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Abstract: Sign language (SL) is a means of communication that is used to bridge the gap between
the deaf, hearing-impaired, and others. For Arabic speakers who are hard of hearing or deaf,
Arabic Sign Language (ArSL) is a form of nonverbal communication. The development of effective
Arabic sign language recognition (ArSLR) tools helps facilitate this communication, especially for
people who are not familiar with ArSLR. Although researchers have investigated various machine
learning (ML) and deep learning (DL) methods and techniques that affect the performance of ArSLR
systems, a systematic review of these methods is lacking. The objectives of this study are to present
a comprehensive overview of research on ArSL recognition and present insights from previous
research papers. In this study, a systematic literature review of ArSLR based on ML/DL methods
and techniques published between 2014 and 2023 is conducted. Three online databases are used:
Web of Science (WoS), IEEE Xplore, and Scopus. Each study has undergone the proper screening
processes, which include inclusion and exclusion criteria. Throughout this systematic review, PRISMA
guidelines have been appropriately followed and applied. The results of this screening are divided
into two parts: analysis of all the datasets utilized in the reviewed papers, underscoring their
characteristics and importance, and discussion of the ML/DL techniques’ potential and limitations.
From the 56 articles included in this study, it was noticed that most of the research papers focus on
fingerspelling and isolated word recognition rather than continuous sentence recognition, and the
vast majority of them are vision-based approaches. The challenges remaining in the field and future
research directions in this area of study are also discussed.

Keywords: Arabic sign language (ArSL); Arabic sign language recognition (ArSLR); dataset; machine
learning; deep learning; hand gesture recognition

1. Introduction

Sign language (SL) is a powerful means of communication among humans. It is used
by people who are deaf or hard of hearing, as well as those who struggle with oral speech
due to disability or special conditions. According to the latest estimations, as of March
2021, there are over 1.5 billion people worldwide experiencing some degree of hearing
loss, which could increase to 2.5 billion by 2050 [1]. Around 78 million people with hearing
difficulties were estimated in the Eastern Mediterranean region, which could grow to
194 million by 2050 [1].

There are two main classes of sign language symbols: single-handed and double-
handed [2]. These signs are further divided into dynamic and static. One dominant hand is
used to represent one-handed signs. Any static or dynamic gesture can be used to represent
it. Both dominant and non-dominant hands are used when signing to indicate two-handed
signs [2]. SL uses non-manual signs (NMS), such as body language, lip patterns, and facial
expressions, in addition to manual signs (MS) that use static hand/arm gestures, hand/arm
motions, and fingerspelling [3].
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Sign language recognition (SLR) is the process of recognizing and deciphering sign
language movements or gestures [4]. It usually involves complex algorithms and compu-
tational operations. Sign language recognition systems (SLRS) is one application within
the field of human-computer interaction (HCI) that interprets sign language of hearing
impairments into text or voice of oral language [5]. SLRS can be categorized into three
main groups based on the main technique used for gathering data, namely sensor-based or
hardware-based, vision-based or image-based, and hybrid [6,7]. Sensor-based techniques
use data gloves that the signer wears to collect data about their actions from external sen-
sors. Most of the current research, however, has focused on vision-based approaches that
use images, videos, and depth data to extract the semantic meaning of hand signals due to
practical concerns with sensor-based techniques [4,6]. Hybrid methods have occasionally
been employed to gather information on sign language recognition. Comparing hybrid
methods to other approaches, they perform similarly or even better in terms of propor-
tional automatic speech or handwriting recognition. In hybrid techniques, multi-mode
information about the hand shapes and movement is obtained by combining vision-based
cameras with other types of sensors, like glove sensors.

As shown in Figure 1, the stages involved in sign language recognition can be
broadly divided into data acquisition, pre-processing, segmentation, feature extraction, and
classification [8,9]. In data acquisition, single frames of images are the input for static sign
language recognition; video, or continuous frames of images, is the input for dynamic signs.
In order to enhance the system’s overall performance, the preprocessing stage modifies
the image or video inputs. Segmentation, or the partitioning of an image or video into
several separate parts, is the third step. A good feature extraction arises from perfect
segmentation [10]. Feature extraction is performed to transform important parts of the
input data into sets of compact feature vectors. When it comes to the recognition of sign
language, the features that are extracted from the input hand gestures should contain
pertinent information and be displayed in a condensed form that helps distinguish the sign
that needs to be categorized from other signals. The final step is classification. Machine
learning (ML) techniques for classification can be divided into two categories: supervised
and unsupervised [8]. Through the use of supervised machine learning, a system can be
trained to identify specific patterns in input data, which can subsequently be utilized to
predict future data. Using labeled training data and a set of known training examples,
supervised machine learning infers a function. Inferences are derived from datasets con-
taining input data without labeled responses through the application of unsupervised
machine learning. There is no reward or penalty weightage indicating which classes the
data should belong to because the classifier receives no labeled responses. Deep learning
(DL) approaches have surpassed earlier cutting-edge machine learning techniques in a
number of domains in recent years, particularly in computer vision and natural language
processing [4]. Eliminating the need to construct or extract features is one of the primary
objectives of deep models. Deep learning enables multi-layered computational models to
learn and represent data at various levels of abstraction, mimicking the workings of the
human brain and implicitly capturing the intricate structures of massive amounts of data.

Figure 1. Stages of sign language recognition systems.

It is worth noting that there is no international SL. In fact, SL is geography-specific, as
it differs from one region or country to another in terms of syntax and grammar [9,11–13].
Different sign languages include, for example, American Sign Language (ASL), Australian



Sensors 2024, 24, 7798 3 of 87

Sign Language (Auslan), British Sign Language (BSL), Japanese Sign Language (JSL), Urdu
Sign Language, Arabic Sign Language (ArSL), and others [9,11–13].

The language that is spoken throughout the Middle East and North Africa is unified
ArSL [2]. Although there are 28 letters in the Arabic alphabet, Arabic sign language uses
39 signs [14,15], as depicted in Figure 2. The eleven extra signs are fundamental signs made
up of two letters combined. For example, in Arabic, the two letters “È@” are frequently
used, much like “the” in English. Thus, the 39 signs for the Arabic alphabet are used in the
majority of reviewed works on Arabic sign language recognition (ArSLR) [9,15].

Figure 2. Representation of the Arabic sign language for Arabic alphabets [14].

SLR research efforts are categorized according to a taxonomy that starts with creating
systems that can recognize small forms and segments, like alphabets, and progresses to
larger but still small forms, like isolated words, and ultimately to the largest and most chal-
lenging forms, like complete sentences [4,9,15]. As the unit size to be recognized increases,
the ArSLR job becomes harder. Three main categories—fingerspelling (alphabet) sign
language recognition, isolated word sign language recognition, and continuous sentences
sign language recognition—can be used to classify ArSLR research [9,15].

In this study, a comprehensive review of the current landscape of ArSLR using machine
learning and deep learning techniques is conducted. Specifically, the goal is to explore the
application of ML and DL in the past decade, the period between 2014 and 2023, to gain
deeper insights into ArSLR. To the author’s knowledge, none of the previously reviewed
surveys have systematically reviewed the ArSLR studies published in the past decade.
Therefore, the main purpose of the current study is to thoroughly understand the progress
made in this field, discover valuable information about ArSLR, and shed light on the
current state of knowledge. Through an extensive systematic literature review, I have
collected and synthesized the most recent results regarding recognizing ArSL using both
ML and DL. The analysis involves a collection of techniques, exploring their effectiveness
and potential for improving the accuracy of ArSLR. Moreover, current trends and future
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directions in the area of ArSLR are explored, highlighting important areas of interest and
innovation. By understanding the current landscape, the aim is to provide valuable insights
into the direction of research and development in this evolving field.

The rest of this paper is organized as follows: in Section 2, the methodology that
will help to achieve the goals of this systematic literature review is detailed. In Section 3,
the results of the research questions and sub-questions are analyzed, synthesized, and
interpreted. In Section 3.4, the most important findings of this study are discussed in an
orderly and logical manner, the future perspectives are highlighted, and the limitations of
this study are presented. Finally, Section 4 draws the conclusions.

2. Research Methodology

The systematic literature review gathers and synthesizes the papers published in
various scientific databases in an orderly, accurate, and analytical manner about an area
of interest. The goal of the systematic approach is to direct the review process on a
specific research topic to assess the advancement of research and identify potential new
directions. This study adopts the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [16]. The research methodology encompasses three
key stages: planning, conducting, and reporting the review. Figure 3 provides a visual
representation of the methodology applied in this study.

Figure 3. Overview of research methodology.

2.1. Planning the Systematic Literature Review

The aim of this stage is to determine the need for a systematic literature review and to
establish a review protocol. To determine the need for such a systematic review, an exhaus-
tive search of systematic literature views in different scientific databases is performed.

2.1.1. Identification of the Need for a Systematic Literature Review

A search string was developed to find similar systematic literature reviews on ArSLR
and to assess whether the planned, systematic review of this study will help close or reduce
any gaps in knowledge. Two equivalent search strings were constructed, one for the Web
of Science database and one for the Scopus database:

Web of Science = TS = ((Arabic sign language) AND recognition AND ((literature
review) OR review OR survey OR (systematic literature review)))

Scopus = TITLE-ABS-KEY ((Arabic AND sign AND language) AND recognition
AND ((literature AND review) OR review OR survey OR (systematic AND literature
AND review))).

Any review paper published before 2014 was discarded. After filtering the remaining
review papers based on their relevance to the topic of interest, a total of five literature
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reviews were eligible for inclusion. Three of the review papers [9,15,17] were found in both
Web of Science and Scopus. Two papers were found in Scopus [18,19].

In 2014, Mohandes et al. [17] presented an overview of image-based ArSLR stud-
ies. Systems and models in the three levels of image-based ArSLR, including alphabet
recognition, isolated word recognition, and continuous sign language recognition, are re-
viewed along with their recognition rate. Mohandes et al. have extended their survey [17]
to include not only systems and methods for image-based ArSLR but also sensor-based
approaches [15]. This survey also shed light on the main challenges in the field and po-
tential research directions. The datasets used in some of the reviewed papers are briefly
discussed [15,17].

A review of the ArSLR background, architecture, approaches, methods, and techniques
in the literature published between 2001 and 2017 was conducted by Al-Shamayleh et al. [9].
Vision-based (image-based) and sensor-based approaches were covered. The three levels of
ArSLR for both approaches, including alphabet recognition, isolated word recognition, and
continuous sign language recognition, were examined with their corresponding recognition
rates. The study also identified future research gaps and provided a road map for research
in this field. Limited details of the utilized datasets in the reviewed papers were mentioned,
such as training and testing data sizes.

Mohamed-Saeed and Abdulbqi [18] presented an overview of sign language and its
history and main approaches, including hardware-based and software-based. The classifica-
tion techniques and algorithms used in sign language research were briefly discussed, along
with their accuracy. Tamimi and Hashlmon [19] focused on Arabic sign language datasets
and presented an overview of different datasets and how to improve them; however, other
areas, such as classification techniques, were not addressed.

In addition to Web of Science and Scopus, Google Scholar was used as a support
database to search for systematic literature review papers on ArSLR. Similar keywords
were used and yielded four more reviews [2,12,20,21] that are summarized below:

Alselwi and Taşci [10] gave an overview of the vision-based ArSL studies and the
challenges the researchers face in this field. They also outlined the future directions of ArSL
research. Another study was conducted by Wadhawan and Kumar [2] to systematically
review previous studies on the recognition of different sign languages, including Arabic.
They provided reviews for the papers published between 2007 and 2017. The papers in each
sign language were classified according to six dimensions: acquisition method, signing
mode, single/double-handed, static/dynamic signing, techniques used, and recognition
rate. Mohammed and Kadhem [20] offered an overview of the ArSL studies published
in the period between 2010 and 2019, focusing on input devices utilized in each study,
feature extraction techniques, and classification algorithms. They also reviewed some
foreign sign language studies. Al Moustafa et al. [21] provided a thorough review of the
ArSLR studies in three categories: alphabets, isolated words, and continuous sentence
recognition. Additionally, they outlined the public datasets that can be used in the field of
ArSLR. Despite mentioning “systematic review” in the paper’s title, they did not follow a
systemic approach in their review.

Valuable contributions are made by gathering papers on ArSLR and carrying out a
comprehensive literature evaluation. Of the surveys mentioned above, only one adopts a
systematic review process [2]; nevertheless, this survey does not analyze or focus on the
datasets included in the evaluated studies, and it does cover the studies published after
2017. As a result, it was necessary to provide the community and interested researchers
with an analysis of the current status of ArSLR. The purpose of this research, therefore, is to
close or at least lessen that gap. All the review papers are listed and summarized in Table 1
in chronological order from the oldest to the newest.
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Table 1. Summary of existing surveys of Arabic sign language recognition (ArSLR).

Ref Year Journal/Conference Timeline SL Datasets Classifiers Feature
Extraction

Performance
Metrics Systematic Focus of the Study Source

[15] 2014
IEEE Transactions on

Human-Machine
Systems

Not specified Arabic Partial Yes Yes Recognition
accuracy: yes No

Reviews systems and methods
for image-based and

sensor-based ArSLR, main
challenges, and presents

research directions for ArSLR.

WoS
Scopus
Google
Scholar

[17] 2014

IEEE 11th
International

Multi-Conference on
Systems, Signals &

Devices (SSD14)

Not specified Arabic Partial Yes Yes

Recognition
accuracy: yes,

Error rate:
partial

No

Reviews methods for
image-based ArSLR,

challenges, and shows research
directions for ArSLR.

WoS
Scopus
Google
Scholar

[9] 2020 Malaysian Journal of
Computer Science 2001–2017 Arabic Partial Yes Yes Recognition

accuracy: yes No
Provides review, taxonomy,
open challenges, research

roadmap, and future directions.

WoS
Scopus
Google
Scholar

[12] 2021 Bayburt University
Journal of Science Not specified Arabic No Yes Partial Recognition

accuracy: yes No
Reviews vision-based ArSLR
studies and shows challenges

and future directions.

