select branches lies
with randomly selecting sample subsets of the original dataset with replacements to create
multiple bootstrapped datasets [46]. For each bootstrap sample, a decision tree grows
an average prediction of all decision trees to get the final prediction, which is calculated
by Equation (6):

∼
y =

1
n

n

∑
i=1

fi(x) (6)

where
∼
y is the predicted output, and n is the number of decision trees in the “Random

Forest”. ∑n
i=1 fi(x) is the summation over all n in the forest for prediction from ith decision

tree in the “Random Forest” for the input x.
This research follows the selection procedure suggested by various algorithms that

are able to remove irrelevant features, conserving the important information of the dataset.
They produce a reliable propagator for the most important features. The research also
varied the number of repetitive assignments of features.

3.4. Neural Network

There are two types of neural network for classifying sequences or other data in
dimensions higher than one. Feedforward neural networks are the first of these. As their
name implies, such networks contain no back loops [47]. Learning in these types of network
makes use of methods for which learning inputs are first designated for each association
between network inputs and desired responses. In the second type of neural network,
connections between neurons form either complete loops or sub-loops. The output data
sequence or set point is used to determine the supervised target value for a given set of
input data [48]. The system is trained using the fixed input-output values, allowing the
creation of internal dynamics that result in the desired network output. Recurrent neural
networks can estimate sequence relationships which, along with their ability to utilize
contextual information in decision and problem-solving stages, make them particularly

Sensors 2024, 24, 7534 7 of 22

appropriate for detecting loop execution attacks [49]. A recurrent or back-looped neural
network can be considered a system that processes the input error signal produced at its
next time step. Errors in processing the input signals result in adjustments of the neural
network’s synaptic weights. When recurrent neural networks learn, they optimize both the
network’s and critter’s output behavior simultaneously over time. Because recurrent logic
typically behaves on a timescale longer than that of feedforward logic, recurrent neural
networks can develop highly useful logical structures that provide extensive optimization
benefits [50]. For a single neuron, it is represented in Equation (7):

z =
n

∑
i=1

wixi + b (7)

where wi are weights, xi are inputs, and b is the bias term. Activation Function: commonly,
the sigmoid or ReLU function.

3.5. Support Vector Machine (SVM)

SVM is one of the older forms of machine learning, and it is used to solve problems
in the supervised learning domain. In essence, SVMs identify the linear separation that
is most valid for the two classes of data under study. It then uses this to classify different
classes of data. This has also been explored for multi-class categorization [51]. A technique
that uses a one-vs-all method has been quite popular and successful in this context.

In the case of SVM, all input data are first mapped to a multidimensional space.
Therein, the proper separation by a hyperplane is then sought. For the case of two-
dimensional separation, it is commonly referred to as a linear classifier. Another feature
of the SVM classifier is that it can adjust well to high-dimensional spaces, e.g., when data
are linearly inseparable in lower dimensions. The popularity of SVM lies in its ability to
be effectively used in such cases. Lastly, SVM is important when the classes being dealt
with are imbalanced [52]. This refers to situations where one class contains significantly
more elements than the other class. It should be noted that most learning algorithms
are quite successful when data contain equal numbers of data points to represent the
different classes.

3.6. K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm is a non-parametric learning model that
classifies attacked and unattacked instances based on their feature similarity and comes
under the supervised category of machine learning [53]. Note that the algorithm uses the
data for training applied in scalar form to make predictions. The predictions are made for a
category based on an assumption known as ceteris paribus [54]. For example, for K = 1, we
check for the nearest neighbor for voting that category. If K > 1, we look for vote counts and
pick the category with the highest count. The distance computed is the Euclidean distance.
Unfortunately, the KNN algorithm performs faster during training than testing due to the
relatively slow process of computing the distance [55].

The K-Nearest Neighbors algorithm can be improved further computationally by
using Ball Trees or KD-trees. Such changes in algorithms allow KNN to have a faster run
time. KNN, along with other classifiers’ performances, can be tested by using various
libraries [56]. Through the iteration of the nearest neighbors to determine the voted category,
the algorithm can tell the distance each data point is from the rest as well as itself. These
distances associate the data with the category they belong to [57]. This is useful as the
generative machine learning model produces data likely to belong to its own category.

3.7. Naive Bayes

Naive Bayes (NB) is one of the simplest, fastest, and most often used algorithms for
creating models. It is a probabilistic classification algorithm inspired by Bayes’ Theorem.
NB is based on the assumption that input variables are independent features, which is why

Sensors 2024, 24, 7534 8 of 22

it is called Naive Bayes. Even if input features are correlated or dependent, this algorithm
still works well. In this algorithm, an assumption of independence between every pair of
features is made [58]. It chooses the class with the highest probability after applying Bayes’
theorem to build a model.

There are two types of Naive Bayes: Multinomial and Gaussian. Gaussian NB uses the
normal distribution for continuous attributes because it models the number of occurrences
or a count, which is why it is used for classification models regarding qualitative data [59].
Despite normality assumptions, Gaussian NB works well, especially on large problems,
because of Naive Bayes’ implementation of parametric learning and the simplicity of its
derived decision boundary.

3.8. XGBoost

XGBoost is an improved version of an earlier modeling system called gboost. XGBoost
greatly improves on gboost. XGBoost is particularly important because it allows for the use
of multiple processors during execution. This makes it feasible to train XGBoost models,
even for very large machine learning problems in relatively short periods of time. The term
XGBoost is short for eXtreme Gradient Boosting [60].

The basic idea behind gboost and XGBoost is gradient boosting. In gradient boosting,
we first fit a simple model to our data. We then use the residual, i.e., the actual observed
raw data minus the predicted values from the simple model as inputs to then fit another
model. We then use the residuals from both of the first two fits as inputs to another model,
and we repeat the process, using residuals from the previous model fit as inputs for the
next model fit [61]. This procedure keeps going, often through the use of hundreds, even
thousands of model fits. In the end, we add the predictions gained by the very simple
model to each of the model predictions gained through the process. This gives us our
final model output. The system is called gradient boosting because positive residuals
get positive weights, while negative residuals get negative weights, with the predictions
tending to slowly converge towards the observed values.

3.9. AdaBoost

AdaBoost stands for Adaptive Boosting, which is a machine learning meta-algorithm.
Essentially, it is a boosting method used to enhance performance by combining multiple
individual ‘weak’ learning models to form a ‘strong’ ensemble. AdaBoost can be used with
other machine learning algorithms and has been used extensively to improve and facilitate
a wide range of attempts at solving real-world problems [62]. In ‘classification’ problems,
AdaBoost typically uses decision trees as the original learner. Then, it chooses the type of
weak classifier (decision tree) as a primary one.

Adaboost is selected for the loop-based attack detection because of its capability to
combine several “weak learners” to create a final prediction. Because of its weight feature
and feature selection, Adaboost works with noisy data and also provides high efficacy in a
complicated environment like the Internet of Things (IoT). Moreover, the main advantage
of Adaboost is its ability to capture the minute features that define the difference in attack
detection probability when compared with normal traffic detection [63]. Adaboost quickly
reduces errors and generates a strong classifier, making it an appropriate solution regarding
the hardware restrictions in an IoT network environment

3.10. Justification of Utilizing the Models

The rationale for employing “Logistic Regression” is its simplicity, interpretability,
and efficiency as a solution for binary classification tasks characterized by a distinct linear
boundary separating attack from normal activity [61]. The rationale for employing “De-
cision Trees” is their capability to manage both qualitative and numerical data, which is
advantageous for identifying distinct patterns of malevolent activity [64]. The “Random
Forest”, as an ensemble method, mitigates overfitting and enhances generalization, hence
facilitating the identification of nuanced and diverse patterns in attack behavior [65]. More-

Sensors 2024, 24, 7534 9 of 22

over, Neural Networks were utilized due to their ability to identify intricate patterns and
correlations, rendering them ideal for detecting advanced, loop-based attacks with non-
linear attributes [66]. The rationale for adopting SVM is its efficacy in delineating classes
with a distinct margin, which is advantageous for binary categorization of normal versus
malevolent activity [67]. Moreover, the rationale for employing the “K-Nearest Neighbors”
algorithm is its ability to identify local anomalies by examining the “neighbors” of IoT
data points, making it suitable for real-time anomaly identification. Another rationale for
employing “Naive Bayes” is its speed and efficiency, making it appropriate for applications
where simplicity and rapid decision-making are essential, such as real-time detection in
resource-constrained IoT devices [68]. The rationale for employing “XGBoost” is in its inte-
gration of boosting and regularization, rendering it highly effective for managing extensive
datasets with numerous features, as typically encountered in IoT data. Ultimately, each of
these algorithms possesses strengths tailored for identifying malicious patterns, utilizing
various factors such as complexity, computing efficiency, or capacity to manage large-scale
data characteristic of IoT contexts [69].

