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Abstract: The health, safety, and well-being of household pets such as cats has become a challenging
task in previous years. To estimate a cat’s behavior, objective observations of both the frequency
and variability of specific behavior traits are required, which might be difficult to come by in a cat’s
ordinary life. There is very little research on cat activity and cat disease analysis based on real-time
data. Although previous studies have made progress, several key questions still need addressing:
What types of data are best suited for accurately detecting activity patterns? Where should sensors be
strategically placed to ensure precise data collection, and how can the system be effectively automated
for seamless operation? This study addresses these questions by pointing out whether the cat should
be equipped with a sensor, and how the activity detection system can be automated. Magnetic, motion,
vision, audio, and location sensors are among the sensors used in the machine learning experiment.
In this study, we collect data using three types of differentiable and realistic wearable sensors, namely,
an accelerometer, a gyroscope, and a magnetometer. Therefore, this study aims to employ cat activity
detection techniques to combine data from acceleration, motion, and magnetic sensors, such as
accelerometers, gyroscopes, and magnetometers, respectively, to recognize routine cat activity. Data
collecting, data processing, data fusion, and artificial intelligence approaches are all part of the system
established in this study. We focus on One-Dimensional Convolutional Neural Networks (1D-CNNs)
in our research, to recognize cat activity modeling for detection and classification. Such 1D-CNNs
have recently emerged as a cutting-edge approach for signal processing-based systems such as
sensor-based pet and human health monitoring systems, anomaly identification in manufacturing,
and in other areas. Our study culminates in the development of an automated system for robust pet
(cat) activity analysis using artificial intelligence techniques, featuring a 1D-CNN-based approach.
In this experimental research, the 1D-CNN approach is evaluated using training and validation
sets. The approach achieved a satisfactory accuracy of 98.9% while detecting the activity useful for
cat well-being.

Keywords: activity detection; biosensors; deep learning; CNN; pet activity

1. Introduction

Recognition of activity and the analysis of diseases of different types of pets and hu-
mans has been increasing simultaneously in recent years. For their cuteness and kindness,
cats are the most popular choice for household or outdoor pets. Recently, primitive commer-
cial services have started to record cats’ activities and report them to their owners or health
instructors. It is vital to assess the activity of undisturbed animals to properly comprehend
their ecosystem or offer indices of their welfare, but this is a difficult undertaking [1]. Mul-
tiple physical conditions and physiological factors may be monitored simultaneously with
the position of the animals, due to the inclusion of numerous sensors in transmitters [2].
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Due to recent advances in data loggers that capture body movements using acceleration
signals, it is possible to develop and install a variety of animal sensors, allowing researchers
to monitor varied behaviors [3–5]. In addition to direct observation by humans, the rapid
development of digital information-processing technologies provides a lot of chances to
investigate animal behavior through more accurate activity analysis [6]. There is no secret
in the world of bio-signal processing, because understanding data from several sensors
linked to one’s body results in high precision and accuracy [7–11]. Automated systems
for the detection of behaviors have become increasingly popular in recent years, owing
to the ability of the associated sensors in the automated systems to discriminate between
various activity patterns. Research has demonstrated that combining data from multiple
sensors can lead to more effective and efficient activity detection processes [12–14]. There
are many aspects to consider while making decisions about one’s health, state of mind,
and activity, and hence utilizing several body sensors is thought vital in this scenario.
However, throughout the last decade, the use of various body sensors to resolve a specific
decision was a point of contention due to a lack of resources and effective frameworks
for multi-sensory data handling. The process of quick prototyping and deployment has
grown considerably easier with the introduction of body sensor networks (BSNs) and
business cloud architectures. Body activity types are important for the identification of
behavior patterns.