Google
Scholar

[2] 2021

Archives of
Computational

Methods in
Engineering

2007–2017 Arabic and
others. Partial Yes No Recognition

accuracy: yes Yes

Review previous studies on
recognition of different sign
languages, including ArSLR,
with a focus on six aspects:
acquisition method, signing

mode, single/double handed,
static/dynamic signing,

techniques used, and
recognition rate.

Google
Scholar

[20] 2021 Journal of Physics:
Conference Series 2010–2019 Arabic and

others No Yes Yes Recognition
accuracy: yes No

Gives an overview of the
ArSLR studies in terms of input
devices, feature extraction and

classifier algorithms.

Google
Scholar

[18] 2023

Conference of
Mathematics,

Applied Sciences,
Information and
Communication

Technology

Not specified
Arabic, Iraqi

sign language
and others

No Yes No Recognition
accuracy: yes No

Presents techniques used in
sign language research and

shows the main classification of
the approaches.

Scopus
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Table 1. Cont.

Ref Year Journal/Conference Timeline SL Datasets Classifiers Feature
Extraction

Performance
Metrics Systematic Focus of the Study Source

[19] 2023

International
Symposium on

Networks,
Computers and

Communications
(ISNCC)

Not specified Arabic
Partial: Only

public
datasets

No No No No
Reviews the current ArSL

datasets and how to
improve them.

Scopus

[21] 2024

Indian Journal of
Computer Science
and Engineering

(IJCSE)

Not specified Arabic
Partial: Only

public
datasets

Yes Yes Accuracy No

Investigates the ArSLR studies
focusing on classifier

algorithms, feature extraction,
and input modalities. It also

shed light on the public
datasets in the field of ArSLR.

Google
Scholar

Our 2024 Sensors Journal 2014–2023 Arabic Yes Yes Yes Yes Systematic

A variety of ArSLR algorithms
are systematically reviewed in

order to determine their
efficacy and potential for

raising ArSLR performance.
Furthermore, the present and
future directions in the field of

ArSLR are examined,
emphasizing significant areas

of innovation and interest.

Yes means this aspect is fully covered, Partial means this aspect is partially covered, and No means this aspect is not covered.
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2.1.2. Providing Research Questions

This section discusses the fundamental questions to be investigated in the study. The
research questions are divided into three main groups:

• Questions about the used datasets
• Questions about the used algorithms and methods
• Questions about the research limitations and future directions.

Tables 2–4 display the questions along with their respective purposes.

Table 2. Research questions related to the used datasets.

No. Research Question Purpose

RQ.1

What are the characteristics of the datasets used in the selected papers?

To discover the quality
and characteristics of the

datasets utilized
for ArSLR.

RQ1.1 How many datasets are used in each of the selected papers?

RQ1.2 What is the availability status of the datasets in the reviewed papers?

RQ1.3 How many signers were employed to represent the signs in each dataset?

RQ1.4 How many samples are there in each dataset?

RQ1.5 How many signs are represented by each dataset?

RQ1.6 What is the number of datasets that include manual signs, non-manual
signs, or both manual and non-manual signs?

RQ1.7 What are the data acquisition devices that were used to capture the data
for ArSLR?

RQ1.8 What are the acquisition modalities used to capture the signs?

RQ1.9 Do the datasets contain images, videos, or others?

RQ1.10 What is the percentage of the datasets that represent alphabets, numbers,
words, sentences, or a combination of these?

RQ1.11 What is the percentage of the datasets that have isolated, continuous,
fingerspelling, or miscellaneous signing modes?

RQ1.12 What is the percentage of the datasets based on their data collection
location/country?

Table 3. Research questions related to the used algorithms and methods.

No. Research Question Purpose

RQ.2

What were the existing methodologies and techniques used in ArSLR?

To identify and compare the
existing ML/DL

methodologies and
algorithms used in different

phases of ArSLR.

RQ2.1 Which preprocessing methods were utilized?

RQ2.2 Which segmentation methods were applied?

RQ2.3 Which feature extraction methods were used?

RQ2.4 What ML/DL algorithms were used for ArSLR?

RQ2.5 Which evaluation metrics were used to measure the performance of
ArSLR algorithms?

RQ2.6 What are the performance results in terms of recognition accuracy?
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Table 4. Research questions related to the research limitations and future directions.

No. Research Question Purpose

RQ.3

What are the challenges, limitations, and future directions mentioned in the
reviewed papers?

To identify and analyze
limitations, challenges, and

future directions in the field of
ArSLR research.

RQ3.1 Has the number of research papers regarding ArSLR been increasing in
the past decade?

RQ3.4 What are the limitations and/or challenges faced by researchers in the
field of ArSLR?

RQ3.5 What are the future directions for ArSLR research?

2.1.3. Developing Review Protocol

Once the research questions and sub-questions were specified, the scope of the research
was defined using the PICO method proposed by Petticrew and Roberts [22]:

P: Population. Deaf individuals who use Arabic sign language to communicate.
I: Intervention. Recognition of Arabic sign language.
C: Comparison. The machine learning and deep learning algorithms adopted for

Arabic sign language recognition and the datasets developed for Arabic sign language.
O: Outcomes. Performance reported in the selected studies.

Search Strategy

To establish a systematic literature review, it is crucial to specify the search terms and
to identify the scientific databases where the search will be conducted. In 2019, a study
was carried out to evaluate the search quality of PubMed, Google Scholar, and 26 other
academic search databases [23]; the results revealed that Google Scholar is not suitable as a
primary search resource. Therefore, the most widely used scientific databases in the field of
research were selected for this systematic review, namely Web of Science, Scopus, and IEEE
Xplore Digital Library. Each database was last consulted on 2 January 2024.

A search string is an essential component of a systematic literature review for study
selection, as it restricts the scope and coverage of the search. A set of search strings was
created with the Boolean operator combining suitable synonyms and alternate terms: AND
restricts and limits the results, and OR expands and extends the search [24]. Moreover,
double quotes have been used to search for exact phrases. At this initial stage, the search
was limited to the title, abstract, and keywords of the papers. Each database has different
reserved words to indicate these three elements, such as TS in Web of Science, TITLE-ABS-
KEY in Scopus, and All Metadata in IEEE Xplore. The specific search strings used in each
scientific database are listed below:

Web of Science:
TS = (Arabic sign language) AND recognition
Scopus:
TITLE-ABS-KEY (“Arabic sign language” AND recognition)
IEEE Xplore:
((“All Metadata”: “Arabic sign language”) AND (“All Metadata”: recognition))

Inclusion and Exclusion Criteria

The selection process of the studies has a significant impact on the systematic review’s
findings. As a result, all studies that were found using the search strings were assessed to
see if they should be included in this review. The review excluded all studies that did not
fulfill all inclusion criteria. A study was excluded if it satisfied at least one of the exclusion
criteria. The inclusion criteria used in this systematic review are:

IN1: Papers must be peer-reviewed articles and published in journals.
IN2: Papers that are written in English.
IN3: Papers are published between January 2014 and December 2023.
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IN4: Papers must be primary studies.
IN5: Papers that use Arabic sign language as a language for recognition.
IN6: Papers that use machine learning and/or deep learning methods as a solution to

the problem of ArSLR.
IN7: Papers that include details about the achieved results.
IN8: Papers that mention the datasets used in their experiment.
We used several criteria to discard papers from the candidate set. The exclusion criteria

(EC) are as follows:
EC1: Papers that are conference proceedings, data papers, books, notes, theses, letters,

or patents.
EC2: Papers that are not written in English.
EC3: Papers that are published before January 2014 or after December 2023.
EC4: Papers that are secondary studies (i.e., review, survey).
EC5: Papers that do not use Arabic sign language as a language for recognition.
EC6: Papers that do not use machine learning or deep learning methods as a solution

to the problem of ArSLR.
EC7: Papers that do not include details about the achieved results.
EC8: Papers that do not mention the datasets used in their experiment.
EC9: Papers with multiple versions are not included; only one version will be included.
EC10: Duplicate papers found in more than one database (e.g., in both Scopus and

Web of Science) are not included; only one will be included.
EC11: The full text is not accessible.

Quality Assessment

It is deemed essential to assess the quality of the primary studies in addition to
inclusion/exclusion criteria to offer more thorough criteria for inclusion and exclusion,
to direct the interpretation of results, and to direct suggestions for further research [16].
In-depth assessments of quality are typically conducted using quality instruments, which
are checklists of variables that must be considered for each primary study. Numerical
evaluations of quality can be achieved if a checklist’s quality items are represented by
numerical scales. Typically, checklists are created by considering variables that might affect
study findings. A quality checklist aims to contribute to the selection of studies through
a set of questions that must be answered to guide the research. In the current study, a
scoring system based on the answers to six questions was applied to each study. These
questions are:

QA1: Is the experiment on ArSLR clearly explained?
QA2: Are the machine learning/deep learning algorithms used in the paper clearly described?
QA3: Is the dataset and number of training and testing data identified clearly?
QA4: Are the performance metrics defined?
QA5: Are the performance results clearly shown and discussed?
QA6: Are the study’s drawbacks or limitations mentioned clearly?
Each study obtained a score of three for each question: 0, 0.5, and 1, denoting no,

partially, and yes, respectively. A study was finally taken into consideration if it received a
score of 4 or more out of 6 on the previous questions.

2.2. Conducting the Systematic Literature Review

The search results and evaluation of the papers chosen for inclusion are discussed here.
Figure 4 summarizes the number of eligible papers and shows how many were eliminated
in each step.
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Figure 4. Steps of paper selection.

2.2.1. Selection of Primary Studies

The search for peer-reviewed papers was conducted in three large databases: Web of
Science, Scopus, and IEEE Xplore. The Web of Science, Scopus, and IEEE Xplore Digital
Library databases are estimated to be suitable because there are duplicate papers in the
search results, i.e., the same work appears in different databases at the same time. This
indicates the very high coverage of these scientific databases. These databases were
searched using predetermined search strings, as specified in the review protocol above.
There were 145 papers found in Web of Science and 202 and 99 in Scopus and IEEE
Xplore, respectively.

Of the 446 papers in the initial search, the exclusion criteria were applied automatically
to select eligible papers as follows: 303 papers were discarded because they were conference
proceedings, data papers, books, notes, theses, letters, or patents (EC1), not written in
English (EC2), published before January 2014 (EC3), and/or secondary studies, i.e., reviews,
surveys (EC4). At this stage, the number of remaining papers was 62, 74, and 7 in Web of
Science, Scopus, and IEEE Xplore, respectively.

Title-Level Screening Stage

Exclusion criteria EC9 and EC10 were applied to remove duplicate papers and multiple
versions. The titles were also screened to discard the papers that meet EC1, EC4, and EC5.
In this stage, we excluded 68 research papers; thus, the number of papers was lowered
to 75 eligible papers. Examples of research papers that were excluded in this stage are
presented in Table 5.
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Table 5. The reasoning behind the exclusion of some papers in the title-level screening stage.

Ref. Paper Title Reason for Exclusion

[25] Indian sign language recognition system using network
deconvolution and spatial transformer network EC5—Indian sign language recognition not ArSLR

[26] SignsWorld Atlas; a benchmark Arabic Sign Language database EC1—Data paper

[15] Image-Based and Sensor-Based Approaches to Arabic Sign
Language Recognition EC4—Review paper

Abstract-Level Screening Stage

In this stage, the abstracts for the 75 papers were screened to shorten paper reading
time. The paper is excluded if the abstract meets at least one of the exclusion criteria: EC5:
Papers that do not use Arabic sign language as a language for recognition and/or EC6:
Papers that do not use machine learning or deep learning methods as a solution to the
problem of ArSLR.

As a result of this screening, eight research papers were excluded, and 67 were
included in the full-text article scanning. Examples of research papers that were excluded
in this stage are included in Table 6.

Table 6. The reasoning behind the exclusion of some papers in the abstract-level screening stage.

Ref. Paper Title Reason for Exclusion

[27] A machine translation system from Arabic sign language
to Arabic

EC6—Paper does not use machine learning or deep learning
methods as a solution to the problem of ArSLR

[28] Isolated Video-Based Arabic Sign Language Recognition
Using Convolutional and Recursive Neural Networks

EC5—Paper does not use ArSL as a language for
recognition. Moroccan sign language recognition is used.
Although Moroccan is an Arabic delicate, Moroccan sign
language is different from the unified Arabic sign language.

Full-Text Scanning Stage

In this stage, the full texts of 67 papers are scanned. The paper is excluded if it satisfies
one of the following exclusion criteria,

EC5: Papers that do not use Arabic sign language as a language for recognition,
EC6: Papers that do not use machine learning or deep learning methods as a solution

to the problem of ArSLR,
EC7: Papers that do not include details about the achieved results,
EC8: Papers that do not mention the datasets used in their experiment,
EC9: Papers with multiple versions are not included; only one version will be

included, or
EC11: The full text is not accessible.
A total of Seven research papers were excluded in this stage, making the number of

studies for the next stage 60. Examples of the excluded research papers and the reasoning
for their exclusion are illustrated in Table 7.

2.2.2. Quality Assessment Results

This section presents the quality assessment results used to select relevant papers
based on the quality criteria defined in Section 2.1.3. Failure to provide information to meet
these criteria leads to a lower paper evaluation score. Papers with a score of 3.5 or lower
out of 6 are removed from the pool of candidates. As a result, only high-quality papers are
taken into consideration. Table 8 shows some example research papers from this stage and
elaborates on how and why they were included or excluded.
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Table 7. The reasoning behind the exclusion of some papers in the full-text scanning stage.

Ref. Paper Title Reason for Exclusion

[29] Supervised learning classifiers for Arabic
gestures recognition using Kinect V2

EC5—Paper does not use ArSL as a language for recognition. Egyption
sign language recognition is used. Although Egyption is an Arabic
delicate, Egyption sign language is different from the unified Arabic
sign language (ArSL).[30] Arabic dynamic gesture recognition using

classifier fusion

[31]
Intelligent real-time Arabic sign language
classification using attention-based inception
and BiLSTM

EC5—Paper does not use ArSL as a language for recognition. Saudi
sign language recognition is used. Saudi is an Arabic delicate, however;
Saudi sign language is different from the unified Arabic sign
language (ArSL).