3.11. Computational and Energy Cost Associated to the Models

Typically, other operating metrics related to the models, such as computational and
energy cost are crucial. The simple models like “Logistic Regression” and “Naive Bayes” are
computationally and energy-efficient because they rely on straightforward mathematical
operations. However, moderate complexity models like “Decision Trees” and “K-Nearest
Neighbors” require more resources, especially on large datasets. High complexity models
such as “Neural Networks”, “SVMs (with non-linear kernels)”, and ensemble methods
like “Random Forest” and “XGBoost” are computationally intensive, making them energy-
intensive as well.

The training of these models generally consumes more energy than inference. Models
like KNN, however, reverse linear pattern, as training is merely data storage, but inference
requires calculating distances to all stored data points. Inference cost is relatively low for
linear models (Logistic Regression, Naive Bayes), where each prediction involves simple
calculations. In contrast, KNN and some deep learning models can be costly at inference
due to the need for extensive computation.

Another important aspect of this lies with “Large Datasets”. Algorithms like XGBoost
and Random Forest are well-suited for large datasets but become computationally demand-
ing. Conversely, Naive Bayes remains efficient with large datasets. High-dimensional data
can make even simple models like Logistic Regression and SVM computationally expensive
due to the increase in mathematical operations required for each feature.

Some models (e.g., Neural Networks, XGBoost) benefit from specialized hardware like
GPUs or TPUs, which can speed up training and reduce overall runtime. However, these
accelerators consume more energy than CPUs, potentially leading to high energy costs
despite faster computation. Energy costs become important when deploying models in
resource-constrained environments (e.g., edge devices, mobile applications). Lightweight
models (Logistic Regression, Naive Bayes, simple Decision Trees) are generally preferred
for these applications, while energy-intensive models (Neural Networks, SVMs with non-
linear kernels) are better suited for high-performance computing environments where
energy resources are less constrained.

4. Research Methodology

This study’s experimental technique follows the conventional framework for machine
learning experimental analysis. First, the research analyzes the models and do any necessary
pre-processing. Afterwards, the model was assessed. In this part, we detail the measures
that were used to evaluate the model.

Sensors 2024, 24, 7534 10 of 22

4.1. The Architectural Layer of the IoT and Loops in the System

The IoT has many architecture, however, the common ones are three and five-layer
architecture. The three-layer architecture is the most basic type of architecture. “The
perception layer”, “the network layer”, and “the application layer” are the three layers of
the architecture. While the three-layer design’s “perception layer” and “application layer”
are still present in the five-layer architecture, three additional architectural components—
the “business layer”, “processing layer”, and “transport layer”—are added. Loop refers
to the concept of iterations. Precisely, a loop is a repeating statement within a group of
associated statements. The repeated behavior is usually a block of code encapsulating
contents that may change in value. When the associated states change to specific conditions,
infinite loops may occur. Loops are a common phenomenon in computer systems. Loops
often lead to service resource exhaustion. Looping is the main concern for an IoT network
as it perpetuates the occurrence of identical packets in the network. That is why this current
research set out to model a detection of Loop-based attack in IoT.

4.2. System Model

The system model where a loop-based attack can be executed comprise various com-
ponents, including Interface and Applications, Backbone Controllers, Gateways, and Cloud
Regions (see Figure 1). This architecture showcases a potential loop-based attack on an IoT
system. The nature of the problem that would lead to the attacks lies with the fact that IoT
devices and their connected components (such as controllers and gateways) often lack ro-
bust error-handling mechanisms, making them vulnerable to loop-based attacks. Attackers
can inject malicious loops into these systems, causing components to process repetitive
tasks indefinitely. Hence, the impact on “System Resources” comes from a continuous
execution of loops consuming the computational and memory resources of each component.
When multiple devices enter a loop simultaneously, it overwhelms the network and central
components (e.g., gateways and cloud), leading to a DoS.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 22

layer”. By exploiting weak security protocols or invalidated input, the attacker injects a
command or code that initiates an infinite loop in the “Temperature Sensor”.

Figure 1. the system model associated with loop-based attack.

The propagation of the Malicious Loop within the “Temperature Sensor” begins
sending continuous, repetitive data or requests due to the loop. Instead of sending valid
temperature readings at intervals, it transmits excessive requests to the next component
in the chain. The temperature sensor’s repetitive loop is detected by the controllers. How-
ever, due to insufficient validation or timeout mechanisms, the controllers start processing
these continuous requests, entering their own loop as they become overloaded by han-
dling the same commands repeatedly.

The controllers forward these repetitive packets to the “Main Gateway”. The gateway
is responsible for managing and routing traffic, and becomes overwhelmed as it handles
the excessive data load from the controllers. As the gateway processes these requests in a
continuous loop, it starts consuming excessive resources, reducing its capacity to handle
legitimate traffic from other devices. From the gateway, the malicious loop propagates to
the Cloud Region. This cloud component, designed for large-scale data processing and
analytics, becomes overburdened by the continuous looped data coming from the gate-
way. The cloud system, while capable of handling large data volumes, may still experi-
ence degraded performance or service disruptions due to the unexpected surge in traffic
caused by the loop.

The Application Interface interacts with users and receives data from the cloud. If the
interface receives repeated data due to the loop, it can display incorrect information or
become unresponsive. The Backbone Controllers and Temperature Sensor serve as points
of entry and propagation for the malicious loop. Vulnerabilities in these components al-
low the attack to initiate and propagate.

The Main Gateway acts as a central router. The gateway’s lack of validation or over-
load prevention mechanisms allows the malicious loop to affect other connected compo-
nents. Finally, the “cloud region” receives and processes the data from the gateway. As
the final destination, it becomes a bottleneck for the excessive traffic caused by the loop,
impacting cloud-based analytics and storage.

4.3. Dataset
Datasets developed by the Czech Technical University in Prague for the purpose of

studying and analyzing malware behavior, with a focus on IoT devices, were adopted for
this study. Specifically, the “CTU-IoT-Malware-Capture-7-1 (“Linux, Mirai”) part of the

Figure 1. The system model associated with loop-based attack.

As seen in the model, a loop injected in one component (such as the Temperature
Sensor) can propagate through controllers and the main gateway to other connected
components, eventually affecting the entire network. The execution of the attacks is
presented in Figure 1. The initiation of malicious Loop in a IoT system starts with the
attacker targeting a vulnerable device, such as a “Temperature Sensor” in the “Backbone
Controllers layer”. By exploiting weak security protocols or invalidated input, the attacker
injects a command or code that initiates an infinite loop in the “Temperature Sensor”.

The propagation of the Malicious Loop within the “Temperature Sensor” begins
sending continuous, repetitive data or requests due to the loop. Instead of sending valid

Sensors 2024, 24, 7534 11 of 22

temperature readings at intervals, it transmits excessive requests to the next component in
the chain. The temperature sensor’s repetitive loop is detected by the controllers. However,
due to insufficient validation or timeout mechanisms, the controllers start processing these
continuous requests, entering their own loop as they become overloaded by handling the
same commands repeatedly.

The controllers forward these repetitive packets to the “Main Gateway”. The gateway
is responsible for managing and routing traffic, and becomes overwhelmed as it handles
the excessive data load from the controllers. As the gateway processes these requests in a
continuous loop, it starts consuming excessive resources, reducing its capacity to handle
legitimate traffic from other devices. From the gateway, the malicious loop propagates to
the Cloud Region. This cloud component, designed for large-scale data processing and
analytics, becomes overburdened by the continuous looped data coming from the gateway.
The cloud system, while capable of handling large data volumes, may still experience
degraded performance or service disruptions due to the unexpected surge in traffic caused
by the loop.

The Application Interface interacts with users and receives data from the cloud. If
the interface receives repeated data due to the loop, it can display incorrect information or
become unresponsive. The Backbone Controllers and Temperature Sensor serve as points
of entry and propagation for the malicious loop. Vulnerabilities in these components allow
the attack to initiate and propagate.

The Main Gateway acts as a central router. The gateway’s lack of validation or overload
prevention mechanisms allows the malicious loop to affect other connected components.
Finally, the “cloud region” receives and processes the data from the gateway. As the final
destination, it becomes a bottleneck for the excessive traffic caused by the loop, impacting
cloud-based analytics and storage.