Consequently, accelerometers, gyroscopes, and magnetometers are generally used in
automated systems. Accelerometers are small sensors that use micro-machined structures
to measure acceleration along three axes denoted by the letters X, Y, and Z. When the sensor
moves in a specific direction, it returns a value in meters per second squared for how fast it
traveled along all its axes. Behavior such as resting and walking can be identified efficiently
using accelerometer sensor data. Cat Activity Recognition (CAR) is classifying the activity
of a cat using responsive sensors that are affected by cat movement. The gyroscope’s ability
to gauge rotational speed around a specific axis helps it continue to function as intended.
In our study, the gyro sensor works with three axes (X, Y, and Z) to measure the activity
rate, combined with the accelerometer. On the other hand, the magneto sensor also works
with three axes to measure the angular rate, combined with the accelerometer. According
to previous studies [15–25], systems are implemented and evaluated with the use of deep
learning methods, namely, Artificial Neural Networks (ANNs), Long Short-Term Memory
(LSTM), and a One-Dimensional Convolutional Neural Network (1D-CNN). Most of these
past studies focused on traditional machine learning techniques for the activity detection
of different animals using wearable accelerometers and some gyroscopes. Simultaneously,
a few other researchers looked at accelerometer data for activity, but very few studies have
looked at the combination of accelerometer, gyroscope, and magnetometer sensors for
activity detection and classification. We opted to employ neck-wearable sensors to detect
the activity patterns of domestic pets after gathering a lot of evidence from previous studies.

In our research, we attempted to create an automated system that analyzes data
from neck sensors to classify activity patterns. For the performance comparison, we used
standard deep learning approaches as well as incremental machine learning techniques. We
also evaluated our system using validation sets of data, and the machine learning models
provided the best prediction performance, indicating that our system has the potential
to be employed in real-world scenarios. Finding a strong solution is the primary goal of
this study, using deep learning algorithms for monitoring, detecting, and classifying the
activities of domesticated cats, and carrying out an activity analysis of home-kept cats
by leveraging the 1D-CNN-based deep learning approach. More specifically, we use a
computer-assisted methodology for the classification of different types of activities.

Hence, the objectives of this study are as follows:

• To develop an automated system that can accept accelerometer, gyroscope, and mag-
netometer multi-axis data as input and distinguish different cat activity patterns by
applying a deep learning algorithm.
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• With the incorporation of multi-sensor devices on cats’ necks, to use feature engineer-
ing for best real-time accuracy.

• To address imbalance issues by employing the class weight approach, and to carry out
hyperparameter tuning to achieve the optimal performance of the model.

• To test the automated system developed using a 1D-CNN model to accurately detect
cat activities in real time.

2. Related Work

Multiple activities are detected among humans and animals, especially dogs and cats,
using sensor data. Many researchers have used machine learning for this purpose, but
the trend has been changing in the last few years from machine learning to deep learning.
Because deep learning models give more accurate and better results compared to machine
learning models, they facilitate the detection and classification of multiple activities among
dogs which are very important for their health and fitness [26].

Previous research by Hussain et al. used sensors worn on the collars of dogs to
acquire the data, and their created framework was able to determine 17 different actions
of 18 dogs with results of almost 70% accuracy [27]. Sanhudo et al. used a tri-axial
accelerometer and gyroscope, mounted on the backs of dogs, to analyze activities and
behavior based on simultaneous video recordings. Their study was able to check the
feasibility of wearable devices for activity detection among dogs but was not validated in
real-life situations [28]. Aich et al. proposed an automatic model to detect the activity and
emotions of dogs using machine learning classifiers including Support Vector Machines
(SVMs), Naïve Bayes, K-Nearest Neighbors (KNN), and an ANN for activity detection.
Among these machine learning classifiers, the ANN outperformed the rest [29]. Moreso, a
model that can determine the behavior of dogs based on accelerometers for data collection
from 51 different dogs of different ages, weights, and breeds was proposed by Maza
et al. [30]. The proposed model obtained an overall accuracy of 95%. Chakraborty et al.
used smart sensing devices to determine the activities and emotions of animals. They used
three different sensors including temperature, galvanic, and ECG in their study for data
collection. In their study, they predicted four different emotions in animals: happiness,
sadness, anger, and neutral [31].