[32] Arabic sign language intelligent translator

EC9—Papers with multiple versions are not included; only one version
will be included. The same methodology and results discussed in this
paper are presented in another paper published in 2019 and written by
the same authors [33].

[34] Mobile camera-based sign language to speech by
using zernike moments and neural network EC11—The full text is not accessible.

Table 8. The reasoning behind the exclusion or inclusion of some papers in the full-text article
screening stage.

Reference
Score

Total Score Included
QA1 QA2 QA3 QA4 QA5 QA6

Podder et al. [35] 1 1 1 1 1 1 6 Yes

Aldhahri et al. [36] 1 0.5 1 0 0.5 0 3 No

Out of 60 papers, 56 of them met the quality assessment criteria. The number of papers
that failed and passed these criteria is illustrated in Figure 5.

Figure 5. Number of papers passed and failed the quality assessment.

One of the reasons why some papers fail to pass the quality assessment phase is that
some papers did not explain their ArSLR methodology clearly and thoroughly. The other
reasons are an insufficient description of the utilized ML or DL algorithms and/or a lack
of information related to the used datasets, such as the number of training and testing
datasets. Missing identification of performance metrics and poor analysis and discussion
of the results also contributed to removing some papers from the pool of candidates.
Many of the studies included a detailed explanation of their methodology; however, some
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neglected to address the limitations and drawbacks of the techniques, which also affected
the assessment.

As seen in Figure 6, an increase has been observed in recent years, from 2017 to 2023,
in the research of ArSLR, which itself exhibits the significance of this investigation.

Figure 6. Number of eligible papers published per year.

Figure 7 reveals the number of publications for each category of ArSLR for the years
between 2014 and 2023. It can be seen that, over the years, fingerspelling recognition has
attracted more researchers, followed by isolated recognition and then continuous recogni-
tion. It is worth noting that a few of the selected papers have worked on more than one
category of ArSLR, and they belong to the category of miscellaneous recognition [37–39].

Figure 7. Number of publications for each category of ArSLR for the years between 2014 and 2023.

2.2.3. Data Extraction and Synthesis

After reading the full text, the author aims to extract the answers to the defined
research questions from each study of the 56 papers included in this systematic review. The
extracted data were synthesized to provide a comprehensive summary of the results. The
author used a test-retest strategy and reassessed a random sample of the primary studies
that were identified following the first screening in order to verify the consistency of their
inclusion/exclusion judgments.
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2.3. Reporting the Systematic Literature Review

Addressing the research questions and sub-questions listed in Tables 2–4 is the main
aim of this stage. The following section presents the literature review, answering questions
RQ1 through RQ3 and making a summary and synthesis of the data gathered from the
results of the selected studies.

3. Research Results

In this section, the answer to each research question is provided by summarizing and
discussing the results of the selected papers.

3.1. Datasets of Arabic Sign Language

To answer the first research question, RQ1: What are the characteristics of the datasets
used in the selected papers? Twelve research sub-questions have been answered. These
questions address different aspects and characteristics of the datasets utilized in the
selected papers.

Large volumes of data are necessary for ML/DL models to carry out certain tasks
accurately. One of the obstacles to the advancement of Arabic sign language recognition
research and development is the availability of datasets [27]. Despite the huge number
of sign language videos on the internet, recognition systems cannot benefit from these
unannotated videos.

Sign language datasets fall into three primary categories: fingerspelling, isolated signs,
and continuous signs. Fingerspelling datasets focus on the shape, orientation, and direction
of the finger. Sign language for numbers and alphabets belongs to this category, where the
signs are primarily static and performed with just fingers. Datasets for isolated words can
be either static (images) or dynamic (videos). Continuous sign language datasets consist of
videos of signers performing more than one sign word continuously. Combinations of the
other collections make up the fourth category of datasets, known as miscellaneous datasets.

Tables 9–12 summarize the main characteristics of the datasets in the reviewed papers
according to the category they represent. ArSL datasets for Arabic alphabets and/or
numbers are summarized in Table 9. Tables 10 and 11 describe ArSL datasets for words
and sentences, whereas Table 12 summarizes ArSL miscellaneous datasets. Rows shaded
in gray indicate methods that utilize wearable sensors.
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Table 9. Fingerspelling ArSL datasets. “PR” means Private dataset, “AUR” means Available Upon Request dataset, and “PA” means Publicly Available dataset.
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2001 Al-jarrah
dataset [40] [41] 2023 No AUR 60 1800 30 MS Camera RGB 128 × 128 pixels grey

scale images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Jordan

2015 ArASLRDB [42] [42] 2015 No PR - 357 38 MS Camera RGB 640 × 480 pixels saved
in jpg file format ✔ ✔ ✗ ✗ ✗ ✗ ✔ S Egypt 29 letters,

9 numbers

2015
The Suez Canal
University ArSL

dataset [43]

[43] 2015 No
AUR - 210 30 MS Camera RGB 200 × 200 Gray-scale

images
✔ ✗ ✗ ✗ ✗ ✗ ✔ S Egypt

7 images for
each letter

gesture[44] 2020 No

2016 ArSL [45]
[46] 2023 Yes

AUR - 350 14 MS Camera RGB 64 × 64 grey
scale images

✔ ✗ ✗ ✗ ✗ ✗ ✔ S Egypt
[47] 2023 Yes

2017 [48] [48] 2017 No PR 20 1398 28 MS

Microsoft Kinect V2 and Leap Motion
Controller (LMC) sensors (manufactured
by Leap Motion, Inc., a company based in

San Francisco, CA, USA. Leap Motion,
Inc. has since merged with Ultraleap, a

UK-based company)

Depth,
skeleton
models

All upper joints (hand’s
skeleton data). ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Saudi

Arabia

2018 [49] [49] 2018 No PR 30 900 30 MS Smart phone cameras RGB RGB ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Saudi
Arabia

2019 ArSL2018 [50,51]

[52] 2019 No

PA 40 54,049 32 MS
smart camera (iPhone 6S manufactured

by Apple Inc., headquartered in
Cupertino, CA, USA)

RGB
64 × 64 pixels gray

scale images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Saudi
Arabia

[53] 2020 No

[54] 2020 No

[38] 2020 YES

[55] 2020 No

[56] 2021 YES

[57] 2021 No

[58] 2022 No



Sensors 2024, 24, 7798 17 of 87
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[59] 2022 No

[60] 2022 No

[61] 2022 No

[47] 2023 Yes

[62] 2023 Yes

[63] 2023 Yes

[46] 2023 Yes

[64] 2023 No

[65] 2023 No

[66] 2023 No

2019
Ibn Zohr

University
dataset [67]

[63] 2023 Yes AUR - 5839 28 MS
professional Canon® camera

(manufactured by Canon Inc.,
headquartered in Ōta City, Tokyo, Japan).

RGB 256 × 256 pixels in
RGB colored images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Morocco

2020 [68] [68] 2020 No PR 10 300 28 MS RGB digital camera RGB 128 × 128 RGB images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Egypt

2020 [69] [69] 2020 No PR - 3875 31 MS Camera RGB 128 × 128 RGB images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Saudi
Arabia

125 images
for each letter

2021 [70] [70] 2021 No PR 7 4900 28 MS
Six 3-D IMU sensors (manufactured by
SparkFun Electronics, headquartered in

Boulder, CO, USA).
Raw data Gyroscopes and

accelerometers data ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Palestine

2021 [71] [71] 2021 Yes PR 10 22,000 44 MS Camera RGB RGB image ✔ ✔ ✗ ✗ ✗ ✗ ✔ S Iraq

32 letters,
11 numbers
(0:10), and
1 sign for

none

2021 [72] [72] 2021 Yes PR 10 2800 28 MS Webcam and smart mobile cameras RGB RGB images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Egypt Light
background
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2021 [72] [72] 2021 Yes PR 10 2800 28 MS Webcam and smart mobile cameras RGB RGB images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Egypt Dark
background

2021 [72] [72] 2021 Yes PR 10 1400 28 MS Webcam and smart mobile cameras RGB RGB images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Egypt

Images
made with a
right hand

and wearing
gloves,
white

background

2021 [72] [72] 2021 Yes PR 10 1400 28 MS Webcam and smart mobile cameras RGB RGB images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Egypt

Images
made with a

bare hand
“two hands”
and wearing
glove with
different

background

2021 [73] [73] 2021 No PR - 15,360 30 MS Mobile cameras RGB 720 × 960 × 3 RGB
images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Saudi

Arabia

2022 [74] [74] 2022 No PR 20+ 5400 30 MS Smart phone camera RGB RGB ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Saudi
Arabia

2023 [63] [63] 2023 Yes PR 30 840 28 MS Camera RGB 64 × 64 pixels gray
scale images ✔ ✗ ✗ ✗ ✗ ✗ ✔ S Iraq

50%
left-handed,
50% right-

handed
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Table 10. ArSL Datasets for isolated words. “PR” means Private dataset, “AUR” means Available Upon Request dataset, and “PA” means Publicly Available dataset.
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2007 Shanableh
dataset [75]

[76] 2019 Yes

AUR 3 3450 23 MS Video
camera RGB RGB video recorded at 25 fps with

320 × 240 resolution. ✗ ✗ ✔ ✗ ✔ ✗ ✗ D

United
Arab

Emirates
(UAE)

Words chosen
from the

greeting section
[77] 2020 No

[78] 2022 Yes

2015 EMCC database
(EMCCDB) [79] [79] 2015 No PR 3 1288 40 MS Camera RGB

30 frames per second for video frames
and the size of the frames is

640 × 480 pixels.
✗ ✗ ✔ ✗ ✔ ✗ ✗ D Egypt

2015
Dataset for

hands
recognition [80]

[80] 2015 YES PR 2 80 20 MS LMC Skelton joint
points Sequences of frames ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Egypt

2015

Dataset for
facial

expressions
recognition [80]

[80] 2015 YES PR 2 50 5 NMS Digital
camera RGB 70 × 70 RGB image ✗ ✗ ✔ ✗ ✔ ✗ ✗ S Egypt

5 basic facial
expressions:
happy, sad,

normal,
surprised, and

looking-up.

2015
Dataset for body

movement
recognition [80]

[80] 2015 YES PR 2 NM 21 NMS Digital
camera RGB 100 × 100 RGB image ✗ ✗ ✔ ✗ ✔ ✗ ✗ S Egypt

16 different
hand positions,
and 5 shoulder

movements.

2017 [81] [81] 2017 No PR 10 143 5 MS

Microsoft
Kinect V2
and LMC
sensors

Depth, skelton
models

All features of upper joints including
the hand’s skeleton ✗ ✗ ✔ ✗ ✔ ✗ ✗ S Saudi

Arabia

Words [Cruel,
Giant, Plate,

Tower,
Objection]

2018 [82] [82] 2018 YES PR 21 7500 150 MS &
NMS

Microsoft
Kinect V2

RGB video, depth
video, 3D skeleton

sequence,
sequence of hand
states, sequence of

face features.

Joints of the upper body part, which are
16 joints are used. ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Egypt

2018 [5] [5] 2018 No PR 450 30 MS Camera RGB Colored videos at a rate of 30 fps ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Egypt
30 daily

commonly used
words at school
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2019 [83] [83] 2019 No PR 2 2000 100 MS Front and
side LMCs. RGB Sequence of frames. ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Saudi

Arabia

2019 [76] [76] 2019 YES PR 3 7500 50 MS Microsoft
Kinect V2

RGB, depth, and
skeleton joints

The color images are saved into MP4
video, depth frames and skeleton joints

are saved into binary files.
✗ ✗ ✔ ✗ ✔ ✗ ✗ D Saudi

Arabia

2019
ArSL Isolated

Gesture
Dataset [33]

[33] 2019 No AUR 3 1500 100 MS Camera RGB Each video has a frame speed of
30 frames per second ✔ ✔ ✔ ✗ ✔ ✗ ✗ D Egypt

30 Alphabets,
10 numbers,

10 Prepositions,
pronouns and

question words,
10 Arabic life

expressions, and
40 Common

nouns and verbs.

2020 [84] [84] 2020 NO PR 5 440 44 MS LMC Skelton joint
points Sequences of frames ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Syria

29 signs are one
hand gestures,

and 15 signs are
two hand
gestures

2020 [85] [85] 2020 No PR 10 222 6 MS Kinect
sensor Depth Depth video frames ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Saudi

Arabia

Arabic Words
[Common-,

Protein, Stick,
Disaster,
Celebrity,
Bacteria]

2020 [38] [38] 2020 Yes PR - 288 10 MS Mobile
camera RGB RGB images ✗ ✗ ✔ ✗ ✔ ✗ ✗ S Egypt

2021 KArSL-33
[86,87] [78] 2022 Yes PA 3 4950 33 MS &

NMS Kinect V2 Depth, Skeleton
joint points, RGB RGB video format ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Saudi

Arabia

2021 mArSL [88,89]
[88] 2021 No

AUR 4 6748 50 MS &
NMS

Kinect V2
RGB, depth, joint
points, face, and

faceHD.
224 × 224 RGB video frames ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Saudi

Arabia[35] 2023 No
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2021

KArSL-100
[86,87] [78] 2022 Yes

PA

3 15,000 100

MS &
NMS

Kinect V2 RGB, depth,
skeleton joint

points

RGB video format

✔ ✔ ✔ ✗ ✔ ✗ ✗
S
&
D

Saudi
Arabia

30-digit signs,
39 letter signs,
and 31-word

signs.

KArSL-190
[86,87]

[78,
90] 2022 Yes 3 28,500 190 ✔ ✔ ✔ ✗ ✔ ✗ ✗

S
&
D

Saudi
Arabia

30-digit signs,
39 letter signs,
and 121-word

signs.