4.3. Dataset

Datasets developed by the Czech Technical University in Prague for the purpose of
studying and analyzing malware behavior, with a focus on IoT devices, were adopted for
this study. Specifically, the “CTU-IoT-Malware-Capture-7-1 (“Linux, Mirai”) part of the
dataset that captured for a duration of 24 h, with 11,000,000 packets, was selected for this
study (see Table 1) [70].

Table 1. Dataset labels distribution.

Label Flows

Benign 75,955

C&C-HeartBeat 5778

DDoS 39,584

Okiru 11,333,397

With an emphasis on a botnet attack utilizing the Mirai malware, this particular
dataset contains both benign and malicious traffic. The communication protocol used for
the dataset includes TCP, UDP, and ICMP. In IoT botnet traffic, there are also protocols
related to HTTP, DNS, or custom protocols used by Mirai malware.

Within the pcap file of the dataset, a loop mechanism was studied and data associ-
ated with the loop were extracted. The typical scenario associated with the extraction
lasts just 10 s, and about 100,000 packets are obtained from the dataset within a certain
transmission session. Although some entries are classified as benign, an analysis of the
transmission sessions reveals many entries, with more than 10,000 packets per second. A
total of 1,686,291 packets were transmitted during the 24-h time frame over the 4 days.
Typically, the extraction of the loop within the transmission sessions lies in the use of the
identifier header in the packet captured, which is a relatively unique sequential number,
and duplicates should not occur. If they do, then a loop happens. However, in extensive

Sensors 2024, 24, 7534 12 of 22

datasets, this number may be reused, but still not for a large period of time. The research re-
ceived many packets exhibiting identical IP identifying numbers, sources, and destinations.
Hence, all these data were gathered.

The dataset was categorized under two classes: “Class 0: Represents normal traffic or
device behavior (non-attack)”. “Class 1: Represents malicious traffic or compromised device
behavior (attack)”. This is different from the original “CTU-IoT-Malware-Capture-7-1
(“Linux, Mirai”) for the fact that their original labelling was “Anomaly” or “Benign”.
However, for this research, some of the malicious labels found in the dataset do not involve
loops. Hence, for this current research they are categorized under benign. Hence, the
anomalies or malicious behavior in IoT networks for this research refer to loops, where
Class 0 and Class 1 refer to the two possible output labels or categories that a model is
trying to distinguish between loops and the normal. As a result, Class 0 typically refers to
the negative class or the “normal” class. This means that instances classified as Class 0 are
deemed to belong to the benign or non-malicious group of loops, whereas Class 1 refers to
the positive class or the “anomalous/malicious” class loops. This class typically represents
instances where the model detects an anomaly or threat of loops attack.

The dataset is divided into two partitions: training data and testing data. A total of
80% of the data are allocated for training the model, while 20% are reserved for assessing
the model’s performance. The splitting of the dataset guarantees that the assessment is
conducted on data that the model has not previously encountered. Finally, all the features
are normalized to a comparable scale to guarantee that no single feature predominates over
the others.

4.4. Performance Metrics

If one is comparing the predictive ability of multiple models, performance metrics
serve as the lens that lets us understand how the models compare. Additionally, these
metrics let us understand what is working in a particular model and how to make it
better. This breaks down such performance metrics in machine learning: namely accuracy,
precision, recall, F1-score, area under curve (AUC), mean absolute error, mean squared
error, and the coefficient of determination.

Accuracy can basically be defined as the ratio of the number of correct predictions over
the total number of predictions. Accuracy is one of the most straightforward performance
metrics in machine learning. It simply measures the proportion of correct predictions made
by a model. Mathematically, accuracy is the ratio of the number of correct predictions to
the total number of predictions as shown in Equation (8):

Accuracy =
TP + TN

TP + TN+FP + FN
(8)

where TP is “True Positive”, TN is “True Negative”, FP “False Positive”, and FN
“False Negative”.

Precision is another important metric used to measure a model’s accuracy. Precision
refers to the accuracy of the positive predictions that it makes. The ratio that precision
represents is calculated as true positives divided by the sum of true positives and false
positives. This metric is very useful in cases where making positive predictions has very
bad outcomes. The formula to calculate precision is presented in Equation (9):

Precision =
TP

TP + FP
(9)

Recall is one of the most critical indicators of how effectively a model is able to identify
relevant instances. Unlike precision, which focuses on the response aspect of suggesting
only relevant instances, recall concentrates on the technique aspect of not leaving any

Sensors 2024, 24, 7534 13 of 22

relevant instance behind. Mathematically, it can be written as the proportion between the
true positives and the sum of true positives with the false negatives (see Equation (10)):

Recall =
TP

TP + FN
(10)

F1 score is a measure of how accurate a model is, as well as a measure of the reliability
of the model. It mixes both recall and precision (See Equation (11)). F1 score is the harmonic
mean of precision and recall.

F1-score =
TP

TP+ 1
2 (FP + FN)

(11)

5. Experimentation and Presentation of the Results

All models deployed in this study have been initialized, as detailed in Section 3.
Developing the code required to create and configure various models aimed at predicting
the occurrence of Unusual Repetitive Patterns of Behavior Indicative of a Loop-based
Attack in IoT is an essential phase in the initialization of machine learning models. Both
the training and the prediction were addressed. The training data, comprising the subset of
“CTU-IoT-Malware-Capture-7-1” already allocated for model instruction, are employed in
the training of each specific model.

XGBoost (0.9251) and Logistic Regression (0.9104) have the highest accuracy scores,
which is typical for these models, as they often perform well on structured datasets. Ran-
dom Forest, AdaBoost, and SVM have slightly lower accuracy, which is consistent with how
they might behave on binary classification problems, particularly if there is class imbalance
or noise in the data (see Table 2).

Table 2. Performance values for all the model.

Model Accuracy Precision
(Class 0)

Precision
(Class 1)

Recall
(Class 0)

Recall
(Class 1)

F1-Score
(Class 0)

F1-Score
(Class 1)

Logistic Regression 0.9104 0.8978 0.9125 0.8617 0.9485 0.7234 0.8918

Random Forest 0.8911 0.9108 0.9014 0.7652 0.9698 0.7439 0.9542

XGBoost 0.9251 0.9419 0.9657 0.8737 0.9672 0.7657 0.9624

SVM 0.8857 0.8194 0.8969 0.8719 0.8715 0.7412 0.8614

Neural Network 0.8757 0.8527 0.8987 0.8753 0.8982 0.7455 0.8895

K-Nearest Neighbors 0.8107 0.8414 0.8149 0.7984 0.9178 0.7085 0.8925

Decision Tree 0.8714 0.9014 0.8995 0.8679 0.9542 0.7074 0.8919

Naive Bayes 0.8347 0.7348 0.8978 0.8975 0.8849 0.7272 0.8985

AdaBoost 0.8821 0.8736 0.8784 0.7892 0.9541 0.7421 0.8938

In most cases, precision for Class 1 (the minority class, assuming this represents the
malicious class) is higher than for Class 0, which suggests that the models are better at
identifying the attack class. However, XGBoost stands out with notably high precision
values for both classes (0.9419 for Class 0 and 0.9657 for Class 1), which is expected as
XGBoost often excels in handling complex classification problems with many features.

The recall values vary, with most models having higher recall for Class 1. This suggests
that the models are prioritizing identifying malicious activity over benign activity, which is
a common trade-off in anomaly detection scenarios. For example, the Random Forest has a
recall of 0.9698 for Class 1, showing that it is highly effective at capturing attacks, though it
has lower recall for Class 0 (0.7652).

The F1-score (Class 1) is notably higher for models like XGBoost (0.9624) and Random
Forest (0.9542), which aligns with their strong performance in both precision and recall for

Sensors 2024, 24, 7534 14 of 22

detecting attacks. This suggests these models are well suited for balancing false positives
and false negatives in IoT security or other anomaly detection applications.

On the other hand, Logistic Regression and Decision Trees also perform well, but
their F1-scores are slightly lower than ensemble methods like XGBoost and Random Forest,
as expected.

Logistic Regression: Performs well with an accuracy of 0.9104, which is strong for a
simple linear model. However, the F1-scores indicate that this model may struggle slightly
with Class 1 compared to more complex models.

XGBoost: as expected, XGBoost achieves the best performance across most metrics
(accuracy, precision, recall, and F1-score), showing its strength in handling large, feature-
rich datasets and complex decision boundaries.