Furthermore, Kiyohara et al. showed a model to determine the actions and behaviors
of moving dogs. They used supervised machine learning in their study and, for data
collection, they used multi-sensor logger devices. In their study, they also considered the
battery timing for long-time activity detection in dogs [32]. Vehkaoja et al. used deep
learning techniques to determine activities among different dogs [33]. Hussain et al. used
similar types of sensors for data collection. In their deep learning-based model, they trained
a Convolutional Neural Network (CNN) model. After testing this model, they compared
the performance with other traditional models. After comparison, they found that their
model was sufficiently reliable for activity detection. A LSTM model was trained and
installed on different wearable sensors [34]. Hussain et al. developed a 1D-CNN-based
model for detecting dog activity using sensor data. Their model could classify ten different
activities of dogs. The data was collected from 10 dogs of different breeds, ages, sizes, and
genders. They preprocessed the data before it was used for the training of the model. They
used 80% of the data for training and 20% for the testing of the model. The model achieved
a training accuracy of 99.70% and a validation accuracy of 96.85% [35].

Venkatraman et al. illustrated and used very small sensor devices for small animals
like rats. These small devices catch the acceleration data from animals in cages when
they act naturally. By using neural network-based pattern recognition algorithms, they
predicted the behavior of the animals. Three basic actions were successfully identified,
including grooming, standing, and feeding. The research achieved an accuracy of almost
98% for grooming, 97% for standing, and 93% for feeding activity [36]. Yen et al. proposed
a deep learning-based model to determine six types of different human activities: walking,
walking downstairs, walking upstairs, lying, standing, and sitting. They used a gyroscope,
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and an accelerometer mounted on the waist of the human body to acquire the data. They
trained a 1D-CNN on two different datasets: the University of California dataset and their
own recorded dataset. They achieved almost 96% testing accuracy on the UCI dataset and
93% testing accuracy on their dataset [37]. Axiu et al. carried out a comparison analysis of
animal activity detection from wearable sensors based on deep learning [38]. Minati et al.
introduced an approach to time series data augmentation involving driving a single low-
dimensional entity, namely, the Rössler system, with a physically recorded sensor signal,
and leveraging its responses to enhance the performance of a conventional classifier [39].

Table 1 lists the earlier work on the wearable sensor-based activity detection of various
pets. The research cited in Table 1 illustrates how wearable devices, particularly accelerom-
eters, gyroscopes, and Photoplethysmogram (PPG) and Electrocardiogram (ECG) sensors,
have been used to detect behavioral patterns in animals, including activity detection. How-
ever, we have observed that previous studies have mostly employed accelerometer and
gyroscope data to detect pet activities. Except for a very small number of experiments,
most did not explore the simultaneous use of accelerometer, gyroscope, and magnetometer
data for pet activity detection.

Table 1. Related research on wearable sensor-based activity detection of various humans and animals.

Ref. Sensors Limitations Key Results Location Pet Type

[29] Tri-axial accelerometer
and gyroscope

The classification accuracy of
the model solely depends on
the recording by the dog owner
because that recording is used
for annotation, which is not
perfect. After all, manual error
is inevitable. The proper
environment has not been
prepared for experimenting.

With an accuracy of close to
70%, the accelerometer
data-based model can
categorize various activities
in natural environments.

Collar Dog

[31]
Accelerometer,

Electrocardiography
and Electromyography

The work had flawed
traditional accelerometer
procedures. It was not used
with tri-axial accelerometers.

Accelerometer and
gyroscope data were
analyzed based on
simultaneous video
recordings of
different activities.

Wrist Human

[35] Tri-axial accelerometer
and gyroscope

Activity detection for the
well-being of household dogs
using deep learning models
from accelerometer and
gyroscope data. Also, some of
the dogs were very young.

Deep learning techniques
were utilized to automate
the system after acceleration
and gyroscope data were
used to identify the
behavioral patterns of
different dogs.

Neck Dog

[36] Tri-axial accelerometer

Performance comparison
utilizing various machine
learning techniques has not
been explored and only
acceleration data have been
used to detect behavior.

To construct the algorithm
to identify the rats’ activity
patterns and learn more
about their neurological
actions, which aid in the
detection of emotions,
acceleration data were
gathered using the sensors.

Back Rat

[39] Tri-axial accelerometer

Solely two species of
chipmunks were utilized to
create the model, which is
insufficient from a validation
standpoint, and the system only
employed acceleration data to
identify patterns.

Machine learning
techniques were utilized to
automate the system after
acceleration data were used
to identify the behavioral
patterns of different
chipmunk species.

Back Chipmunk
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Table 1. Cont.