KArSL-502
[86,87] [90] 2022 Yes 3 75,300 502 ✔ ✔ ✔ ✗ ✔ ✗ ✗

S
&
D

Saudi
Arabia

30 digit and
signs, 39 letter

signs, and
433 sign words.

2022 [91] [91] 2022 No PR - 1100 11 MS - RGB RGB video format ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Saudi
Arabia

11 Words:
[Friend,

Neighbor,
Guest, Gift,

Enemy, To Smel,
To Help, Thank
you, Come in,

Shame, House]

2022 [92] [92] 2022 No PR 55 7350 21 MS Kinect
camera V2

RGB and Depth
video RGB video format ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Iraq

Words:
[Nothing,

Cheek, Friend,
Plate, Marriage,

Moon, Break,
Broom, You,

Mirror, Table,
Truth, Watch,

Arch, Successful,
Short, Smoking,
I, Push, stingy,

and Long]

2023 [93] [93] 2023 No PR 1 500 5 MS - - - ✗ ✗ ✔ ✗ ✔ ✗ ✗ S Saudi
Arabia

2023 [94] [94] 2023 No PR 72 8467 20 MS Mobile
camera RGB Videos ✗ ✗ ✔ ✗ ✔ ✗ ✗ D Egypt
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Table 11. ArSL Datasets for continuous sentences. “PR” means Private dataset, “AUR” means Available Upon Request dataset, and “PA” means Publicly
Available dataset.
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[95] 2015 No

2015

Tubaiz, Shanableh,
& Assaleh dataset

[95]

[96] 2019 Yes

AUR 1 400 sentences 800
words 40 MS

Two
DG5-VHand
data gloves
and (a video

camera in
training
phase)

Raw sensor data
(feature vectors)

for hand
movement and

hand
orientation

Sensor readings ✗ ✗ ✗ ✔ ✗ ✔ ✗ D UAE An 80-word lexicon was
used to form 40 sentences.

2018 [97] [97] 2018 No PR 7 1260 samples 42 MS Microsoft
Kinect V2

RGB, depth,
skeleton joints

For each sign, a sequence of
skeleton data consisted of

20 joint positions per frame is
recorded (formed from x, y,

and depth coordinates)

✗ ✗ ✔ ✔ ✗ ✔ ✗ D Egypt

Sentences containing
medical terms performed
by 7 signers (5 training,
2 testing). (20 samples

from different 5 signers
for each sign as a training
set and 10 samples from
different 2 signers as a

testing set)

2019
Self-acquired
sensor-based
dataset 2 [96]

[96] 2019 YES AUR 2 400 sentences 800
words. 40 MS

Two
Polhemus G4

motion
trackers

Raw data Motion tracker readings ✗ ✗ ✗ ✔ ✗ ✔ ✗ D Egypt

2019
Self-acquired
vision-based
dataset 3 [96]

[96] 2019 Yes

AUR 1
400 sentences

800 words. 40 MS Camera RGB
Videos with frame rate set to

25 Hz with a spatial resolution
of 720 × 528

✗ ✗ ✗ ✔ ✗ ✔ ✗ D

Egypt

-[98] 2023 No
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Table 12. ArSL Miscellaneous Datasets. “PR” means Private dataset, “AUR” means Available Upon Request dataset, and “PA” means Publicly Available dataset.

Ye
ar Dataset

Created or Used by

A
va

il
ab

il
it

y

#
Si

gn
er

s
(S

ub
je

ct
s)

Sa
m

pl
es

#
Si

gn
s

(C
la

ss
es

)

M
S/

N
M

S

D
at

a
A

cq
ui

si
ti

on
D

ev
ic

e

A
cq

ui
si

ti
on

M
od

al
it

ie
s

Im
ag

es
/V

id
eo

s
or

O
th

er
s? Collection Signing

Mode

St
at

ic
/D

yn
am

ic

Data
Collection

Loca-
tion/Country

Comments
Ref. Year

W
it

h
O

th
er

D
at

as
et

s?

A
lp

ha
be

ts

N
um

be
rs

W
or

ds

Se
nt

en
ce

s

Is
ol

at
ed

C
on

ti
nu

ou
s

Fi
ng

er
sp

el
li

ng
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Hands
skeleton

joint
points
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Alphabets: 28, Numbers:
11 (0–10), common
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3.1.1. RQ1.1: How Many Datasets Are Used in Each of the Selected Papers?

According to the results in Figure 8, we can see that a high percentage of the reviewed
papers, 76.79%, representing 43 papers, use one dataset in their experiments. Seven papers,
with a percentage of 12.5%, rely on two datasets to conduct their experiments. Three and
four datasets are utilized in four and one studies, with a percentage of 7.14% and 1.79%,
respectively. Only one study uses five datasets with a percentage of 1.79%.

Figure 8. Percentage of the reviewed studies based on the number of utilized datasets.

One of the following could be the rationale for using multiple datasets:

1. Incorporate different collections of sign language, for example, a dataset for letters
and a dataset for words.

2. Collect sign language datasets pertaining to many domains, such as health-related
words and greeting words.

3. Collect datasets representing different modalities, for example, one for JPG and the
other for depth and skeleton joints and/or different data acquisition devices.

4. Enhance the study by training and testing the model using more than one sign
language dataset and/or comparing the results.

5. Conduct user-independent sign language recognition, where the proposed mode is
tested using signs represented by different signers from those in the training set.

Table 13 summarizes the reasons behind the use of more than one dataset in the
reviewed studies.

Table 13. Reasons for utilizing more than one dataset in the reviewed studies.

No of
Datasets Ref. Reason for Utilizing

More Than One Dataset Comments

2

[76] Reason 2 & 3 Different modalities and sign words from different domains.

[38] Reason 1 Alphabet and words.

[56] Reason 4 Arabic and American alphabet sign language datasets.

[71] Reason 4 Arabic sign language for 32 letters, 11 numbers and none, and American
sign language for 27 letters, delete, space, and nothing.

[46]
Reason 5 Both datasets contain sign language representations for 14 letters. The

second dataset is entirely used for testing.[47]

[62] Reason 1 Alphabet and numbers.
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Table 13. Cont.

No of
Datasets Ref. Reason for Utilizing

More Than One Dataset Comments

3

[82] Reason 1, 2, 3 and 4
Arabic sign language for words, Indian sign language for common and
technical words, numbers and fingerspelling (alphabets), and Italian sign
language for words. All datasets have different modalities.

[96] Reason 3

A total of 40 Arabic sign language sentences created from 80 words lexicon
signs are captured in each dataset with different acquisition devices,
namely DG5-VHand data gloves, two Polhemus G4 motion trackers,
and camera.

[90] Reason 1, 2, 3 and 4

KArSL-502 and KArSL-190 constitute letters, numbers, and words
captured using Kinect V2 and stored in different modalities, RGB, depth,
and skeleton joint points. The third dataset is LSA64 (Argentinian Sign
Language), which contains only words captured by the camera and saved
as RGB.

[63] Reason 5 All the ArSL datasets are for letters, however, two of them are only used
for testing.

4 [72] Reason 4 & 5 All the ArSL datasets are for letters, however, only one of them is used for
testing.

5 [78] Reason 1, 2, 3, 4

KArSL-33, KArSL-100, and KArSL-190 constitute letters, numbers, and
words captured using Kinect V2 and stored in different modalities, RGB,
depth, and skeleton joint points. The fourth dataset, Kazakh-Russian sign
language (K-RSL), contains sign language for Kazakh-Russian words
captured by LOGITECH C920 HD PRO WEBCAM and saved as RGB,
skeleton joint points. The fifth dataset is for greeting words captured by
camera and saved as RGB.

3.1.2. RQ1.2: What Is the Availability Status of the Datasets in the Reviewed Papers?

We can divide the availability of the datasets in the reviewed papers into three main
groups: publicly available, available upon request, and self-acquired private datasets.
Figure 9 shows that self-acquired private datasets constitute the bulk of the reviewed
datasets, followed by datasets that can be obtained upon request and those that are publicly
available. Due to the lack of available upon request and publicly available datasets for
the fingerspelling, isolated, or miscellaneous datasets, the researchers who worked on
them had to build their own private ArSL datasets. On the contrary, around three-quarters
of the continuous datasets are available upon request, while the remaining dataset was
built privately.

Public and available upon-request datasets are discussed according to the dataset
category. Examples of each of the datasets are also presented where available.

Category 1: Fingerspelling Datasets

• Arabic Alphabets Sign Language (ArSL2018)

This publicly available dataset [50,51] consists of 54,049 images of ArSL alphabets
for 32 Arabic signs, performed by 40 signers of various age groups. Each alphabet (class)
has a different number of images. The RGB format was used to capture the images,
which had varying backgrounds, lighting, angles, timings, and sizes. Image preprocessing
was carried out to prepare for classification and recognition. The gathered images were
adjusted to a fixed dimension of 64 × 64 and converted into grayscale images, meaning
that individual pixels may have values ranging from 0 to 255. Figure 10 shows a sample of
the ArSL2018 dataset.
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Figure 9. Availability status of the reviewed datasets in each dataset category.

Figure 10. The ArSL2018 dataset, illustration of the ArSL for Arabic alphabets [48,49].

• Al-Jarrah Dataset

This dataset [40] is available upon request and contains gray-scale images. For every
gesture, 60 signers executed a total of 60 samples. Of the 60 samples available for each
motion, 40 were used for training, and the remaining 20 were used for testing.

For training purposes, 40 of the 60 samples for each gesture were used, while the
remaining 20 samples were used for testing. The samples were captured in various orien-
tations and at varying distances from the camera. Samples of the dataset are exhibited in
Figure 11.
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Figure 11. Samples of ArSL alphabets [39].

• The Suez Canal University ArSL Dataset

This dataset [43] consists of 210 grayscale ArSL images with size 200 × 200. These
images represent 30 letters, with seven images for each letter. Different rotations, lighting,
quality settings, and picture bias were all taken into consideration when capturing the
images. All images are centered and cropped to 200 × 200. These images were gathered
from a range of signers with varying hand sizes. This dataset is available upon request
from the researchers.

• ArSL Dataset

The 700 color images in this dataset [45], which is available upon request, show
the motions of 28 Arabic letters, with 25 images per letter. Various settings and lighting
conditions were used to take the images included in the dataset. Different signers wear-
ing dark-colored gloves and with varying hand sizes executed the actions, as shown in
Figure 12.

Figure 12. Samples of the ArSL Alphabet in the ArSL dataset [43].

• Ibn Zohr University Dataset

This dataset [67], which is available upon request, is made up of 5771 images for
28 Arabic letters. The color size of these images is 256 × 256 pixels.

Category 2: Isolated Datasets

• Shanableh Dataset

This dataset [75], which is available upon request, includes ArSL videos of 23 Ara-
bic gesture words/sentences that are signed by three distinct signers. The 23 gestures
were recorded in 3450 videos, with each gesture being repeated 150 times, thanks to the
50 repetitions of each gesture made by each of the three signers. Using no restrictions on
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background or clothing, the signer was recorded while executing the signs using an analog
camcorder. The final videos from each session were edited into short sequences that each
individually represented a gesture after being converted to digital video.

• KArSL-33

There are 33 dynamic sign words in the publicly available KArSL-33 dataset [86,87].
Each sign was executed by three experienced signers. By performing each sign 50 times by
each signer, a total of 4950 samples (33 × 3 × 50) were generated. There are three modalities
for each sign: RGB, depth, and skeleton joint points.

Category 3: Continuous Datasets

• Tubaiz, Shanableh, & Assaleh Dataset

This available upon-request dataset [95] employs an 80-word lexicon to create 40 sen-
tences with no restrictions on sentence structure or length. Using two DG5-VHand data
gloves, the sentences are recorded. The DG5-VHand glove is equipped with five integrated
bend sensors and a three-axis accelerometer, enabling the detection of both hand orienta-
tion and movements. The gloves are suitable for wireless operations and rely on batteries.
Information is transmitted, and sensor readings are collected between the gloves and a
Bluetooth-connected PC. Subsequently, the sentences that were obtained were divided and
assigned labels. A female volunteer, age 24, who is right-handed, offered to repeat each
sentence ten times. A total of 33 sentences need both hands for gesturing, whereas the
gestures for seven sentences can be made with just the right hand.

• Hassan, Assaleh, and Shanableh Sensor-Based Dataset

An 80-word lexicon was utilized to create 40 sentences in this available upon-request
dataset [96], with no restrictions on sentence structure or length. Two Polhemus G4 motion
trackers were employed to gather this dataset. These trackers offer six measurements:
roll (a, e, r) and azimuth, elevation, and coordinates for the Euler angle. Volunteers to
symbolize the signs included two signers.

• Hassan, Assaleh, and Shanableh Vision-Based Dataset

This available upon-request dataset [95] uses an 80-word lexicon to create 40 sentences
with no restrictions on sentence grammar or length. This dataset was obtained solely with
a camera; no wearable sensors were employed in the process. There was just one signer
who offered to perform the signs.

Category 4: Miscellaneous Datasets

• mArSL

Five distinct modalities—color, depth, joint points, face, and faceHD—are provided in
the multi-modality ArSL dataset [88,89]. It is composed of 6748 video samples captured
using Kinect V2 sensors, demonstrating fifty signs executed by four signers. Both manual
and non-manual signs are emphasized. An example of the five modalities offered for every
sign in mArSL is presented in Figure 13.

• KArSL-100

There are 100 static and dynamic sign representations in the KArSL-100 dataset [86,87].
A wide range of sign gestures were included in the dataset: 30 numerals, 39 letters, and
31 sign words. For every sign, there were three experienced signers. Each signer re-
peated each sign 50 times, resulting in an aggregate of 15,000 samples of the whole dataset
(100 × 3 × 50). For every sign, there are three modalities available: skeleton joint points,
depth, and RGB.
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Figure 13. The mArSL dataset, an example of the five modalities provided for each sign sample [88].