SVM: SVM shows moderate performance in terms of accuracy (0.8857) and precision
for Class 1 (0.8969). This is consistent with SVM’s tendency to perform well on linear
separable data but sometimes struggle with complex, non-linear patterns.

K-Nearest Neighbors (KNN): with a lower accuracy (0.8107) and F1-scores, KNN
tends to be less efficient in larger datasets or when there is significant noise, which might
explain its relatively lower performance.

Naive Bayes: This algorithm performs reasonably well given its simplicity, though its
accuracy and precision are lower than more advanced models, reflecting its limitation in
handling feature dependencies.

These results are largely consistent with how the models typically perform, especially
in binary classification tasks like anomaly detection in IoT. XGBoost and Random Forest are
often superior in such scenarios due to their ability to handle complex data patterns and
avoid overfitting. However, simpler models like Logistic Regression and Decision Trees
still perform reasonably well.

Figure 2 displays the Receiver Operating Characteristic (ROC) curve for each model
based on the supplied data. Each curve illustrates the trade-off between the true positive
rate (sensitivity) calculated mathematically by Equation (12):

True Postive Rate =
TP

TP + FN
(12)

where TP is “True Positive” and TN is “True Negative”. The false positive rate for each
model, offering insight into their categorization efficacy, is also calculate by Equation (13):

False Postive Rate =
FP

FN + TN
(13)

The AUC is specified in the legend for each model, indicating their overall efficacy in
differentiating across classes. It is measured by Equation (14):

AUC =
Number of Concordant Pairs

Total Number of Positive − Negative Pairs
(14)

AUC = 1.0: complete class distinction. AUC < 1.0 (0.5): shows a high capacity for dis-
crimination. The blue dotted line in a ROC curve represents the “line of no discrimination”.
This line, which runs at a 45-degree angle from the bottom left to the top right (diagonal
line), corresponds to a model that makes random predictions, with an AUC of 0.5. It serves
as a baseline for comparison. Models with curves above this line have predictive power,
while curves at or below it indicates poor or random performance”

XGBoost AUC ≈ 0.92 demonstrates excellent discriminative ability, effectively
distinguishing between normal and malicious activities, whereas the Decision Tree’s
AUC ≈ 0.75 demonstrates the lowest performance among the models, suggesting overfit-
ting or limited ability to capture complex patterns.

Sensors 2024, 24, 7534 15 of 22

Sensors 2024, 24, x FOR PEER REVIEW 15 of 22

The AUC is specified in the legend for each model, indicating their overall efficacy
in differentiating across classes. It is measured by Equation (14): AUC =

Number of Concordant Pairs Total Number of Positive-Negative Pairs (14)

AUC = 1.0: complete class distinction. AUC < 1.0 (0.5): shows a high capacity for dis-
crimination. The blue dotted line in a ROC curve represents the “line of no discrimina-
tion”. This line, which runs at a 45-degree angle from the bottom left to the top right (di-
agonal line), corresponds to a model that makes random predictions, with an AUC of 0.5.
It serves as a baseline for comparison. Models with curves above this line have predictive
power, while curves at or below it indicates poor or random performance”

XGBoost AUC ≈ 0.92 demonstrates excellent discriminative ability, effectively distin-
guishing between normal and malicious activities, whereas the Decision Tree’s AUC ≈
0.75 demonstrates the lowest performance among the models, suggesting overfitting or
limited ability to capture complex patterns.

Figure 2. The AUC distribution of the performance of the model before optimization.

Based on the ROC-AUC Scores, XGBoost stands out as the best-performing model,
demonstrating the highest ability to distinguish between normal and malicious activities
in IoT contexts. Its integration of boosting and regularization techniques allows it to han-
dle extensive datasets with numerous features effectively. However, AdaBoost and Ran-
dom Forest also perform exceptionally well, making them reliable choices for real-time
anomaly detection in IoT environments.

The research further considers Fine-Tuning hyperparameter optimization to enhance
model performance. Cross-Validation was implemented to ensure model generalization.
The results from the hyperparameter tuning using GridSearchCV show a noticeable im-
provement in model performance across various metrics, especially Cross-Validation Ac-
curacy, Test Accuracy, and other performance metrics such as Precision, Recall, and ROC-

Figure 2. The AUC distribution of the performance of the model before optimization.

Based on the ROC-AUC Scores, XGBoost stands out as the best-performing model,
demonstrating the highest ability to distinguish between normal and malicious activities in
IoT contexts. Its integration of boosting and regularization techniques allows it to handle
extensive datasets with numerous features effectively. However, AdaBoost and Random
Forest also perform exceptionally well, making them reliable choices for real-time anomaly
detection in IoT environments.

The research further considers Fine-Tuning hyperparameter optimization to enhance
model performance. Cross-Validation was implemented to ensure model generalization.
The results from the hyperparameter tuning using GridSearchCV show a noticeable im-
provement in model performance across various metrics, especially Cross-Validation Accu-
racy, Test Accuracy, and other performance metrics such as Precision, Recall, and ROC-AUC
score (see Table 3). GridSearchCV is a plugin obtained from Python library scikit-learn,
through “import GridSearchCV” and is used for hyperparameter tuning.

Table 3. Performance after fine tuning the model.

Model Cross-Validation
Accuracy

Test
Accuracy

Precision
(Class 0)

Precision
(Class 1)

Recall
(Class 0)

Recall
(Class 1)

ROC-AUC
Score

Logistic Regression 0.9507 0.8153 0.7571 0.8135 0.7262 0.9521 0.9131

Random Forest 0.9816 0.8701 0.8973 0.8751 0.7617 0.9603 0.9037

XGBoost 0.9885 0.8701 0.8961 0.8722 0.7771 0.9414 0.9207

SVM 0.9541 0.8427 0.8374 0.8649 0.7421 0.9423 0.9122

Neural Network 0.9542 0.8564 0.7871 0.8945 0.8153 0.9043 0.9037

K-Nearest Neighbors 0.9337 0.7742 0.7155 0.8423 0.7123 0.9033 0.8161

Sensors 2024, 24, 7534 16 of 22

Table 3. Cont.

Model Cross-Validation
Accuracy

Test
Accuracy

Precision
(Class 0)

Precision
(Class 1)

Recall
(Class 0)

Recall
(Class 1)

ROC-AUC
Score

Decision Tree 0.9747 0.8279 0.7991 0.8531 0.7912 0.9213 0.7477

Naive Bayes 0.8856 0.8153 0.6971 0.8748 0.7819 0.8413 0.8748

AdaBoost 0.9987 0.8427 0.8349 0.8743 0.7759 0.9433 0.9165

Logistic Regression has shown a Cross-Validation Accuracy as high as 0.9507, but the
Test Accuracy dropped to 0.8153, indicating potential overfitting. Precision for Class 1 is
solid (0.8135), and Recall for Class 1 is particularly high (0.951), suggesting that the model
is effective at identifying true positives (attacks), although some true negatives might
be misclassified. The ROC-AUC Score is strong at 0.9131, demonstrating good overall
discriminative ability. Both Cross-Validation Accuracy (0.9816) and Test Accuracy (0.8701)
are high, reflecting that the model generalizes well. Precision and Recall for Class 1 are
excellent (0.8751 and 0.963, respectively), showing its capability to handle attack detection
effectively. The ROC-AUC Score is 0.9037, indicating that this model performs reliably
across thresholds.

XGBoost achieves a high Cross-Validation Accuracy of 0.9885 and Test Accuracy
of 0.8701, indicating consistency in performance. Precision (Class 1: 0.8722) and Recall
(Class 1: 0.944) are strong, though slightly lower than Random Forest in precision. The ROC-
AUC Score (0.9207) is among the highest, emphasizing its ability to manage imbalanced
datasets with many features effectively.

SVM shows solid performance with Cross-Validation Accuracy (0.9541) and Test
Accuracy (0.8427). Precision (0.8649 for Class 1) and Recall (0.943 for Class 1) reflect that
it handles classification well, though it may misclassify more negative instances (Class 0).
The ROC-AUC Score (0.9122) indicates overall strong performance.

Neural Network shows a Cross-Validation Accuracy (0.9542) and Test Accuracy
(0.8564) show that the neural network is robust but might require additional tuning for
more generalization. Precision for Class 1 (0.8945) and Recall (0.903) indicate it is good at
detecting attacks, though Precision for Class 0 is relatively lower. The ROC-AUC Score is
0.9037, which is competitive, showing that it performs well on overall classification tasks.

KNN underperforms compared to other models, with the lowest Test Accuracy (0.7742)
and ROC-AUC Score (0.8161). Precision and Recall for Class 0 and Class 1 suggest that
KNN is less reliable for detecting attacks and suffers from sensitivity to large datasets
and noise.