Ref. Sensors Limitations Key Results Location Pet Type

[40] Tri-axial accelerometer

Only accelerometer data have
been considered for behavior
detection, and the system has
been evaluated using just one
machine learning model.

To monitor the sheep’s
behavior, the authors used
accelerometer sensor data
from different positions, and
they achieved good results.
They automated the system
using machine
learning techniques.

Collar Sheep

[41] Tri-axial accelerometer

Due to the lack of a
state-of-the-art model, only
accelerometer data were
utilized to create the model, and
the performance was
not compared.

Acceleration data were
utilized to identify the
behaviors of different
meerkat species, and hybrid
methods (using machine
learning and biomechanical
principles) performed well.

Collar Meerkat

[42] Tri-axial accelerometer

They were wild animals,
making this kind of analysis
difficult. It is challenging to
validate this model in real time.

Machine learning
techniques were employed
to classify the behavioral
modes of the vulture using
acceleration data and
GPS data.

Back Vulture

[43] Tri-axial accelerometer,
gyroscope

They used two different types
of IMU sensors, an
accelerometer, and a gyroscope
to collect data. They focused on
data augmentation techniques
for behavior categorization.
They did not deploy any
machine learning or deep
learning techniques for
activity classification.

They used the data
augmentation technique.
Experimental results verify
the data augmentation
method’s effectiveness and
show that their proposed
behavioral monitoring
method has greater
advantages in terms of
accuracy than traditional
machine learning methods.

Neck Pig

[44]
accelerometer and
navigation satellite

system (GNSS)

They used an accelerometer and
a navigation satellite system
(GNSS) on cattle collars and ear
tags for collecting the data for
activity classification. However,
cattle are large-sized animals, so
classifying the accurate activity
of cattle is questionable. For
big-sized animals, moving ears
and collars do not mean that
they are moving the full body.

They used MLP classifiers
for classifying behavior and
the multimodal animal
behavior classification
algorithm based on
posterior probability fusion.

Collar
and
ear

Cattle

[45] Tri-axial
accelerometer

Only accelerometer data have
been considered for behavior
recognition, and the system has
been evaluated using just one
deep neural network model.

They applied deep learning
for the activity recognition
of individual hens, which
has the potential to
accurately aid the successful
management of modern
poultry systems.

Backpack Chicken

3. Materials and Methods

In this section, we are going to describe the methodologies that are used in this research,
including information about cats, sources of data, feeding and husbandry environment,
and physical sensors.
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3.1. Data Acquisition
3.1.1. Cats

The total number of cats was 10. Among those, 4 were males and 6 were females with
different ages, sizes, and breeds. The cats were healthy and in good condition during the
experimental period. Table 2 below shows the details about the experimental cats.

Table 2. Experimental cats summary.

No. Gender Breed Age in Years

1 Female Siamese 2

2 Female Chausie 3

3 Male Maine Coon 4

4 Male Maine Coon 5

5 Female Maine Coon 5

6 Female California Spangled 5

7 Female Cornish Rex 6

8 Male Abyssinian 7

9 Male Chausie 7

10 Female Toyger 7

3.1.2. Source of Data

The data were collected from 10 cats from 1 November 2021 to 30 November 2021. The
dataset contained 1,284,789,349 samples of tri-axial data from accelerometer, gyroscope,
and magnetometer sensors. We took the cats’ real-time data from Ujura Company (Seoul,
Republic of Korea) and we used it for our experiment on cat activity detection.

3.1.3. Husbandry

The cats were guided by the expertise of husbandry and veterinary professionals; they
designed a diet that catered to their health needs. Their living place was very clean, and a
spacious environment with proper lighting was provided for all the cats. The rooms were
4.0 m × 3.5 m in size. To provide a better environment and to keep them active, the cats
were provided with balls to play with. For the scratching of the cats, proper rugs were
placed in each room. In every room, a box filled with water was provided for drinking
purposes in case the cats were thirsty, and a different box was kept likewise for urinating
and defecating. Figure 1 shows the experimental environment of the cats.