• KArSL-190

There are 190 static and dynamic sign representations in the KArSL-190 dataset [86,87].
The dataset featured a variety of sign gestures, including digits (30 signs), letters (39 signs),
and 121 sign words. A broad spectrum of sign gestures was incorporated into the dataset,
including 121 sign words, 30 number signs, and 39 letter signs. Each sign was executed by
three skilled signers. Each signer repeated each sign 50 times, resulting in 28,500 samples
of the dataset (190 × 3 × 50). For each sign, there are three modalities available: skeleton
joint points, depth, and RGB.

• KArSL-502

Eleven chapters of the ArSL dictionary’s sign words, totaling 502 static and dynamic
sign words, are contained in the KArSL dataset [86,87]. Numerous sign gestures were
incorporated in the dataset, including 433 sign words, 30 numerals, and 39 letters. For
every sign, there were three capable signers. Every signer repeated each sign 50 times,
resulting in 75,300 samples of the dataset (502 × 3 × 50). Each sign has three modalities:
RGB, depth, and skeletal joint points.

It is worth mentioning that public non-ArSL datasets were also utilized in a number
of reviewed studies along with ArSL datasets [56,71,78,82,90]. The purpose of these studies
was to apply the proposed models to these publicly available datasets and compare the
results with published work on the same datasets.

3.1.3. RQ1.3 How Many Signers Were Employed to Represent the Signs in Each Dataset?

The number of signers is one of the factors that impact the diversity of the datasets. In
the reviewed studies, the number of signers varies from one dataset to another. The results
show that the minimum number of signers is one in three datasets, whereas the highest
number of signers is 72 in only one dataset, an isolated word dataset. Figure 14 shows that
the majority of the ArSL datasets, with around 60%, recruit between one and ten signers.
More diversity is provided by ten ArSL datasets that are executed by 20 to 72 signers. The
number of signers who executed the signs is not mentioned or specified (NM) in any of the
other nine ArSL fingerspelling and isolated datasets.
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Figure 14. Number of datasets according to the number of signers.

3.1.4. RQ1.4 How Many Samples Are There in Each Dataset?

Training machine learning and deep learning algorithms require the presence of
datasets with a high volume of data or samples. Tables 9–12 show the number of samples
in each of the reviewed datasets. As Figure 15 reveals, a high number of samples are
found in the datasets that belong to the category of isolated words. The biggest dataset in
terms of the number of samples among all the reviewed datasets is KArSL-502 [86,87], with
75,300 samples. The second-biggest dataset is ArSL2018 [50,51], the fingerspelling dataset,
which contains 54,049 samples. This is followed by the datasets that represent isolated
words and fingerspelling. The dataset with the lowest sample size, 50, is the dataset for
five facial expressions [80], which belongs to the category of isolated words.

Figure 15. Number of samples in the datasets of reviewed papers for each dataset category.

3.1.5. RQ1.5 How Many Signs Are Represented by Each Dataset?

The number of signs differs based on the dataset category, as illustrated in Figure 16.
In fingerspelling datasets, the number of signs ranges from 14 letters representing the
openings of the Qur’anic surahs [46,47] to 38 representing letters and numbers [42], and
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44 representing letters, numbers, and none [71]. The signs for basic Arabic letters, 28 letters,
are represented by eight datasets. The remaining datasets in this category consist of signs
for 30, 31, and 38 basic and extra Arabic letters. Interestingly, the highest number of signs
is 502 in an isolated words dataset [86,87], as well as the lowest number of signs, five, is
found in isolated words datasets [80,81,93].

Figure 16. Number of datasets for each number of signs in different categories.

3.1.6. RQ1.6 What Is the Number of Datasets That Include Manual Signs, Non-Manual
Signs, or Both Manual and Non-Manual Signs?

Tables 9–12 show the type of sign captured in each reviewed dataset. The type of
sign can be a manual sign (MS), represented by hand or arm gestures and motions and
fingerspelling; non-manual signs (NMS), such as body language, lip patterns, and facial
expressions; or both MS and NMS. Figure 17 illustrates that the majority of the signs in
all categories—except miscellaneous—are manual signs. In fingerspelling and continuous
sentence datasets, all the signs are manual. Non-manual signs are represented by only two
isolated word datasets. Both sign types are represented by three isolated word datasets
and one miscellaneous dataset.

Figure 17. Number of datasets representing manual signs (MS), non-manual signs (NMS), and both
signs in each dataset category.



Sensors 2024, 24, 7798 32 of 87

3.1.7. RQ1.7 What Are the Data Acquisition Devices That Were Used to Capture the Data
for ArSLR?

Datasets for sign language can be grouped as sensor-based or vision-based, depending
on the equipment used for data acquisition. Sensor-based datasets are gathered by means
of sensors that signers might wear on their wrists or hands. Electronic gloves are the most
utilized sensors for this purpose. One of the primary problems with sensor-based recogni-
tion methods was the need to wear these sensors while signing, which led researchers to
turn to vision-based methods. Acquisition devices with one or more cameras are usually
used to gather vision-based datasets. One piece of information about the signer is provided
by single-camera systems, such as a color video stream. Multiple cameras, each providing
distinct information about the signer, such as depth and color information, are combined to
produce a multi-camera gadget. One of these devices that can provide different types of
information, like color, depth, and joint point information, is the multi-modal Kinect.

The majority of the reviewed ArSL datasets use cameras to capture the signs, followed
by Kinect and leap motion controllers (LMC), as shown in Figure 18. Wearable sensor-based
datasets [70,95,96] use devices like DG5-VHand data gloves, Polhemus G4 motion trackers,
and 3-D IMU sensors to capture the signs. These three acquisition devices are the least used
among all the devices due to the recent tendency to experiment with vision-based ArSLR
systems. No devices were specified in two of the datasets.

Figure 18. Data acquisition devices used to capture the data in the ArSL dataset.

3.1.8. RQ1.8 What Are the Acquisition Modalities Used to Capture the Signs?

As depicted in Figure 19, the most popular acquisition modality for the datasets that
belong to fingerspelling and isolated categories is RGB. Raw sensor data (feature vectors)
is mostly used in continuous datasets, whereas RGB, depth, and skeleton joint points are
the most popular in the category of isolated word datasets. The least used acquisition
modalities for fingerspelling datasets are depth, skeleton models, and raw sensor data. For
the other dataset categories, the least used modalities are distributed among different types
of acquisition modalities.
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Figure 19. Acquisition modalities used to capture the signs in the ArSL dataset.

3.1.9. RQ1.9 Do the Datasets Contain Images, Videos, or Others?

As illustrated in Figure 20, almost all fingerspelling datasets—except two—contain
images. Videos are the content of around 74% of the isolated datasets, followed by images
and others. Only one continuous dataset contains videos, while the remaining continuous
datasets contain different content from images and videos, such as sensor readings. All the
miscellaneous datasets contain videos only.

Figure 20. Contents of ArSL datasets, images, videos, or others.

3.1.10. RQ1.10 What Is the Percentage of the Datasets That Represent Alphabets, Numbers,
Words, Sentences, or a Combination of These?

ArSL datasets can be used to represent alphabets, numbers, words, sentences, or
combinations of them. As demonstrated in Figure 21, the highest percentage of the reviewed
ArSL datasets, roughly 37.50%, constitute words. This is followed by 35.42% of the datasets
that represent alphabets. Combinations of alphabets, numbers, and words are represented
by 10.42%. A minimum number of ArSL datasets are used to represent sentences, alphabets
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and numbers, words and sentences, and alphabets, numbers, words, and sentences with
percentages of 8.33%, 4.17%, 2.08%, and 2.108%, respectively.

Figure 21. Percentages of alphabets, numbers, words, sentence datasets, and combinations of them.

3.1.11. RQ1.11 What Is the Percentage of the Datasets That Have Isolated, Continuous,
Fingerspelling, or Miscellaneous Signing Modes?

With a percentage of 47.92%, isolated mode is regarded as the most prevalent mode,
followed by fingerspelling signing (39.58%) and then continuous signing mode (8.33%), as
shown in Figure 22. With 4.17%, the category involving miscellaneous signing modes has
the least amount of work accomplished in this area.

Figure 22. Percentages of the datasets based on the signing mode, fingerspelling, isolated, continuous,
and miscellaneous.
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3.1.12. RQ1.12 What Is the Percentage of the Datasets Based on Their Data Collection
Location/Country?

Figure 23 illustrates the distribution of the ArSL dataset collection across different
countries. The figure shows that Egypt is the largest contributor to the ArSL dataset
collection, accounting for 43.75%. Saudi Arabia follows with a significant contribution
of 37.50%. Together, these two countries make up the majority of the dataset collection,
totaling 81.25%. Iraq and the UAE contribute moderately to the dataset, with 6.25% and
4.17%, respectively. Jordan, Morocco, Palestine, and Syria each contribute a small and equal
share of 2.08%, highlighting their relatively minor involvement. This distribution suggests
the need to expand dataset collection efforts to the underrepresented countries to ensure a
broader and more balanced representation of ArSL datasets. It might also reflect potential
gaps in resources or interest in ArSL-related initiatives in these regions.

Figure 23. Distribution of the datasets based on their data collection location/country.

3.2. Machine Learning and Deep Algorithms Used for Arabic Sign Language Recognition

To address the second research question, RQ2: “What were the existing methodologies
and techniques used in ArSLR?” six sub-questions were explored. These questions examine
different phases of the ArSLR methods discussed in the reviewed papers, including data
preprocessing, segmentation, feature extraction, and the recognition and classification of
signs. The answers to each sub-question are analyzed across various ArSLR categories,
such as fingerspelling, isolated words, continuous sentences, and miscellaneous methods.
Tables 14–17 provide a concise summary of the reviewed studies for each category. Rows
shaded in gray indicate methods that utilize wearable sensors.



Sensors 2024, 24, 7798 36 of 87

Table 14. Summary of fingerspelling ArSLR research papers.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and
Training
Methodology

Signing
Mode

2015 [42] Transform to YCbCr,
Image normalization.

Skin detection,
background removal
techniques.

Feature extraction through
observation detection and
then creation of
observation vector

HMM. This algorithm
divides the rectangle
surrounding by the hand
shape into zones.

Accuracy.
100% recognition
accuracy for
16 zones.

Training: 70.87%
(253 images), and
Testing: 29.13%
(104 images).

Signer-
dependent

2015 [43] - -
SIFT to extract the features
and LDA to reduce
dimensions.

SVM, KNN,
nearest-neighbor
(minimum distance)

Accuracy.
SVM shows the
best accuracy
around 98.9%.

Different
partitioning
methods were
experimented

Signer-
dependent

2017 [48]

Remove observations with
rows that had same values,
and rows that had multiple
missing values or null.

-

Two feature types:

− Type 1: three angles
for each hand bone
(angles between the
bone and the three
axes of the
coordinate system).

− Type 2: one angle
between each of the
two bones.

SVM, KNN, and RF. Accuracy, and
AUC.

SVM produced a
higher overall
accuracy =
96.119%.

Training: 75%
(1047 observations),
Testing: 25%
(351 observations).

Signer-
dependent

2018 [49] Transform the color images
into gray level images.

Skin detection to extract
the hand region from the
background.

HOG, EHD, GLCM, DWT,
and LBP. One versus all SVM. Precision, Recall,

Accuracy.

Best accuracy was
63.5% for one
ersus all SVM
using HOG.

Not Mentioned Signer-
dependent

2019 [52]

− Resize images to fit
each pretrained CNNs
image input layer.

− Image data
augmentation.

-

AlexNet, SqueezeNet,
VGGNet16, VGGNet19
GoogleNet, DenseNet,
MobileNet and ResNet 18,
ResNet50, ResNet101,
InceptionV3

AlexNet, SqueezeNet,
VGGNet16, VGGNet19
GoogleNet, DenseNet,
MobileNet and ResNet 18,
ResNet50, ResNet101,
InceptionV3.

Accuracy, Error
Rate, Sensitivity,
Specificity,
Precision, F1 Score,
MCC, Kappa,
confusion matrix.

ResNet18
achieved highest
accuracy with
99.52%.

Training: 90%
(48,644 images),
Testing: 210%
(5405 images)

Signer-
dependent

2020 [53]

− Remove noise.
− Grayscale conversion.
− Resize each image to

64 × 64 pixels.
− Normalization.

- CNN CNN Accuracy, Loss.
Best accuracy
obtained was
92.9%.

Training: 80%
(43,239 images),
Testing: 20%
(10,810 images)

Signer-
dependent
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Table 14. Cont.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and
Training
Methodology

Signing
Mode

2020 [68]

− Resize images to
128 × 128 pixels.

− Images conversion
into a neutrosophic
image.

− Gaussian filter to deal
with the noise.

Global thresholding
technique.

The feature extraction for
neutrosophic images by
GLCM is based on pixel
and their neighbors.

Clustering by Fuzzy
c-means algorithm. Accuracy. Best accuracy

obtained was 91%

Training: 80%
(20,480 images),
Testing: 20%
(5120 images)

Signer-
dependent

2020 [54]

− Random
under-sampling to
reduce the dataset
imbalance.

− Data augmentation.

- Fine-tuned VGG16, and
ResNet152.

Fine-tuned VGG16, and
ResNet152. Accuracy.

Best accuracy for
VGG16 was
99.26% and for
ResNet152 was
99.57%.

After resampling:
Training: 80%
(20,480 images),
Testing: 20%
(5120 images).

Signer-
dependent

2020 [69]
− Resize images to 128

× 128 RGB images.
− Data augmentation.

- CNN CNN

Accuracy, Loss
(categorical
cross-entropy),
confusion matrix.

Best accuracy
obtained was 90%

Training: 80%
(3100 images),
Testing: 20%
(775 images).

Signer-
dependent

2020 [44]
− Resize images to

32 × 32 pixels.
− Normalization.

-
Restricted Boltzmann
machine (DBN-based)
feature extraction.

DBN followed by SoftMax,
and DBN followed
by SVM.

Accuracy,
Sensitivity,
Specificity,
Precision, F-1
measure,
Error Rate.