Decision Tree shows a Cross-Validation Accuracy is relatively high at 0.9747, but Test
Accuracy (0.8279) suggests some overfitting. Recall for Class 1 (0.923) is solid, though
Precision for Class 0 (0.7991) suggests room for improvement in detecting non-attacks. ROC-
AUC Score is 0.7477, indicating that Decision Tree is less effective than ensemble methods.

Naive Bayes shows a Cross-Validation Accuracy (0.8856) is reasonable, but the Test
Accuracy (0.8153) shows that Naive Bayes struggles compared to other models. Precision
(0.8748 for Class 1) and Recall (0.843 for Class 1) are acceptable, but overall performance is
lower due to the model’s simplicity. A ROC-AUC Score of 0.8748 reflects a balanced but
less effective performance compared to complex models like Random Forest and XGBoost.

AdaBoost shows Cross-Validation Accuracy is extremely high (0.9987), and a Test
Accuracy of 0.8427 suggests AdaBoost generalizes well, although not as well as Random
Forest or XGBoost. A Precision of 0.8743 and Recall of 0.943 for Class 1 show that AdaBoost
performs strongly on attack detection. A ROC-AUC Score of 0.9165 highlights its reliability
in distinguishing between classes.

XGBoost and Random Forest are the standout models, offering the highest perfor-
mance metrics across precision, recall, and ROC-AUC scores, making them the most reliable
for anomaly detection in IoT or security applications. Logistic Regression and SVM provide
solid performance but may require additional fine-tuning to handle non-linear and complex

Sensors 2024, 24, 7534 17 of 22

patterns found in security data. Naive Bayes and KNN are outperformed by more complex
models, showing their limitations in handling more intricate or noisy datasets.

The notable improvements XGBoost and AdaBoost have the highest AUC (0.92),
indicating they have the best trade-off between true positive and false positive rates.
XGBoost consistently shows high AUC values in both the current and previous results (see
Figure 3). However, the precision and recall for Class 1 have slightly improved, indicating
that tuning parameters have resulted in better performance, especially in handling false
positives and false negatives. Logistic Regression, SVM, and Random Forest also perform
well with AUC scores around 0.91 and 0.90. K-Nearest Neighbors and Decision Tree have
relatively lower AUC scores, indicating they may not perform as well in distinguishing
between classes compared to the other models. These curves visually represent how well
each model balances sensitivity (True Positive Rate) and specificity (False Positive Rate),
with higher curves (closer to the top left) indicating better model performance

Sensors 2024, 24, x FOR PEER REVIEW 17 of 22

AdaBoost shows Cross-Validation Accuracy is extremely high (0.9987), and a Test
Accuracy of 0.8427 suggests AdaBoost generalizes well, although not as well as Random
Forest or XGBoost. A Precision of 0.8743 and Recall of 0.943 for Class 1 show that Ada-
Boost performs strongly on attack detection. A ROC-AUC Score of 0.9165 highlights its
reliability in distinguishing between classes.

XGBoost and Random Forest are the standout models, offering the highest perfor-
mance metrics across precision, recall, and ROC-AUC scores, making them the most reli-
able for anomaly detection in IoT or security applications. Logistic Regression and SVM
provide solid performance but may require additional fine-tuning to handle non-linear
and complex patterns found in security data. Naive Bayes and KNN are outperformed by
more complex models, showing their limitations in handling more intricate or noisy da-
tasets.

The notable improvements XGBoost and AdaBoost have the highest AUC (0.92), in-
dicating they have the best trade-off between true positive and false positive rates.
XGBoost consistently shows high AUC values in both the current and previous results
(see Figure 3). However, the precision and recall for Class 1 have slightly improved, indi-
cating that tuning parameters have resulted in better performance, especially in handling
false positives and false negatives. Logistic Regression, SVM, and Random Forest also
perform well with AUC scores around 0.91 and 0.90. K-Nearest Neighbors and Decision
Tree have relatively lower AUC scores, indicating they may not perform as well in distin-
guishing between classes compared to the other models. These curves visually represent
how well each model balances sensitivity (True Positive Rate) and specificity (False Posi-
tive Rate), with higher curves (closer to the top left) indicating better model performance

Figure 3. AUC performance after fine tuning the model.

6. Discussion and Future Directions
In this paper, it was established that in an IoT attack dataset, a loop-based attack can

be extracted in order to explore the suitable machine learning model that is deemed fit to
detect them. The central area of this research focuses on the synthesizing of dataset meth-
ods to effectively and efficiently detect loop-based malicious attacks in IoT networks. This

Figure 3. AUC performance after fine tuning the model.

6. Discussion and Future Directions

In this paper, it was established that in an IoT attack dataset, a loop-based attack can
be extracted in order to explore the suitable machine learning model that is deemed fit to
detect them. The central area of this research focuses on the synthesizing of dataset methods
to effectively and efficiently detect loop-based malicious attacks in IoT networks. This is
necessary based on the fact that loop-based IoT attacks over the last 10 years (2014–2024)
were indicated to have a significant increase (see Figure 4) [71].

The academic community is aggressively tackling the growing threat of loop-based
attacks and other vulnerabilities in the Internet of Things (IoT) through a variety of tactics,
with an emphasis on both theoretical developments and practical implementations. That is
why this current research first analyzes the existence and working mechanisms of loops in
IoT network clusters, which leads to resource-starved nodes in the network.

Sensors 2024, 24, 7534 18 of 22

Sensors 2024, 24, x FOR PEER REVIEW 18 of 22

is necessary based on the fact that loop-based IoT attacks over the last 10 years (2014–2024)
were indicated to have a significant increase (see Figure 4) [71].

Figure 4. The frequencies of loop-based IoT attacks.

The academic community is aggressively tackling the growing threat of loop-based
attacks and other vulnerabilities in the Internet of Things (IoT) through a variety of tactics,
with an emphasis on both theoretical developments and practical implementations. That
is why this current research first analyzes the existence and working mechanisms of loops
in IoT network clusters, which leads to resource-starved nodes in the network.

The results of this study highlight that, within a known dataset that is intended to
measure malicious intent, loop-based attack signatures can be derived. The importance of
this lies in the fact that Loop-based attacks are very effective in causing mismanagement
problems in the IoT environment as they shape the behavior of the infected IoT device by
repeating actions. The repetition of actions can be used to make the IoT device generate
fake sensor or feedback data to change its behavior or to reconnect with the Command
and Control server or peer IoT devices for possible updates. Loop-based attacks can be
implemented by using various repetitive actions, which change the behavior of the IoT
device and force it to perform activities causing insecurity in the IoT systems by embed-
ding it into the normal behavior of the IoT devices. A deep-dive analysis of repetitive
actions can create an understanding of these attacks’ potential contribution to causing in-
convenience in the IoT space and finding out their similarities or differences, if any. This
repetitive action consists of malicious commands that are redirected to the IoT device us-
ing stolen or implanted identity that is not supposed to be directed to by the user of the
IoT device.

Another important implication of this research lies with one of the features of loop-
based malicious attacks. That is, sending a fake message to the victim system continu-
ously. This fake message is then able to manipulate the system to make entirely incorrect
decisions. Critical to this situation lies with an intruder in a home automation system who
sends fake data so that power-hungry devices are started. In a city-scale IoT system, this
can potentially damage part of the existing critical infrastructure. In computers, the usual
technique used to achieve a computer operating in an infinite-state event loop is by redi-
recting its execution point to the beginning of an instruction or to an unexpected memory
address to start execution of an unrelated set of machine instructions. In IoT systems, at-
tackers with deep technical knowledge of the network layer, communication protocol

Figure 4. The frequencies of loop-based IoT attacks.

The results of this study highlight that, within a known dataset that is intended to
measure malicious intent, loop-based attack signatures can be derived. The importance of
this lies in the fact that Loop-based attacks are very effective in causing mismanagement
problems in the IoT environment as they shape the behavior of the infected IoT device by
repeating actions. The repetition of actions can be used to make the IoT device generate
fake sensor or feedback data to change its behavior or to reconnect with the Command
and Control server or peer IoT devices for possible updates. Loop-based attacks can be
implemented by using various repetitive actions, which change the behavior of the IoT
device and force it to perform activities causing insecurity in the IoT systems by embedding
it into the normal behavior of the IoT devices. A deep-dive analysis of repetitive actions can
create an understanding of these attacks’ potential contribution to causing inconvenience
in the IoT space and finding out their similarities or differences, if any. This repetitive
action consists of malicious commands that are redirected to the IoT device using stolen or
implanted identity that is not supposed to be directed to by the user of the IoT device.