3.1.4. Sensor Device

The wearable devices consisted of three sensors, namely, accelerometer, gyroscope,
and magnetometer sensors, and one device was placed on the neck of each cat. These
sensors were able to measure the linear motions, rotational motions, and magnetic mo-
tions in all three axes, i.e., x, y, and z. The gyro sensor has a range of ±2000 DPS and a
sampling rate of 0.001–100 Hz, and the accelerometer has a range of ±16 g and a sampling
rate of 0.001–100 Hz. Likewise, the magnetometer has a range of ±1300 µT (x, y-axis),
±2500 µT (z-axis), and a sampling rate of 0.001–25 Hz. The devices weighed 0.2 oz and the
dimensions were 27 mm × 27 mm × 4 mm. The sensor devices are designed to detect cat
movements through rotational, linear, or magnetic motions. The data were timestamped
for synchronization purposes. Each device has a Lipo battery with 70–100 mAH and a
charging time of 2 h. Figure 2 shows the internal details of the sensor and the outfit of
the sensor.
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3.1.5. Video Recording

The activities of cats were recorded through CCTV cameras as well. The collected
data from the sensor devices were synchronized with the video for the ground truth and to
ensure the correct labeling of different activities. Ten researchers classified the videos using
manual classification, and their work was verified by the senior specialist and CTO from
Ujura Company, Republic of Korea.

3.1.6. Data Collection

The data used in this research were collected with prior authorization from the cats’
owner (Ujura Company). The data were generated by the movement of the cats, and three
kinds of data have been generated: linear motion data from the accelerometer, rotational
motion data from the gyroscope, and magnetic motion data from the magnetometer sensors.
The data were sent to the server via Bluetooth and were stored on the server. At the same
time, video recording was also performed for the corresponding sensor data, and the sensor
data were labeled while using the video recording. In Figure 3, we show all the steps of the
data collection procedure.
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The data were processed and analyzed using a system with the following specifications:
Windows 11, 2.50 GHz 64-bit, 12th Gen, Intel Core i5-12400 processor, 32 GB RAM, NVIDIA
GeForce RTX 3080 GPU, Python 3.9, and TensorFlow 2.4.0.

Figure 4 shows that the data distribution across all the five classes is highly imbalanced,
so this behavior of data may render the model overfitting. This issue must be addressed
before the data are used for the training of the model. Figure 5 below represents a sample
of the bio-signals obtained from the sensor devices attached to the cats.
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3.1.7. Preprocessing of the Data

This process is vital because sensor data is often noisy, contains missing values, and
requires proper formatting before it is fed it into machine learning models for activity
detection tasks [46]. We take the raw sensor data, which is initially labeled, and then
proceed to enhance its quality and prepare it for training in an artificial intelligence model.
This involves crucial steps to handle noise and anomalies that might be present in the
data, particularly in the bio-signals reflecting the cats’ activities. To address the issue of
noisy data, we employ the Butterworth low-pass filter, effectively eliminating unwanted
high-frequency noise components while preserving the essential bio-signals. This ensures
that the actual activities of the cat are accurately represented in the processed data. By
refining and cleansing the data through these smart preprocessing techniques, we have
developed a robust and accurate dataset suitable for training the machine learning model.
This essential step significantly enhances the model’s ability to interpret the cats’ activities
and paves the way for more reliable artificial intelligence predictions.

3.1.8. Feature Engineering

To extract valuable insights from the sensor data, we applied feature engineering
techniques. By analyzing accelerometer, gyroscope, and magnetometer data, we derived
key features, most important features such as standard deviation, mean absolute deviation,
mean, minimum, maximum, interquartile range, energy measure, skewness, kurtosis, etc.
Zheng et al. have presented windowing techniques for activity detection using sensor
devices, which involve segmenting the continuous stream of sensor data into smaller
time windows or frames [47]. This windowing technique was used to divide the data
into 2 s windows with 50 data samples per window, overlapping 25 samples from the
previous window. This allowed us to create new features while preserving temporal
information. The transformed data were labeled based on the most frequent activity within
each sliding window. We applied a fast Fourier transform to convert time domain data into
the frequency domain, gaining deeper insights and enriching the dataset. In the end, our
feature engineering efforts yielded 312 informative features. Kempa-Liehr et al. showed
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that the goal of feature engineering is to provide algorithms with informative input features
that capture the essential patterns and characteristics of the activities, enabling accurate
and efficient activity detection and classification [48,49].