Deep
belief network
(DBN) with a
SoftMax achieved
best accuracy
of 83.32%

Training: 50%,
Testing: 50%.

Signer-
dependent

2020 [55]

− Transform images to
grayscale
64 × 64 pixels.

− Normalization.
− Convert class labels to

one-hot
encoding vectors.

Deep CNN. Deep CNN.

CNN with four
convolutional layers, four
max pooling layers, and
five dropout layers.

Accuracy, training
time and loss
(categorical
cross-entropy)

Best obtained
accuracy was
97.6%.

Training: 60%,
Validation: 20%,
Testing: 20%.

Signer-
dependent
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Table 14. Cont.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and
Training
Methodology

Signing
Mode

2021 [72]

− Convert to grayscale
image.

− Resize to a 640 ×
480-pixel image.

− Apply filtering
methods to remove
noise.

Implement global
threshold method, then,
edge detection technology
using a Sobel filter method.
After that, implement
hand edge detection.

Hand shape-based
description.

C4.5, NB, and KNN
and MLP.

Accuracy,
confusion matrix,
prediction scale
(Kappa statistic)
and RMSE.

KNN obtained the
best accuracy
of 99.5%.

Dataset 1: 100%
training
(2800 images),
Dataset 2: 100%
training
(2800 images),
Dataset 3: 100%
training
(1400 images),
Dataset 4: 100%
testing
(1400 images).

Signer-
independent

2021 [71]

− Resize images to 100
× 100.

− Normalize images.
− Image augmentation
− The augmentation of

data for the dynamic
sign (noise salt and
paper and blurring
images with filters
gaussian, median,
averaging and
morphological
operation erosion and
dilation of the
dataset).

Single models:
DenseNet121, VGG16,
RESNet50, MobileNetV2,
Xception, Efficient B0,
NASNetMobile, and
InceptionV3.
Multi-models:
DenseNet121 model and
VGG16 model, RESNet50
& MobileNetV2,
Xception&Efficient B0,
NASNetMobile &
InceptionV3, DenseNet121
& MobileNetV2, and
DenseNet121&RESNet50.

Single models:
DenseNet121, VGG16,
RESNet50, MobileNetV2,
Xception, Efficient B0,
NASNetMobile, and
InceptionV3.
Multi-models:
DenseNet121 model and
VGG16 model, RESNet50
& MobileNetV2,
Xception&Efficient B0,
NASNetMobile &
InceptionV3, DenseNet121
& MobileNetV2, and
DenseNet121&RESNet50.

Single models:
DenseNet121, VGG16,
RESNet50, MobileNetV2,
Xception, Efficient B0,
NASNetMobile, and
InceptionV3.
Multi-models:
DenseNet121 model and
VGG16 model, RESNet50
& MobileNetV2,
Xception&Efficient B0,
NASNetMobile &
InceptionV3, DenseNet121
& MobileNetV2, and
DenseNet121&RESNet50.

Accuracy,
precision, recall,
F-1 measure,
confusion matrix.

Single model: the
DenseNet121
obtained the best
accuracy with
100%.
Multi-model: the
DenseNet121 &
VGG16
multi-model CNN
is the best with
accuracy = 100%.

Self-acquired
dataset: Training:
80%
(176,000 images),
Validation: 10%
(22,000 images),
and Testing: 10%
(22,000 images).
ASL standard
dataset: Training:
80%
(69,600 images),
Validation: 10%
(8700 images), and
Testing: 10%
(8700 images).

Signer-
dependent

2021 [73] Resize images to 224 × 224.

Enhancing ROI pooling
layer performance in
VGG16 based on Faster
R-CNN and
ResNet18-based on Faster
R-CNN.

− VGG16 based on
Faster R-CNN,

− ResNet18-based on
Faster R-CNN.

− VGG16-Faster
Region-based CNN
(R-CNN),

− ResNet18-Faster
Region-based CNN
(R-CNN).

Accuracy,
precision, recall,
F-1 measure,
confusion matrix.

ResNet-18-Faster
Region-based
CNN (R-CNN)
obtained higher
accuracy with
93.4%.

Training: 60%
(12,240 images),
Validation: 20%
(3060 images),
Testing: 20%
(3060 images).

Signer-
dependent
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Table 14. Cont.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and
Training
Methodology

Signing
Mode

2021 [57]
All images are normalized.
Then, the images are
standardized.

ArSL-CNN, ArSL-CNN +
SMOTE, ArSL-CNN +
RMU, and ArSL-CNN +
RMO.

ArSL-CNN, ArSL-CNN +
SMOTE, ArSL-CNN +
RMU, and ArSL-CNN +
RMO.

ArSL-CNN, ArSL-CNN +
SMOTE, ArSL-CNN +
RMU, and ArSL-CNN +
RMO.

Accuracy, and
confusion matrix.

ArSL-CNN +
SMOTE obtained
higher accuracy
with 97.29%.

Training: 60%,
Validation: 20%,
Testing: 20%.

Signer-
dependent

2021 [56]
− Data augmentation.
− Normalization.

CNN-2 (two hidden
layers), and CNN-3 (three
hidden layers).

CNN-2 (two hidden
layers), and CNN-3 (three
hidden layers).

CNN-2 (two hidden
layers), and CNN-3 (three
hidden layers).

Accuracy,
precision, recall,
F-1 measure,
confusion matrix.

CNN-2 produced
the best results
(accuracy of
96.4%) for the
ArSL dataset.
CNN-3 achieved
an accuracy of
99.6% for the ASL
dataset.

ArSL2018:
Training: 49%
(20,227 images),
Validation: 21%
(8669 images),
Testing: 30%
(12,480 images).
ASL dataset:
Training: 60%
(20,283 images),
Validation: 20%
(7172 images),
Testing: 20%
(7172 images).

Signer-
dependent

2022 [58] Resize images. ROI using experimented
models

AlexNet, VGG16,
ResNet50, and
EfficientNet.

AlexNet, VGG16,
ResNet50, and
EfficientNet.

Accuracy, and loss
(categorical
cross-entropy).

AlexNet had the
highest accuracy
at 94.81%.

Training: 80%,
Testing: 20%.

Signer-
dependent

2022 [74]

− Reduce image size to
224 × 224 pixels.

− Data augmentation.
Lightweight EfficientNet
Models

Lightweight EfficientNet
Models

Lightweight EfficientNet
Models with different
settings.

Accuracy,
precision, recall,
F-1 measure,
confusion matrix,
and loss
(cross-entropy).

Lightweight
EfficientNet
model
outperformed the
other models,
with accuracy of
94.30%.

Training: 80%
(4320 images),
Testing: 10%
(540 images),
Validation: 10%
(540 images).

Signer-
dependent

2022 [59] Data augmentation. Sobel operator method. AlexNet, VGGNet and
GoogleNet/Inception.

AlexNet, VGGNet and
GoogleNet/Inception
models.

Accuracy. VGGNet was the
best with 97%.

Training: 80%,
Testing: 20%.

Signer-
dependent
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Table 14. Cont.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and
Training
Methodology

Signing
Mode

2022 [60]

− Resize images to
64 × 64 pixels.

− Convert to RGB
images.

− Median filter for noise.
− Data augmentation.

ResNet50 and
MobileNetV2 together.

ResNet50 and
MobileNetV2 together.

ResNet50 and
MobileNetV2 together.

Accuracy,
precision, recall,
F1-score,
confusion matrix.

Accuracy = 97.0%. Training: 80%,
Testing: 20%.

Signer-
dependent

2022 [61]

− Remove class
imbalance.

− Resize images to
32 × 32 pixels.

− Data augmentation.
− Data normalization.

EfficientNetB4 EfficientNetB4

Xception, VGG16,
Resnet50, InceptionV3,
MobileNet and
EfficientNetB4

Accuracy,
precision, recall,
F-score.

EfficientNetB4
had best accuracy
with 95.0%

Training: 80%,
Testing: 20%.

Signer-
dependent

2023 [46]

− Convert images to
64 × 64 grayscale
images.

− Standardize Images.

Hand gesture detection
using QSLRS-CNN model. QSLRS-CNN model

100 Epochs: QSLRS-CNN,
QSLRS-CNN with RMU,
QSLRS-CNN with RMO,
QSLRS-CNN
with SMOTE.

Accuracy, recall,
precision, F-score,
confusion matrix.
Training time.

Best result
achieved by
QSLRS-CNN with
SMOTE (97.67%).

ArSL2018:
Training: 80%,
testing: 20%.
ArSL dataset:
Testing: 100%.

Signer-
dependent

2023 [64] -

− VGG, ResNet,
MobileNet,
Xception, Inception,
DenseNet,
InceptionResNet,
BiT, and vision
transformers (ViT &
Swin).

− CNNs.

− VGG, ResNet,
MobileNet,
Xception, Inception,
DenseNet,
InceptionResNet,
BiT, and vision
transformers (ViT &
Swin).

− CNNs.

− Transfer learning
with pretrained
models: VGG,
ResNet, MobileNet,
Xception, Inception,
DenseNet,
InceptionResNet,
BiT, and vision
transformers (ViT
and Swin).

− Deep learning
using CNNs.

Accuracy, AUC,
precision, recall,
F1-score and loss

ResNet and
InceptionResNet
obtained a
comparably high
accuracy of 98%.

Not mentioned Signer-
dependent

2023 [65]

− Resize images to 64 ×
64 pixels.

− Image normalization.
− Data augmentation.

Six pretrained fine-tuned
models, VGG16,
MobileNetV2, Xception,
InceptionV3, ResNet50V2,
ResNet152.

Six pretrained fine-tuned
models, MobileNetV2,
VGG16, InceptionV3,
Xception, ResNet50V2,
ResNet152.

Six distinct pretrained
fine-tuned models,
MobileNetV2, VGG16,
InceptionV3, ResNet50V2,
Xception, ResNet152.

Accuracy and
Loss.

InceptionV3 and
achieved 100%
accuracy.

Training: 70%,
Testing: 30%.

Signer-
dependent
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Table 14. Cont.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and
Training
Methodology

Signing
Mode

2023 [66]

− Resize Images to
64 × 64.

− Rescale images to
32 × 32.

− Data Augmentation.

CNN-based EfficientNetB3
with encoder and decoder
network.

CNN-based EfficientNetB3
with encoder and decoder
network.

CNN-based EfficientNetB3
with encoder and decoder
network.

Accuracy, recall,
precision, F1-score,
confusion matrix,
loss
(cross-entropy).

Accuracy with
encoder and
decoder = 99.26%
(Best accuracy).

70% training,20%
validation and
10% testing

Signer-
dependent

2023 [41]
Images are converted to
128 × 128 grayscale
images.

-

− Individual
descriptors: DWT,
DT-CWT, HOG.

− Combined
descriptors:
DWT + HOG,

− DT-CWT + HOG.

Three variants of the ANN:
PNN, RBNN, and MLP,
and SVM and RF.

Accuracy,
processing time

Best Accuracy was
for DT-CWT +
HOG + SVM
(One-against-all)
with 94.89%.

50% training,
50% testing

Signer-
dependent

2023 [47]

Convert Images to
64 × 64 grayscale images.
-Standardize images using
0–1-pixel values.

Hand gesture detection
using QSLRS-CNN model QSLRS-CNN model

− 100 Epochs:
QSLRS-CNN,
QSLRS-CNN-RMU,
QSLRS-CNN-RMO,
QSLRS-CNN-
SMOTE.

− 200 Epochs:
QSLRS-CNN,
QSLRS-CNN-RMU,
QSLRS-CNN-RMO,
QSLRS-CNN-
SMOTE.

Accuracy,
precision, recall,
F-score, confusion
matrix, Training
time.

100 Epochs:
QSLRS-CNN-
SMOTE: 97.67%.
200 Epochs:
QSLRS-CNN-
SMOTE: 97.79%.

ArSL2018:
Training: 80%,
Testing: 20%.
ArSL dataset:
Testing: 100%.

Signer-
dependent

2023 [62] Convert images into
HSV color space.

Hand edge detection
recognize hand shapes
based on detecting human
skin colors and
mathematical morphology
techniques.

VGG16, InceptionV3,
Xception, MobileNet,
NASNetLarge, VGG19,
InceptionResNetV2,
DenseNet121, ResNet50,
DenseNet169,
DenseNet201,
NASNetMobile.

Transfer learning based on
the majority voting of the
12 model’s predictions:
VGG16, VGG19, ResNet50,
InceptionV3, Xception,
InceptionResNetV2,
MobileNet, DenseNet121,
DenseNet169,
DenseNet201,
NASNetLarge,
NASNetMobile.

Accuracy, recall,
precision, F-score.

Best accuracy was
for transfer
learning CNN
with majority
voting = 93.7%

ArSL2018:
Training: 90%,
Validation: 10%.
ASL-Digits-
dataset: Training:
90%, Validation:
10%.

Signer-
dependent
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Table 14. Cont.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and
Training
Methodology

Signing
Mode

2023 [63]
− Resize images to

64 × 64.
− Data augmentation.

VGG16, VGG19 fine
tuning block4 and block5.

VGG16, VGG19 fine
tuning block4 and block5.

VGG16, VGG19 fine
tuning block4 and block5.

accuracy, top-5
accuracy, Loss

VGG-16, fine
tuning block4
obtained best
accuracy = 96.51%.

ArSL2018:
Training: 70%,
Testing: 30%.
Self-built dataset:
Testing: 100%.
Ibn Zohr
University dataset:
Testing: 100%

Both

Table 15. Summary of isolated words ArSLR research papers.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and Training
Methodology

Signing
Mode

2015 [79] Transform to YCbCr.
Image normalization.

Skin detection,
background removal
techniques.

Face and Hand Isolation
and feature extraction
through observation
detection and calculation
using proposed EMCC.

EMCC and HMM. Accuracy Best
accuracy = 98.8%

Training: 81.13%
(1045 videos), and
Testing: 18.87%
(243 videos).

Signer-
dependent

2015 [80]
PCNN signature to
decrease the random noise
and add image signature.