Another important implication of this research lies with one of the features of loop-
based malicious attacks. That is, sending a fake message to the victim system continuously.
This fake message is then able to manipulate the system to make entirely incorrect decisions.
Critical to this situation lies with an intruder in a home automation system who sends fake
data so that power-hungry devices are started. In a city-scale IoT system, this can potentially
damage part of the existing critical infrastructure. In computers, the usual technique used to
achieve a computer operating in an infinite-state event loop is by redirecting its execution
point to the beginning of an instruction or to an unexpected memory address to start
execution of an unrelated set of machine instructions. In IoT systems, attackers with
deep technical knowledge of the network layer, communication protocol characteristics,
application layer credentials, and sensor message structure are able to create a fake IoT
message that is indistinguishable from a true message. The results of this research offer a
solution to prevent these scenarios.

This research’s impacts on the theory revealed that Loop-based attacks that can cause
a range of disruptions to the targeted or interconnected IoT systems, both in terms of
reliability and performance, which can be detected. Such attacks, if undetected, can
cause an immediate and complete or partial failure of the system. This usually has an
impact on the quality of service provided by the system or the cloud-based components.
The impacts have also been evaluated for datasets especially focused on a deterministic
dependence between the right side of the computational matrix and some specific IoT
building indicators.

Sensors 2024, 24, 7534 19 of 22

This research finally compares the proposed method with some existing detection
frameworks and presented the comparative findings in Table 4. The best-performing paper
from the previous studies in terms of Accuracy, Precision, Recall, and F1 Score is the work
by Brindha Devi et al. [30] with an Accuracy: 95%, Precision: 94%, Recall: 93%, and F1 Score:
93.5%. The optimized learning model in this study achieves superior performance metrics,
indicating its effectiveness in detecting and mitigating IoT attacks. The high precision and
recall suggest that the model can reliably distinguish between normal and malicious traffic,
minimizing false positives and negatives. This makes the system particularly valuable
for real-time applications in IoT environments where accurate and timely threat detection
is critical to maintaining system functionality and security. When comparing the best-
performing study in terms of accuracy, precision, recall, and F1-score, this current research
outperforms the previous research studies with the “XGBoost” model.

Table 4. The Comparative performance measurement.

Source Dataset Model Accuracy Precision Recall F1 Score

[30] IoT traffic and attack datasets Optimized Deep Learning 0.9521 0.9432 0.9303 0.9351

[31] IoT sensor datasets Unsupervised Learning 0.9132 0.9001 0.8901 0.8952

[32] IoT routing datasets DAIR-MLT 0.8912 0.8821 0.8703 0.8751

[33] Edge computing IoT datasets Reinforcement Learning 0.9301 0.9221 0.9123 0.9150

This study Custom IoT Dataset XGBoost 0.9885 0.9657 0.9672 0.9624

7. Conclusions

Many consumer, industrial, and military applications use the technology known as
the Internet of Things (IoT) extensively. The Internet of Things, on the other hand, presents
possible security weaknesses. It is unfortunate that the conventional defense system is not
capable of dealing with this specific danger. Given the significant risk of breach that Internet
of Things devices face, it would be prudent to consider the attack detection component.
On the other hand, the intrinsic limits of the Internet of Things (IoT), which include
battery life, sensor capabilities, and processing power, frequently render the commonly
used detection methods inefficient. Examples of these methods include signature-based
detection and anomaly-based detection. In this work, we discovered loop cases from the
transmission session dataset of “CTU-IoT-Malware-Capture-7-1”, labeled as “Linux, Mirai”,
and constructed a loop-based detection machine learning algorithm. This research project
utilized a total of nine different machine learning models to demonstrate detection through
the examination of loop patterns in datasets. According to the findings of this study, the
XGBoost model is capable of achieving exceptional detection performance, as evidenced
by its “Accuracy: 98.85%”, “Precision: 96.57% (Class 1)”, “Recall: 96.72% (Class 1)”, and
“F1-Score: 96.24%”. Because the XGBoost model performed exceptionally well across all
criteria, it is clear that it is capable of managing enormous datasets that are associated with
the Internet of Things. Its high degree of accuracy and substantial generalization capability
enable it to detect sophisticated and diversified patterns of harmful activity in Internet of
Things networks. In addition, its precision and recall metrics provide further evidence of
its effectiveness in distinguishing between attack and normal operations. As a result, it
reduces the possibility of false positives and negatives, making it an excellent option for
real-time Internet of Things threat detection.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be shared on demand.

Conflicts of Interest: The author declares no conflicts of interest.

Sensors 2024, 24, 7534 20 of 22

References
1. Imran, M.A.; Zoha, A.; Zhang, L.; Abbasi, Q.H. Grand challenges in IoT and sensor networks. Front. Commun. Netw. 2020,

1, 619452. [CrossRef]
2. Al-Hadhrami, Y.; Hussain, F.K. DDoS attacks in IoT networks: A comprehensive systematic literature review. World Wide Web

2021, 24, 971–1001. [CrossRef]
3. Tahsien, S.M.; Karimipour, H.; Spachos, P. Machine learning-based solutions for security of Internet of Things (IoT): A survey.

J. Netw. Comput. Appl. 2020, 161, 102630. [CrossRef]
4. Mishra, N.; Pandya, S. Internet of Things applications, security challenges, attacks, intrusion detection, and future visions:

A systematic review. IEEE Access 2021, 9, 59353–59377. [CrossRef]
5. Daly, M.R.; Michael, K. For the Internet of Things, the Cost of Cheap Will Be Steep; VentureBeat: San Francisco, CA, USA, 2015;

Available online: https://venturebeat.com/mobile/for-the-internet-of-things-the-cost-of-cheap-will-be-steep/ (accessed on 22
February 2024).

6. Alansari, Z.; Anuar, N.B.; Kamsin, A.; Soomro, S.; Belgaum, M.R.; Miraz, M.H.; Alshaer, J. Challenges of internet of things and big
data integration. In Emerging Technologies in Computing: Proceedings of the First International Conference, iCETiC 2018, London, UK,
23–24 August 2018; Proceedings 1; Springer International Publishing: Cham, Switzerland, 2018; pp. 47–55. [CrossRef]

7. Mittal, M.; Kumar, K.; Behal, S. Deep learning approaches for detecting DDoS attacks: A systematic review. Soft Comput. 2022, 27,
13039–13075. [CrossRef]

8. Hossain, H.M.; Fotouhi, M.; Hasan, R. Towards an analysis of security issues, challenges, and open problems in the Internet
of Things. In Proceedings of the 2015 IEEE World Congress on Services, New York, NY, USA, 27 June–2 July 2015; pp. 21–29.
[CrossRef]

9. Zhao, K.; Ge, L. A survey on the Internet of Things security. In Proceedings of the Ninth International Conference on Computa-
tional Intelligence and Security, Emeishan, China, 14–15 December 2013; pp. 663–666. [CrossRef]

10. Banafa, A. 3 Major Challenges IoT Is Faing; BBVA OpenMind: Bilbao, Spain, 2017; Available online: https://shorturl.at/GR8n1
(accessed on 5 March 2024).

11. Ali, Z.H.; Ali, H.A.; Badawy, M.M. Internet of Things (IoT): Definitions, challenges and recent research directions.
Int. J. Comput. Appl. 2015, 128, 37–47. Available online: https://shorturl.at/eVzgH (accessed on 5 March 2024).

12. Dickson, B. Iot Botnets Might Be the Cybersecurity Industry’s Next Big Worry; IoT Security Foundation: Livingston, UK, 2020;
Available online: https://www.iotsecurityfoundation.org/iot-botnets-might-be-the-cybersecurity-industrys-next-big-worry/
(accessed on 9 August 2024).

