Table 2.
Model | Accuracy | Precision (Class 0) |
Precision (Class 1) |
Recall (Class 0) |
Recall (Class 1) |
F1-Score (Class 0) |
F1-Score (Class 1) |
---|---|---|---|---|---|---|---|
Logistic Regression | 0.9104 | 0.8978 | 0.9125 | 0.8617 | 0.9485 | 0.7234 | 0.8918 |
Random Forest | 0.8911 | 0.9108 | 0.9014 | 0.7652 | 0.9698 | 0.7439 | 0.9542 |
XGBoost | 0.9251 | 0.9419 | 0.9657 | 0.8737 | 0.9672 | 0.7657 | 0.9624 |
SVM | 0.8857 | 0.8194 | 0.8969 | 0.8719 | 0.8715 | 0.7412 | 0.8614 |
Neural Network | 0.8757 | 0.8527 | 0.8987 | 0.8753 | 0.8982 | 0.7455 | 0.8895 |
K-Nearest Neighbors | 0.8107 | 0.8414 | 0.8149 | 0.7984 | 0.9178 | 0.7085 | 0.8925 |
Decision Tree | 0.8714 | 0.9014 | 0.8995 | 0.8679 | 0.9542 | 0.7074 | 0.8919 |
Naive Bayes | 0.8347 | 0.7348 | 0.8978 | 0.8975 | 0.8849 | 0.7272 | 0.8985 |
AdaBoost | 0.8821 | 0.8736 | 0.8784 | 0.7892 | 0.9541 | 0.7421 | 0.8938 |