-

Leap motion sequences for
hand signs. ANN is used
with PCA to extract
features from facial
expressions and
body movement.

ANN with MLP for
hand signs recognition.
ANN with PCA and
MLP for facial
expressions and
body movement.

Accuracy

Facial expressions:
90%, body
movement: 86%,
hand sign: 90%,
integrated sign
testing: 95%

- Signer-
dependent

2017 [81]
Remove all the null values
and any features with
zero variance.

-

Two histograms to show
two types of features:
Type1: contains 3-angles
for each hand joint.
Type2: is for one angle
between two vectors.

SVM with default
parameters and linear
kernel (SVMLD), SVM
with tuned parameters
and linear kernel
(SVMLT), SVM with
default parameters
and radial
kernel (SVMRD), and
SVM with tuned
parameters and radial
kernel (SVMRT).

Accuracy
SVMLD obtained
best accuracy with
97.059%.

Training: 75% (109),
Testing: 25% (34)

Signer-
dependent
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Table 15. Cont.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and Training
Methodology

Signing
Mode

2018 [82]

− For hand shapes, the
RGB image
conversion to
greyscale.

− For hand motion,
normalize
three-dimensional
skeleton joint
coordinates.

The hand shape
segmentation is based on
the depth and position of
the hand joints
(thresholding).

− Hand shape
descriptor using
HOG and
dimensionality
reduction
using PCA.

− Motion+ descriptor:
3D skeleton data
and Cov3DJ+
descriptor.

CCA for hand shape
matching and RF.

Accuracy, and
confusion matrix.

The proposed
algorithm
achieves an
accuracy of
55.57%.

Training: 55.99%
(7754 gestures),
validation: 24.28%
(3362 gestures), and
testing: 19.80%
(2742 gestures).

Signer-
independent

2018 [5] -

− Dynamic skin
detector based on
face skin tone color
to segment hands.

− A skin-blob tracking
to track hands.

Geometric features of the
spatial domain are used. Euclidean distance Accuracy,

confusion matrix.
Recognition
accuracy = 97%.

Training: 66.67%
(300 videos), Testing:
33.33% (600 videos).

Signer-
independent

2019 [83] - - GMM, and LDA.

Results from: GMM
and LDA were
combined individually
using DS theory.

Accuracy Accuracy = 91.83%

Training: 70%
(1400 samples),
Testing: 30%
(600 samples).

Signer-
dependent

2019 [33]
Resize segmented key
frames (images) into
201 × 201 pixels.

− Video segmentation:
Key Frames
Extraction (KFE)
and Shot Boundary
Detection (SBD)
algorithms.

− Video key
frames: RoI.

Intensity histogram and
GLCM feature vectors.

Weighted Euclidean
distance measure Accuracy System

accuracy = 95.80% - Signer-
dependent

2019 [76] -

Segmenting videos to key
frames (VidSeg), and
KeyFeat algorithm to
detect hands (optical flow
and thresholding).

MFT, LBP, HOGs, and
HOG-HOF. Compare
different techniques
on Database-01.

HMM using GRT
toolkit. K-means
clustering algorithm to
quantize the
features vector.

Accuracy and
overlap ratio.

The best accuracy
is achieved by
HMM with MFT
and HOG features
with 99.11%
and 99.33%.

Database-01: not
stated, Database-02:
Testing 100%.

Signer-
independent



Sensors 2024, 24, 7798 44 of 87

Table 15. Cont.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and Training
Methodology

Signing
Mode

2020 [84] - - Feature vectors extracted
by LMC. LSTM Accuracy,

precision
One hand:89%,
two hands: 96%.

Training: 80% (352,
232 for one hand &
120 for two hands),
Testing: 20% (88, 58 for
one hand, 30 for
two hands).

Signer-
dependent

2020 [85]

Data interpolation to
equalize the number of
captured frames for the
same gesture word.

-

Data interpolation in
feature extraction (bone
directions and joint angles
were the main features).

Different settings of 3
algorithms (RF, SVM,
KNN), KNND, KNNT,
RFD, RFDS, RFT,
RFTS, SVMLD,
SVMLT, SVMRD,
SVMRT, SVMRTS.

LogLoss, AUC,
Accuracy.

The best accuracy
was achieved by
SVMRTS
with 83%.

Not mentioned Signer-
dependent

2020 [77] - DeepLabv3
Hand shape features:
CSOM. The sequence of
feature vectors: BiLSTM.

BiLSTM Accuracy,
confusion matrix. Accuracy: 89.5% Training: 70%,

Testing: 30%.
Signer-
independent

2021 [70]

− Low-pass filter to
eliminate dynamic
noise,

− High-pass filter to
remove
low-frequency drift
from gyroscope
readings.

An adaptive segmentation
method to measure the
energy of the signal and
then compare with
two thresholds.

8 TD features, and 9
features obtained from
autocorrelation and FD,
normalized arrays for
both the DFT and the
autocorrelation.

SVM and NB. Accuracy

SVM,
feature-based
fusion.
User-dependent:
98.6%,
User-independent:
96%.

Training: 75% (3675),
and Testing:
25% (1225).

Both

2021 [88] -

CNN-LSTM,
Inception-LSTM,
Xception-LSTM,
ResNet50-LSTM,
VGG-16-LSTM,
MobileNet-LSTM.

CNN-LSTM,
Inception-LSTM,
Xception-LSTM,
ResNet50-LSTM,
VGG-16-LSTM,
MobileNet-LSTM.
Signer-dependent mode:
color and depth images are
used, in
signer-independent mode:
optical flow is used.

CNN-LSTM,
Inception-LSTM,
Xception-LSTM,
ResNet50-LSTM,
VGG-16-LSTM,
MobileNet-LSTM.

Accuracy

MobileNet-LSTM
with transfer
learning and fine
tuning with 99.7%
and 72.4% for
signer-dependent
and signer-
independent
modes.

The videos from three
signers were divided
to: 90% training, and
10% validation set.
Testing: fourth
signer’s videos.

Both
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Table 15. Cont.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and Training
Methodology

Signing
Mode

2022 [91] Weighted average
filtering approach. CapsNet

CapsNet feature extractor
to produce a collection of
feature vectors.

Atom Search
Optimization (ASO)
with the Deep
Convolutional
Autoencoder (DCAE).

Accuracy,
precision, recall,
F1-score, Jaccard
Index, confusion
matrix,
precision–recall
analysis, Loss,
ROC.

Accuracy of
ASODCAE-SLR
model = 99.17%

Training: 70%,
Testing: 30%.

Signer-
dependent

2022 [92]

− Video split into
consecutive frames,

− Cropping.
− Normalization.
− Resize all frames to

200 × 200 pixels.
− Data augmentation.

− Single model:
ResNet50-LSTM,
Conv2D-LSTM,
Conv3D-LSTM,
Conv3D.

− Multi-model:
ResNet50-LSTM,
DenseNet121-
LSTM,
ResNet50-GRU,
MobileNet-LSTM,
VGG16-LSTM,
ResNet50-BiLSTM-
Normalization.

− Single model:
ResNet50-LSTM,
Conv2D-LSTM,
Conv3D-LSTM,
Conv3D.

− Multi-model:
ResNet50-LSTM,
DenseNet121-
LSTM,
ResNet50-GRU,
MobileNet-LSTM,
VGG16-LSTM,
ResNet50-BiLSTM-
Normalization.

− Single model:
ResNet50-
LSTM,
Conv2D-LSTM,
Conv3D-LSTM,
Conv3D.

− Multi-model:
ResNet50-
LSTM,
DenseNet121-
LSTM,
ResNet50-GRU,
MobileNet-
LSTM,
VGG16-LSTM,
ResNet50-
BiLSTM-
Normalization.

accuracy,
confusion matrix.

In single model:
ResNet50-LSTM
achieved highest
accuracy with
99.62%.
In multimodel,
ResNet50-
BiLSTM-
Normalization
obtained best
accuracy with
100.0%.

Training: 85.7%
(6300 videos),
validation: 7.14%
(525 videos), and
testing: 7.14%
(525 videos).

Signer-
dependent

2022 [78]

Raw colored video frames
and AFD frames
(computed from absolute
frame difference to detect
changes and track objects
between consecutive
frames).

CNN and LSTM

CNN to extract features
from each video frame,
and LSTM to learn the
temporal features across
video frames.

Vanilla LSTM,
CNN-LSTM,
CNN-SLSTM (stacked
LSTM), and
CNN-SLSTM-FC
(stacked LSTM and
Fully Connected
layer).

Accuracy,
precision, recall,
F1 score, and
computation
(training) time.

CNN-SLSTM
(stacked LSTM)
for raw colored
video frames
input achieved
higher accuracy
for all datasets
with 95.7% for
K-RSL, 100% for
Shanableh, 99%
for KArSL-100,
and 99.4% for
KArSL-190.

- Signer-
dependent
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Table 15. Cont.

Year Ref. Preprocessing Methods Segmentation Methods Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics
Performance
Results

Testing and Training
Methodology

Signing
Mode

2022 [90] The median filter to
remove the outliers.

DMN–(VGG16, Xception,
ResNet152V2, and
MobileNet)-LSTM,
AMN—(FWD, BWD, Bi),
SRN—(FWD-SRN,
BWD-SRN, Bi-SRN).

DMN—(VGG16, Xception,
ResNet152V2, and
MobileNet)-LSTM,
AMN—(FWD, BWD, Bi),
SRN—(FWD-SRN,
BWD-SRN, Bi-SRN).

DMN—(VGG16,
Xception,
ResNet152V2, and
MobileNet)-LSTM,
AMN—(FWD, BWD,
Bi), SRN—(FWD-SRN,
BWD-SRN, Bi-SRN).

Accuracy

Signer-dependent
mode:
DMN-MobileNet
obtained high
accuracy = 99.1%.
Signer-
independent
mode: Bi-AMN
obtained high
accuracy = 91.8% in

KArSL-190: 80%
training, 20% testing.
KArSL-502: 80%
training, 20% testing.
LSA64: 80% training,
20% testing.

Both

2023 [93] DenseNet169 model DenseNet169 model DenseNet169 model

Deer Hunting
Optimization with
Machine Learning
(ASLGC-DHOML),
and MLP.

Accuracy,
sensitivity,
specificity, F-score,
G-measure,
precision-recall
curve, ROC curve
analysis and loss.

Accuracy = 92.88% - Signer-
dependent

2023 [35]

− Preprocessed video
data to 20 frames.

− Resize video frames
to 224 × 224 pixels.

MediaPipe Holistic was
used for hand-face region
segmentation (ROI).

CNN-LSTM-SelfMLP with
MobileNetV2 and
ResNet18 backbones for
feature extraction.

MobileNetV2,
ResNet18, CNN,
LSTM, SelfMLP.

Accuracy,
Specificity,
F1-score, Precision,
Recall, ROC curve
analysis, loss,
confusion matrix,
standard error,
and confidence
interval.

MobileNetV2-
LSTM-SelfMLP
achieved the best
accuracy of 87.69%

The videos from three
signers were split in
two: 90% for
training, & 10% for
validation.
Testing: videos for the
fourth signer.

Signer-
independent

2023 [94]

− Reduce each frame’s
dimensions.

− Convert into
grayscale.

− Apply the difference
function to
every two
consecutive frames.

Adaptive threshold on the
(n − 1) frames. double CNNs. CNN, and RNN.

Accuracy, loss,
confusion Metrics,
and top-1
Accuracy.

Accuracy = 92 - Signer-
independent
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Table 16. Summary of continuous ArSLR research papers.

Year Ref. Preprocessing
Methods

Segmentation
Methods

Feature Extraction
Methods ArSLR Algorithm Evaluation

Metrics Performance Results Testing and Training
Methodology Signing Mode

2015 [95]

Resampling
techniques to
reduce data size.
Normalize and
standardize
readings (Z-score).

Manual video
segmentation and
labelling.

Window-based
approach MKNN

Word recognition
rate, Sentence
recognition rate

Sentence recognition
rate = 98.9%

Training: 70% (280),
Testing: 30% (120). Signer-dependent

2018 [97]

Data
normalization
(position and
user size).

Automatic
segmentation to
separate between
consequent signs.

Automated feature
selection for the joints
(hands, shoulder,
elbow, wrist, spin mid
and head center).

(KNN, SVM,
ANN) with and
without majority
voting, and DTW.

Accuracy,
response time.

Best accuracy is 89% for
KNN classifier with
majority voting and the
segmentation accuracy
reached 91%.

Training: 66.67%
(840 samples), Testing:
33.33% (420 samples).

Signer-
independent

2019 [96] -

Manual labeling and
segmentation in
vision-based SLR. In
sensor-based SLR,
synchronize camera
with gloves and
tracker recordings to
detect boundaries.

Vision-based dataset:
2D DCT, zonal coding.
Sensor-based datasets:
Sliding window-based
statistical features
extraction techniques.

MKNN, and
HMM.

Word recognition
rate, sentence
recognition rate,
computation time
(train time &
classification time)

Sentence recognition rates:
MKNN achieved the best
results for all datasets
(97.78% for the gloves
dataset). Word recognition,
HMM was the best with
99.20% for the
glove’s dataset.

DB1 (gloves): Training:
70% (280), and Testing:
30% (120),
DB2 (Tracker):
Signer-dependent,
Training: 70%, Testing:
30%, Signer-independent,
Training & Testing: 50%,
DB3 (vision-based):
not stated.

Signer-dependent
for all datasets
except for
vision-based
dataset 2
signer-dependent
and signer-
independent

2023 [98] -

Divide videos into
motion images equal
to the number of
sentence words.

Pertained CNN
Inception-v3 network.

LSTM, biLSTM,
biLSTM×2,
biLSTM×3.

Word recognition
rate, sentence
recognition rate,
training time and
testing time.

biLSTM×2 achieved best
results with word
recognition rate = 97.3, and
sentence recognition
rate = 92.6

- Signer-dependent
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Table 17. Summary of miscellaneous ArSLR Research Papers.