3.1.9. Class Weight Approach

There are different approaches for balancing the data, for example, Random Over-
sampling, the synthetic minority oversampling technique (SMOTE), Adaptive Synthetic
Sampling (ADASYN), etc. [50]. To keep a balance among the classes, a threshold should
be defined so that class weights can be increased or decreased. With this technique, we
take more care of the minority samples while training the model and, to calculate the loss
function, a weighting mechanism is developed. Different weights are assigned to majority
and minority classes according to the imbalance scenario in the dataset. To keep a balance
among the classes, a threshold should be defined so that class weights can be increased or
decreased. This will help in preventing the biasing of the algorithm towards any specific
class. The formula for class weight can be defined as

Wi =
n_instances

(n_classes ∗ n_instancesi)
(1)

where (Wi) represents the weight of each class and (i) represents the class. n_instances
denotes the total number of instances or rows in our dataset, whereas n_classes represents
the overall number of unique classes in the class label. The total number of rows in each
class is denoted as n_instancesi. The weighting mechanism adopted in this study is shown
in Table 3 below.

Table 3. Class weights for activity detection model training.

Class Weight

Resting 1.0516

Walking 2.9742

Grooming 1.3275

Eating 14.1211

Scratching 0.3461

3.2. Methods
3.2.1. Proposed Activity Detection Algorithm

A One-Dimensional Convolutional Neural Network is a powerful algorithm for activ-
ity detection based on sensor data from wearable devices [51,52]. A proposed pet activity
detection algorithm was developed, which included the collection of bio-signals from
wearable devices, i.e., an accelerometer, a gyroscope, and a magnetometer. The bio-signals
were preprocessed by applying different preprocessing techniques like data filtration, data
normalization, etc. The activities of the cats were predicted using the CNN-based algorithm
as a well-known deep learning approach used for different purposes like classification
and detection. It automatically extracts the highly relevant features without any human
intervention or handcrafted methods and uses those features for classification and detec-
tion purposes. We used sensor data consisting of x, y, and z values, and we transformed
them into vector magnitude data. This vector was used to develop a 1D-CNN for the
classification of the different activities of the cats.

3.2.2. The Network Architecture of 1D-CNN

Convolutional Neural Networks (CNNs) have garnered widespread acclaim in the
realm of deep learning due to their remarkable capabilities in various applications, such
as classification and detection tasks. Unlike traditional Artificial Neural Networks, CNNs
possess a unique ability to autonomously extract essential features from data without
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relying on manual intervention or handcrafted methods. This intrinsic feature extraction
capability empowers CNNs to excel in both feature extraction and subsequent classification
processes. In our research, we harnessed the potential of CNNs to explore the activities
of cats using sensor data that comprised x, y, and z values. To facilitate a more efficient
representation of the data, we transformed it into vector magnitude data. This transformed
vector served as the basis for the development of a sophisticated 1D-CNN model tailored
specifically for the classification of different feline activities. Our 1D-CNN architecture was
thoughtfully designed, encompassing key components such as convolutional layers to learn
intricate patterns, dropout layers for enhanced generalization and robustness, flattened
layers to reshape the data for seamless processing, fully connected layers to establish
meaningful connections, and SoftMax layers for accurate probability distribution across the
various cat activities. By leveraging this comprehensive 1D-CNN model, we were able to
gain deeper insights into the distinct activities exhibited by cats, paving the way for future
advancements in understanding and analyzing animal behavior. The results of our study
not only underscore the effectiveness of CNNs in the realm of activity classification but
also shed light on the tremendous potential of deep learning architectures for pushing the
boundaries of knowledge discovery and problem-solving in diverse domains.

• Input layer: The input layer of the model received three-axis data from each accelerom-
eter, gyroscope, and magnetometer sensor in the form of vector magnitude.

• Convolutional layer: The convolutional operations were used with a stride size of 1.
The kernels used in the convolutional layers were 128, 128, 128, 256, and 256, while
the strides were kept at 1 in each layer.

• Dropout: To avoid overfitting and to reduce the complexity of the model, dropout
layers were used while the dropout value was set to 0.5.