13. Zhou, M.; Han, L.; Lu, H. Intrusion detection system for IoT heterogeneous perceptual network. Mob. Netw. Appl. 2020, 26,
1461–1474. [CrossRef]

14. Arshad, J.; Azad, M.A.; Abdeltaif, M.M.; Salah, K. An intrusion detection framework for energy constrained IoT devices. Mech.
Syst. Signal Process. 2020, 136, 106436. [CrossRef]

15. Khan, F.A.; Ibrahim, A.A.; Zeki, A.M. Environmental monitoring and disease detection of plants in smart greenhouse using
internet of things. J. Phys. Commun. 2020, 4, 055008. [CrossRef]

16. Branch, P.; Weinstock, P. Functional Programming for the Internet of Things: A Comparative Study of Implementation of a
LoRa-MQTT Gateway Written in Elixir and C++. Electronics 2024, 13, 3427. [CrossRef]

17. Halder, S.; Ghosal, A.; Conti, M. Efficient physical intrusion detection in IoT: A node deployment approach. Comput. Netw. 2019,
154, 62–75. [CrossRef]

18. Nikolov, N.; Dessalk, Y.D.; Khan, A.Q.; Soylu, A.; Matskin, M.; Payberah, A.H.; Roman, D. Conceptualization and scalable
execution of big data workflows using domain-specific languages and software containers. Internet Things 2021, 16, 100440.
[CrossRef]

19. Streiff, J.; Noah, N.; Das, S. A Call for a New Privacy & Security Regime for IoT Smart Toys. In Proceedings of the 2022 IEEE
Conference on Dependable and Secure Computing (DSC), Edinburgh, UK, 22–24 June 2022; pp. 1–8. [CrossRef]

20. Stellios, I.; Kotzanikolaou, P.; Psarakis, M.; Alcaraz, C.; Lopez, J. A survey of IoT-enabled cyberattacks: Assessing attack paths to
critical infrastructures and services. IEEE Commun. Surv. Tutor. 2018, 20, 3453–3495. [CrossRef]

21. Kumar, S.; Dwivedi, M.; Kumar, M.; Gill, S.S. A comprehensive review of vulnerabilities and AI-enabled defense against DDoS
attacks for securing cloud services. Comput. Sci. Rev. 2024, 53, 100661. [CrossRef]

22. Raza, S.; Wallgren, L.; Voigt, T. SVELTE: Real-time intrusion detection in the Internet of Things. Ad Hoc Netw. 2013, 11, 2661–2674.
[CrossRef]

23. Litoussi, M.; Kannouf, N.; El Makkaoui, K.; Ezzati, A.; Fartitchou, M. IoT security: Challenges and countermeasures.
Procedia Comput. Sci. 2020, 177, 503–508. [CrossRef]

24. Ul Haq, S.; Singh, Y.; Sharma, A.; Gupta, R.; Gupta, D. A survey on IoT & embedded device firmware security: Architecture,
extraction techniques, and vulnerability analysis frameworks. Discov. Internet Things 2023, 3, 17. [CrossRef]

25. Noman, A.M.; Abu-Sharkh, O.M.F. Code injection attacks in wireless-based IoT: A comprehensive review and practical imple-
mentations. Sensors 2023, 23, 6067. [CrossRef]

26. Patel, A.; Roy, S.; Baldi, S. Wide-area damping control resilience towards cyber-attacks: A dynamic loop approach. IEEE Trans.
Smart Grid 2021, 12, 3438–3447. [CrossRef]

https://doi.org/10.3389/frcmn.2020.619452
https://doi.org/10.1007/s11280-020-00855-2
https://doi.org/10.1016/j.jnca.2020.102630
https://doi.org/10.1109/ACCESS.2021.3073408
https://venturebeat.com/mobile/for-the-internet-of-things-the-cost-of-cheap-will-be-steep/
https://doi.org/10.1007/978-3-319-95450-9_4
https://doi.org/10.1007/s00500-021-06608-1
https://doi.org/10.1109/SERVICES.2015.35
https://doi.org/10.1109/CIS.2013.145
https://shorturl.at/GR8n1
https://shorturl.at/eVzgH
https://www.iotsecurityfoundation.org/iot-botnets-might-be-the-cybersecurity-industrys-next-big-worry/
https://doi.org/10.1007/s11036-019-01483-5
https://doi.org/10.1016/j.ymssp.2019.106436
https://doi.org/10.1088/2399-6528/ab90c1
https://doi.org/10.3390/electronics13173427
https://doi.org/10.1016/j.comnet.2019.02.019
https://doi.org/10.1016/j.iot.2021.100440
https://doi.org/10.1109/DSC54232.2022.9888910
https://doi.org/10.1109/COMST.2018.2855563
https://doi.org/10.1016/j.cosrev.2024.100661
https://doi.org/10.1016/j.adhoc.2013.04.014
https://doi.org/10.1016/j.procs.2020.10.069
https://doi.org/10.1007/s43926-023-00045-2
https://doi.org/10.3390/s23136067
https://doi.org/10.1109/TSG.2021.3055222

Sensors 2024, 24, 7534 21 of 22

27. Shang, H.; Zhang, X.; Ye, Z.; Zhao, Q.; Yang, K. Operation loop-based network design model for defense resource allocation with
uncertainty. IEEE Syst. J. 2018, 13, 477–488. [CrossRef]

28. Oruganti, P.S.; Appel, M.; Ahmed, Q. Hardware-in-loop based automotive embedded systems cybersecurity evaluation testbed.
In Proceedings of the Ninth ACM Conference on Data and Application Security and Privacy, Richardson, TX, USA, 27 March
2019; pp. 41–44. [CrossRef]

29. Gupta, P.K.; Singh, N.K.; Mahajan, V. Intrusion detection in the cyber-physical layer of smart grid using intelligent loop-based
artificial neural network technique. Int. J. Eng. 2021, 34, 1250–1256. [CrossRef]

30. Brindha Devi, V.; Ran Jan, N.M.; Sharma, H. IoT attack detection and mitigation with optimized deep learning techniques.
Cybern. Syst. 2024, 55, 1702–1728. [CrossRef]

31. Alangari, S. An unsupervised machine learning algorithm for attack and anomaly detection in IoT sensors. Wirel. Pers. Commun.
2024, 131, 1–25. [CrossRef]

32. Paganraj, D.; Tharun, A.; Mala, C. Dair-mlt: Detection and avoidance of IoT routing attacks using machine learning techniques.
Int. J. Inf. Technol. 2024, 16, 3255–3263. [CrossRef]

33. Kumar, A.; Singh, D. Detection and prevention of DDoS attacks on edge computing of IoT devices through reinforcement learning.
Int. J. Inf. Technol. 2024, 16, 1365–1376. [CrossRef]

34. Ullah, I.; Mahmoud, Q.H. A scheme for generating a dataset for anomalous activity detection in IoT networks. Can. AI 2020,
12109, 508–520. [CrossRef]

35. Hussain, F.; Abbas, S.G.; Pires, I.M.; Tanveer, S.; Fayyaz, U.U.; Garcia, N.M.; Shah, G.A.; Shahzad, F. A two-fold machine learning
approach to prevent and detect IoT botnet attacks. IEEE Access 2021, 9, 163412–163430. [CrossRef]

36. Choudhary, S.; Kesswani, N. Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 datasets using deep learning in IoT.
Procedia Comput. Sci. 2020, 167, 1561–1573. [CrossRef]

37. Haddadi, M.; Caushaj, E.; Bouladour, A.E.; Dhirar, A.N. Cyber attack detection on IoT using machine learning. In Proceedings of
the Second International Conference on Advances in Computing Research (ACR’24), Madrid, Spain, 3–5 June 2024; Lecture Notes
in Networks and Systems. Springer: Cham, Switzerland, 2024; Volume 956, pp. 75–85. [CrossRef]

38. Naseer, S.; Saleem, Y.; Khalid, S.; Bashir, M.K.; Han, J.; Iqbal, M.M.; Han, K. Enhanced network anomaly detection based on deep
neural networks. IEEE Access 2018, 6, 48231–48246. [CrossRef]

39. Bisong, E. Logistic regression. In Building Machine Learning and Deep Learning Models on Google Cloud Platform; Apress: Berkeley,
CA, USA, 2020; pp. 327–340. [CrossRef]

40. Kumar, V.; Kumar, S.; Sarangi, S. Effect of sampling rate on parametric and non-parametric data preprocessing for gearbox fault
diagnosis. J. Vib. Eng. Technol. 2024, 12, 1195–1202. [CrossRef]

41. Khazane, H.; Ridouani, M.; Salahdine, F.; Kaabouch, N. A holistic review of machine learning adversarial attacks in IoT networks.
Future Internet 2024, 16, 32. [CrossRef]

42. El Morr, C.; Jammal, M.; Ali-Hassan, H.; El-Hallak, W. Decision Trees. In Machine Learning for Practical Decision Making;
International Series in Operations Research & Management Science; Springer: Cham, Switzerland, 2022; Volume 334, pp. 102–121.
[CrossRef]

43. Sarang, P. Ensemble: Bagging and Boosting. In Thinking Data Science, The Springer Series in Applied Machine Learning; Springer:
Cham, Switzerland, 2023; pp. 65–83. [CrossRef]