• Output: In deep learning, activation functions play an important role in the prediction
of any task. The right and wise choice of activation function results in good prediction.
Rectified Linear Unit (ReLu) was used in this experiment. Since we had activities from
five cats, which is a multiclass classification, we used the SoftMax function for the
classification of all five activities. A Stochastic Gradient Descent (SGD) optimizer was
applied, and the learning rate was set to 0.0001. Categorical cross-entropy was used as
a loss function, which calculates the loss between the actual and predicted values. The
smaller the difference between the values, the higher the performance of the model.
Figure 6 illustrates the architecture of the model and Figure 7 shows the classification
of the activities.

3.2.3. The Proposed Research

In our approach to detecting cat activities using data from wearable sensor devices,
the overall process can be summarized as follows:

Firstly, we meticulously extracted data pertaining to five distinct activities and concur-
rently captured corresponding videos, synchronizing them at a precise frame rate for each
activity. Subsequently, we undertook rigorous data preprocessing, effectively eliminating
noise and unwanted bio-signals from the dataset. Employing a Butterworth low-pass
filter, we successfully eliminated noise, thereby enhancing the dataset’s quality. To har-
ness the full potential of the dataset, we engaged in feature engineering, a critical step
that extracted pertinent information while discarding unnecessary data. This strategic
maneuver facilitated the construction of an efficient algorithm, primed for accurate activity
classification. Furthermore, we recognized the importance of data normalization to ensure
that all data points fell within the same value range. The raw data extracted from the sensor
devices were preprocessed and filtered by applying a Butterworth low-pass filter. The
filters removed the noise and unwanted signals from the data and, as a result, we obtained
refined data. Data normalization was applied to the dataset to normalize the range of all the
data and bring them to the same scale. This process played a crucial role in optimizing the
subsequent stages of our analysis. To evaluate the performance of our model, we diligently
split the data into an 80% training set and, after preprocessing the dataset, a 20% testing set.
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Acknowledging the data’s inherent imbalance, we employed data oversampling techniques
on the training dataset, ensuring a balanced representation of all classes. We leveraged the
class weight technique, further enhancing the model’s sensitivity to minority classes during
training. Next, we developed a sophisticated 1D-CNN model and diligently trained it
using the class-weighted training dataset. As we prioritized performance, we continuously
monitored the model during hyperparameter tuning, ensuring that any potential issues
were swiftly addressed. The culmination of our efforts yielded promising results. The
experimental outcomes showcased the model’s exceptional performance, with the class
weight technique playing a pivotal role in enhancing accuracy and reliability. Overall,
our approach not only demonstrated the efficacy of the 1D-CNN architecture but also
highlighted the importance of thoughtful data preprocessing and the strategic handling of
class imbalances in activity classification tasks. Figure 8 shows the complete process of the
development of the activity detection systems for household pets.
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4. Experimental Results with Discussion

The experimental results are discussed in detail in this section. We conducted experi-
ments using class weights for our class labels to balance the activities of the cats.

4.1. Evaluation Methods

The performance of the model is based on accuracy, precision, recall, F-score, and ROC.

❖ Accuracy: accuracy states how close our nearest value is to the known value:
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Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (2)

❖ Precision: this is the fraction of relevant instances among the retrieved instances:

Precision =
TP

TP + FP
× 100% (3)

❖ Recall: this is the fraction of relevant instances that were retrieved:

Recall =
TP

TP + FN
× 100% (4)

❖ F1-Score: this is a way of combining the precision and recall of the model, and it is
defined as the harmonic mean of the model’s precision and recall:

F-score = 2 × Precision × Recall
Precision + Recall

× 100% (5)

where TP represents a true positive, TN is a true negative, FN is a false negative,
and FP is a false positive. Precision indicates the degree of accuracy of the model in
predicting the correct classification of activities. For instance, eating was positive, and
all other activities of the cats were negative. In this scenario, the correct classification of
eating is divided by the sum of the correct classification, and the incorrect classification
of eating gives the precision value.

4.2. Evaluation Methods (Graphical)

The prediction outcome of a classification model is summarized in the confusion
matrix. By displaying the number of predictions that were accurate and inaccurate for each
class, it displays the model’s performance. It presents details regarding the model’s actual
and expected classifications. The model properly predicts the values in the diagonals while
misclassifying the values outside of the diagonals.

4.2.1. Matrix

The confusion matrices for all five of the behaviors of the cats studied in our research
utilizing class weight are shown in Figures 9 and 10, respectively, with and without
normalization.
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4.2.2. Accuracy and Loss

Figures 11 and 12 illustrate, respectively, the accuracy and loss of the model. Figure 11
demonstrates how the training accuracy rose to 98.9% after 700 epochs and 96.85% of the
validations were accurate.
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4.2.3. AUC and RUC Curve

The AUC-ROC curve helps us to visualize the performance of our proposed model. In
other words, it is a measurement of evaluation that displays each class’s performance while
drawing a graph between the true positive rate (TPR) and the false positive rate (FPR). The
AUC-ROC is displayed in Figure 13. The better the model performs, the closer its graph is
to the left corner and close to value 1. The graph below demonstrates that all the curves for
each class are closer to 1, indicating that the model is performing at almost 100%. The AUC
value of our suggested model is 100% for all five classes, demonstrating that our model
correctly distinguishes between positive and negative class points.
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5. Discussion

We have developed a highly efficient activity detection pipeline specifically designed
for monitoring household pets through the utilization of wearable sensors attached to the
neck. The pipeline incorporates data from accelerometers, gyroscopes, and magnetometers
to extract various features. These features serve as input for accurately recognizing different
activities, resulting in low misclassification rates.

Our findings underscore the intricacies involved in detecting the behavior of house-
hold pets. Notably, similar features extracted from diverse signal types prove effective
in identifying various activities. Importantly, our model demonstrates impeccable perfor-
mance. Although the accelerometer, gyroscope, and magnetometer data-based model has
not been extensively studied for animals, a few research studies on humans, using differ-
ent state-of-the-art techniques, yielded similar results to ours, establishing our proposed
pipeline as state-of-the-art for animals, especially for cat activity detection.

This study introduces several novelties: (1) This is the first study to incorporate
data from three different types of neck-wearable sensors—accelerometric, gyroscopic, and
magnetometers for detecting activity patterns. This approach is particularly recommended
for real-life situations involving pets as their activities, such as body movements involving
the neck, are accurately captured using both types of sensors. (2) This study presents a
robust pipeline utilizing an incremental learning-based deep learning algorithm for activity
detection. The proposed activity detection system in this study outperforms previous
research efforts. A comprehensive comparison with state-of-the-art models for activity
detection is detailed in Table 4. We trained several machine learning and deep learning
models; from the trained models, the 1D-CNN, the ANN, and LSTM have given the best
results and, among these three, the 1D-CNN gave the best accuracy, as we have shown
in Table 4. A 1D-CNN is ideal for cat activity detection as it excels in capturing temporal
patterns in sequential sensor data, providing effective recognition of localized behaviors,
and allows the efficient processing of wearable sensor information.
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Table 4. Class weights of three models for activity detection model training.

Metric Classifier

ANN LSTM 1D-CNN (Our)

Accuracy 0.9198 0.9615 0.9896

Precision 0.9188 0.9601 0.9887

Recall 0.9190 0.9625 0.9891

F1 Score 0.9181 0.9601 0.9885

In this study, we collected data from a limited number of cats (10 cats). In the future,
we will use more data for model training. This time, we worked on household cats; in
the future, we will work on outdoor cats who live without limitations or borders. Also,
in the future, we intend to focus on investigating activities separately and adding many
more activities.

6. Conclusions

We introduced a 1D-CNN-based automated activity detection system to predict and
classify five fundamental activities of cats. The data collected from cats of various ages,
breeds, and genders were meticulously preprocessed and transformed into a suitable
format for model training. Through feature engineering, we extracted the most meaningful
and essential features from the raw data. Our proposed pipeline for detecting cat activities
enables efficient monitoring of their well-being and overall health. This groundbreaking
research proposes a 1D-CNN-based approach for cat activity detection, utilizing data from
multiple sensors. We achieved a high accuracy of 98.9%, due to the integration of multiple
sensors, which captures a comprehensive view of cat movements. This system holds great
promise for enhancing our understanding of feline behavior and ensuring the welfare of
our feline companions.
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