44. Iranzad, R.; Liu, X. A review of random forest-based feature selection methods for data science education and applications.
Int. J. Data Sci. Anal. 2024, 16, 132–145. [CrossRef]

45. McClarren, R.G. Decision Trees and Random Forests for Regression and Classification. In Machine Learning for Engineers; Springer:
Cham, Switzerland, 2021; pp. 56–75. [CrossRef]

46. Hatwell, J.; Gaber, M.M.; Azad, R.M.A. CHIRPS: Explaining random forest classification. Artif. Intell. Rev. 2020, 53, 5747–5788.
[CrossRef]

47. Mienye, I.D.; Swart, T.G.; Obaido, G. Recurrent Neural Networks: A comprehensive review of architectures, variants, and
applications. Information 2024, 15, 517. [CrossRef]

48. Graves, A. Supervised Sequence Labeling with Recurrent Neural Networks; Studies in Computational Intelligence; Springer:
Berlin/Heidelberg, Germany, 2020. [CrossRef]

49. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
50. Mastorocostas, P.; Hilas, C.; Varsamis, D.; Dova, S. A recurrent neural network-based forecasting system for telecommunications

call volume. Appl. Math. Inf. Sci. 2013, 7, 1643–1650. [CrossRef]
51. Krebs, R.; Bagui, S.S.; Mink, D.; Bagui, S.C. Applying Multi-CLASS Support Vector Machines: One-vs.-One vs. One-vs.-All on the

UWF-ZeekDataFall22 Dataset. Electronics 2024, 13, 3916. [CrossRef]
52. Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Support vector machines and support vector regression. In Multi-

variate Statistical Machine Learning Methods for Genomic Prediction; Springer International Publishing: Cham, Switzerland, 2022;
pp. 337–378. [CrossRef]

53. Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbor (KNN) algorithm and
its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [CrossRef]

54. Wang, Z.; Li, Y.; Li, D.; Zhu, Z.; Du, W. Entropy and gravitation-based dynamic radius nearest neighbor classification for
imbalanced problems. Knowl.-Based Syst. 2020, 193, 105474. [CrossRef]

https://doi.org/10.1109/JSYST.2018.2827206
https://doi.org/10.1145/3309171.3309173
https://doi.org/10.5829/ije.2021.34.05b.18
https://doi.org/10.1080/01969722.2022.2145660
https://doi.org/10.1007/s11277-023-10811-8
https://doi.org/10.1007/s41870-024-01794-1
https://doi.org/10.1007/s41870-023-01508-z
https://doi.org/10.1007/978-3-030-47358-7_52
https://doi.org/10.1109/ACCESS.2021.3131014
https://doi.org/10.1016/j.procs.2020.03.367
https://doi.org/10.1007/978-3-031-56950-0_29
https://doi.org/10.1109/ACCESS.2018.2863036
https://doi.org/10.1007/978-1-4842-4470-8_13
https://doi.org/10.1007/s42417-023-00901-z
https://doi.org/10.3390/fi16010032
https://doi.org/10.1007/978-3-031-16990-8_8
https://doi.org/10.1007/978-3-031-02363-7_5
https://doi.org/10.1007/s41060-024-00509-w
https://doi.org/10.1007/978-3-030-70388-2_3
https://doi.org/10.1007/s10462-020-09833-6
https://doi.org/10.3390/info15090517
https://doi.org/10.1007/978-3-642-24797-2
https://doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.12785/amis/070501
https://doi.org/10.3390/electronics13193916
https://doi.org/10.1007/978-3-030-89010-0_9
https://doi.org/10.1038/s41598-022-10358-x
https://doi.org/10.1016/j.knosys.2020.105474

Sensors 2024, 24, 7534 22 of 22

55. Yuan, B.; Luo, X.; Zhang, Z.; Yu, Y.; Huo, H.-W.; Johannes, T.; Zou, X.-D. A novel density-based adaptive K-nearest neighbor
method for dealing with overlapping problems in imbalanced datasets. Neural Comput. Appl. 2021, 33, 4457–4481. [CrossRef]

56. Burkov, A. The Hundred-Page Machine Learning Book, 2nd ed.; Andriy Burkov: Quebec City, QC, Canada, 2023. Available online:
https://themlbook.com (accessed on 13 February 2024).

57. El Morr, C.; Jammal, M.; Ali-Hassan, H.; El-Hallak, W. K-nearest neighbors. In Machine Learning for Practical Decision Making;
Springer: Cham, Switzerland, 2022; pp. 102–121. [CrossRef]

58. Xu, S. Bayesian Naïve Bayes classifiers to text classification. J. Inf. Sci. 2018, 44, 48–59. [CrossRef]
59. Park, S.H.; Fürnkranz, J. Efficient implementation of class-based decomposition schemes for Naive Bayes. Mach. Learn. 2014, 96,

295–309. [CrossRef]
60. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]
61. Korstanje, J. Gradient Boosting with XGBoost and LightGBM. In Advanced Forecasting with Python; Apress: Berkeley, CA, USA,

2021; pp. 193–205. [CrossRef]
62. Schapire, R.E. Explaining adaboost. In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Springer: Berlin/Heidelberg,

Germany, 2013; pp. 37–52. [CrossRef]
63. Wang, W.; Sun, D. The improved AdaBoost algorithms for imbalanced data classification. Inf. Sci. 2021, 563, 358–374. [CrossRef]
64. Jiang, Y.; Lin, H.; Wang, X.; Lu, D. A Technique for Improving the Performance of Naive Bayes Text Classification; Lecture Notes in

Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 196–203. [CrossRef]
65. Kumar, R.; Kaur, J. Random Forest-Based Sarcastic Tweet Classification Using Multiple Feature Collection. In Multimedia Big Data

Computing for IoT Applications; Springer: Berlin/Heidelberg, Germany, 2020; p. 163. [CrossRef]
66. Moldagulova, A.; Sulaiman, R.B. Document Classification Based on KNN Algorithm by Term Vector Space Reduction. In

Proceedings of the 18th International Conference on Control, Automation and Systems (ICCAS), PyeongChang, Republic of
Korea, 17–20 October 2018; pp. 387–391.

67. Nadi, A.; Moradi, H. Increasing the Views and Reducing the Depth in Random Forest. Expert Syst. Appl. 2019, 34, 23–31.
[CrossRef]

68. Mehmood, R.M.; Lee, H.J. Emotion Classification of EEG Brain Signal Using SVM and KNN. In Proceedings of the IEEE
International Conference on Multimedia and Expo Workshops, Turin, Italy, 29 June–3 July 2015. [CrossRef]

69. Pandya, R.; Nadiadwala, S.; Shah, R.; Shah, M. Buildout of Methodology for Meticulous Diagnosis of K-complex in EEG for
Aiding the Detection of Alzheimer’s by Artificial Intelligence. Augment. Hum. Res. 2019, 5, 3. [CrossRef]

70. Parmisano, A.; Garcia, S.; Erquiaga, M.J. A Labeled Dataset with Malicious and Benign IoT Network Traffic; Stratosphere Laboratory:
Praha, Czech Republic, 2020. [CrossRef]

71. Symantec Corporation. Internet Security Threat Report. Various Editions (2014–2023). 2020. Available online: https://www.
symantec.com/security-center/threat-report (accessed on 16 January 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00521-020-05256-0
https://themlbook.com
https://doi.org/10.1007/978-3-031-16990-8_10
https://doi.org/10.1177/0165551516677946
https://doi.org/10.1007/s10994-013-5430-z
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/978-1-4842-7150-6_15
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.1016/j.ins.2021.03.042
https://doi.org/10.1007/978-3-642-23982-3_25
https://doi.org/10.1007/978-981-13-8759-3_5
https://doi.org/10.1016/j.eswa.2019.07.018
https://doi.org/10.1109/ICMEW.2015.7169786
https://doi.org/10.1007/s41133-019-0021-6
https://doi.org/10.5281/zenodo.4743746
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report

	Introduction
	Related Work
	The Architectures of the Models
	Logistic Regression
	Decision Tree
	Random Forest
	Neural Network
	Support Vector Machine (SVM)
	K-Nearest Neighbors
	Naive Bayes
	XGBoost
	AdaBoost
	Justification of Utilizing the Models
	Computational and Energy Cost Associated to the Models

	Research Methodology
	The Architectural Layer of the IoT and Loops in the System
	System Model
	Dataset
	Performance Metrics

	Experimentation and Presentation of the Results
	Discussion and Future Directions
	Conclusions
	References