Year Ref. Preprocessing Methods Segmentation
Methods

Feature
Extraction
Methods

ArSLR Algorithm Evaluation
Metrics Performance Results

Testing and
Training
Methodology

Signing Mode

2017 [37]

− Background
compensation for
objects, infrared
scanning to
construct a 3D
representation,
and digital image
creation of the
hand in real time.

The palm speed
during the motion is
used as segmenter,
to recognize the
continuous
sentences.

The used
features in the
model were
Palm-Features
set and
Bone-Features
set.

Static gestures: SVM
with poly kernel and
RBF, KNN and ANN
with a Multilayer
Perceptron.
Dynamic gestures:
classification with
Simple Majority
and DTW.

Accuracy

Static gestures: KNN
was the best with 99%
for palm features and
98% bone features.
Dynamic gestures:
DTW was the best
with 97.4% for palm
features and 96.4% for
bone features.

Training:
66.67%, Testing:
33.33%.

Signer-
independent

2020 [38]

Crop out hand object,
resize images to
64 × 64 pixels, convert
to grayscale image,
reduce noise by
Gaussian filter and
median blur, and data
augmentation.

CNN with
4 hidden layers.

CNN with
4 hidden layers.

− Train and test
CNN with
4 hidden layers on
ArSL2018 dataset.

− Apply the trained
CNN and
ontology on the
Self-acquired
words dataset.

Accuracy

Accuracy on
ArSL2018 is 88.87%,
and accuracy on the
word’s dataset
is 94.31%.

ArSL2018:
Training: 80%
(42,960), Testing:
20% (11,089).
Words dataset:
Training: 70%
(200), Testing:
30% (88)

Signer-
dependent

2021 [39] -
2D CNN network
(OPENPOSE
Network (OPL))

2D CNN
network
(OPENPOSE
Network
(OPL)).

Concatenation in serial
of two parallel
networks, a 2D CNN
(OPL) network for
key-points estimation
and a second 1D CNN
skeleton network.

Accuracy,
precision, recall,
F1- measure,
Confusion
matrix.

Signer-dependent
mode: 98.39% for
dynamic signs and
88.89% for static signs.
Signer-independent
mode: 96.69% for
dynamic signs and
86.34% for
static signs.

Training: 60%
(9600 videos),
Validation: 20%
(3200 videos),
Testing: 20%
(3200 videos).

Both
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3.2.1. RQ2.1: Which Preprocessing Methods Were Utilized?

The data preprocessing phase plays an important role in ArSLR to prepare the data
before feeding it into ML/DL models. Data preprocessing involves a series of operations
that aim to improve the images/videos before they are used by the model, such as color
space conversion, resizing and cropping, noise reduction, data normalization, and augmen-
tation. The preprocessing techniques that have been employed by the reviewed studies are
discussed in this section.

Color Space Conversion: Color spaces illustrate the encoding of the colors. RGB and
grayscale are common for images, while HSV obtains more accurate color information
for extracting information. It is essential to understand and select the appropriate color
space for particular jobs. Color spaces provide distinct benefits; depending on the job
requirements, conversion can enhance certain features or make analysis easier.

Converting RGB images to grayscale can simplify the image data and hence reduce
computational load. Most of the research that applied greyscale conversion is categorized as
fingerspelling ArSLR [41,46,47,49,53,55,68,72,84], followed by isolated words ArSLR [82,94],
and miscellaneous ArSLR [38]. Other researchers in the category of fingerspelling ArSLR
have converted from greyscale space to red, green, and blue (RGB) images [60] and to hue,
saturation, and value (HSV) color space [62] to ensure compatibility with the classifier
algorithms used, which entails more accurate results. Transformation to YCbCr space was
only applied by two studies published in 2015, for fingerspelling ArSLR [42] and isolated
words ArSLR [79], for the purpose of taking advantage of the lower resolution for color
with respect to luminosity, which means faster processing.

Resizing and Cropping: Resizing images to a uniform size is essential to ensuring op-
timal performance of ML/DL models. It helps avoid computational loads and simplifies the
process for the model to learn patterns uniformly across different samples. With cropping,
the focus is on a specific region of an image, and any irrelevant details are removed. This
maximizes the model’s capacity to recognize particular features, which is useful for tasks
where a certain object or object’s location is crucial. In the context of ArSLR, the hands are
considered important objects to crop, as implemented by a number of researchers [33,38,92].
In the reviewed papers, most of the researchers have resized their acquired data, such
as images and video frames, to a certain size and then trained their ML/DL models
based on that size [33,35,38,41,44,46,47,53,55,58,60,61,63,65,66,68,69,71–74,84,92,94]. Other
researchers have utilized pre-trained models that require that the data be fed in a specific
size. Therefore, the images were resized to fit the pre-trained model input layer [52].

Normalization: Normalization refers to all operations and processes meant to stan-
dardize the input according to a predetermined set of rules, with the ultimate goal being
to enhance the ML/DL model’s performance. It may involve several statistical proce-
dures or input processing operations. The ideal normalization process varies depending
on different factors, such as the ML/DL model, the degree of variability in the sample,
and the nature of the input, whether it is text, image, or video. Pixel values are usually
normalized to have a mean of 0 and a standard deviation of 1. This process improves the
model’s performance during training by maintaining values within a standardized range,
which helps with convergence. Normalization was mostly applied to the category of fin-
gerspelling ArSLR [42,44,46,47,53,55–57,61,65,71], followed by isolated words [71,79,82,92],
and continuous ArSLR [95,97]. Sensor readings from the DG5-VHand data gloves were
normalized using the z-score [95], and then the standard deviations and means of the
readings of the training set were saved and used again to normalize the testing set. The
normalization applied by Hisham and Hamouda [97] on the frames captured by Microsoft
Kinect solves two main issues related to the variation of the signers’ position and size. It
consequently yields more accurate feature extraction for the coordinates, regardless of the
signers’ location or size.

Data Augmentation: The technique of artificially creating new data from preexisting
data, known as data augmentation, is mostly used to train new ML/DL models. Large and
diverse datasets are necessary for the training of the models; however, finding adequately
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varied real-world datasets can be difficult. Data augmentation involves making minor
adjustments to the original data in order to artificially enlarge the dataset. Using data
augmentation during model training helps avoid overfitting, which usually occurs when
a model performs well on training data but poorly on unseen data. There are different
techniques to implement data augmentation, including rotation, flipping, shearing, shifting,
rescaling, translation, and zooming. Using any of these techniques depends mainly on the
type of input and the characteristics of the model. As illustrated in Tables 14, 15, and 17,
various studies from the field of ArSLR utilize data augmentation techniques for the
purpose of enhancing the quality of data and improving the model’s performance.

Noise Reduction: This process is used to remove or reduce unwanted noise in the
data and irrelevant or redundant features to direct the model’s attention to the data’s most
informative elements. In the reviewed papers, various noise reduction techniques have
been used for this purpose, such as Gaussian filter [38,68,71,84], median filter [38,60,71,90],
averaging filter [71], and weighted average filter [91]. The Pulse Coupled Neural Network
(PCNN) signature was used to reduce the random noise and smooth images [80]. In a
sensor-based ArSLR study [70], a low-pass filter was used to remove dynamic noise from
vibrations and other external factors that affect acceleration readings, and a high-pass filter
was used to remove low-frequency drift from gyroscope readings. Dataset cleaning was
implemented by removing the observations that had null values [48,81] and the rows that
had the same values [48].

3.2.2. RQ2.2: Which Segmentation Methods Were Applied?

Segmentation is a process that divides an image into distinct groups of pixels, or
image segments, that form the region of interest (ROI). There are three main types of image
segmentation: semantic segmentation, instance segmentation, and panoptic segmentation.
Semantic segmentation works by assigning a class label to every pixel in an image, making
it possible to properly identify and classify objects based on their semantic significance.
Instance segmentation entails identifying and delineating each individual object within
an image. Its functionality is not only limited to identifying objects in an image but also
precisely locating each instance of that object within its borders. Panoptic segmentation
is complex and goes beyond classifying each pixel in an image according to its class
label to identifying the instance of that class it belongs to. In vision-based ArSLR, hand
segmentation is usually the main concern, followed by non-manual segmentation for facial
expressions and body gestures. Various segmentation techniques are utilized for this
purpose, including thresholding, edge detection, region-based segmentation, clustering,
and neural network-based segmentation. In this section, various segmentation methods
that have been utilized by the reviewed studies are discussed.

Threshold-based segmentation is the simplest technique that involves choosing a
threshold value and classifying image pixels based on pixel intensity values. In the reviewed
papers, a global threshold that requires choosing a single intensity value to divide the
whole image into distinct regions was implemented by some studies [68,72,82]. Adaptive
thresholding determines the threshold value for smaller regions. As a result, various
threshold values for varying regions in relation to lighting change. Adaptive thresholding
based on the gyroscope intensity was utilized to identify the beginning and the end of each
gesture segment [70]. Other researchers applied adaptive thresholding to each video frame
to capture the most important features out of the frames [76,94].

Edge-based segmentation is another technique that relies on discontinuity detection
and is considered suitable for images that have high contrast between objects. Algorithms
like Sobel, Canny, Laplacian, and Roberts edge detectors are used for this purpose. Two of
the reviewed papers applied the Sobel algorithm, which detects the hand edges with no
attention paid to the weak edges like the Canny algorithm and does not miss information
about the hand shape, as in the Laplacian algorithm [59,72].

The region-based segmentation technique involves dividing the image into smaller ho-
mogeneous regions, which are then recursively merged based on predetermined attributes
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in intensity, texture, and color. Podder et al. adopted a simple and fast face and hand region
segmentation method using MediaPipe Holistic [35]. With this approach, a segmented
dataset is produced to be used for ArSL classification. Ahmed et al. applied skin filter
technology to the keyframes for the purpose of separating the skin-colored pixels from the
non-colored pixels, followed by hand crop technology [33].

Deep learning-based segmentation techniques such as Convolutional Neural Network
(CNN) have improved image segmentation and produced remarkably accurate and efficient
results. These powerful techniques adopt a hierarchical approach, applying several layers
of filters to the input image for feature extraction. Recently, great success has been obtained
in hand segmentation and gesture recognition using this technique. Most reviewed ArSLR
studies published in 2020 onwards have utilized this technique to help boost their results.
CNNs are adopted in this field, wherein various CNN architectures are trained from
scratch [38,39,46,53,55–57,69,78,94].

Transfer learning in CNN involves utilizing the early and central layers while only
retraining the last layers on a different set of classes. The model leverages labeled data
from its original training task, hence reducing training time, improving neural network
performance, and functioning well with limited data. Examples of the pre-trained models
used in transfer learning include VGG, AlexNet, MobileNet, Inception, ResNet, Den-
sNet, SqueezeNet, EfficientNet, CapsNet, and others. Many researchers in the field of
ArSLR used this approach for segmentation [52,54,58–66,71,73,74,90–93,98]. Alharthi and
Alzahrani utilized two pretrained vision transformers, ViT (ViT_b16, ViT_132) and Swin
(SwinV2Tiny256) [64]. In ViT, an image is considered a series of patches [99]. The image is
then split into small patches, and a 1D vector is created from each patch. The transformer
model receives these patch embeddings as input. The model can focus on various patches
while tracking the connections between them due to the self-attention mechanism. It assists
in the model’s understanding of the image’s context and interdependencies. Positional em-
beddings, which offer details about the spatial placement of each patch, are also part of ViT.
Built upon the Transformer architecture, Swin processes and comprehends sequential data
using a multi-layered system of self-attention mechanisms [100]. Swin has created shifted
windows that operate by partitioning the input image into smaller patches or windows and
shifting them throughout the self-attention process. By using this method, Swin can handle
huge images quickly and effectively without having to rely on computationally demanding
processes like convolutional operations or sliding window mechanisms. Swin increases the
receptive field to gather global dependencies and improves the model’s comprehension of
the visual context by shifting the patches.

Aly and Aly addressed hand segmentation using the state-of-the-art semantic segmen-
tation DeepLabv3C model, which is built on Resnet-50 as a backbone encoder network
with atrous spatial pyramid pooling [77]. Using the DeepLabv3C mask image, hand areas
are cropped from each corresponding frame of the input video sequence, and the resulting
mask image is then normalized to a fixed size for scale invariance. Alawwad et al. used fast
R-CNN to enhance the efficiency and speed of the original model, R-CNN, by integrating
a Region Proposal Network (RPN) along with an ROI pooling layer, which reduces the
processing time and contributes to overall better performance [73].

3.2.3. RQ2.3: Which Feature Extraction Methods Were Used?

Feature extraction is carried out by converting important parts of the input data to
sets of compact feature vectors. In the field of sign language recognition, the features that
are extracted from the input hand gestures should contain pertinent information and be
displayed in a form that helps distinguish the sign that needs to be classified from other
signs. The most common methods of feature extractions include Shift-Invariant Feature
Transform (SIFT), Speeded Up Robust Feature (SURF), Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), Convexity defects and K-curvature, and
features extraction in the frequency domain.
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Features extraction in the frequency domain is adopted by a sensor-based ArSLR
system [70], where a collection of well-constructed features was suggested to create the
feature vectors for the detected segments for the purpose of training the recognition model.
Time-Domain (TD) and Frequency-Domain (FD) signal characteristics are contained in
the feature set. On each of the three axes (x, y, and z) of the gyroscope and accelerometer
sensors, these features were extracted. Time-domain features are significant due to how
they depict the change of signals over the course of time, whereas the frequency features
highlight the salient features and signal recurrence of each component. To compute the
frequency spectrum of the discrete signal readings, the Discrete Fourier Transform (DFT)
was used. The extracted feature set comprises a total of nine time-domain features and
nine features achieved from the autocorrelation and frequency. Another glove-based
study for the recognition of continuous ArSL by Tubaiz et al. [95] employed a feature
extraction technique that reflects the temporal dependence of the data. In this technique,
a sliding window is used to compute the mean and standard deviations of the sensor
readings. The accuracy of the classification is affected by the sliding window’s size. A
small window size is insufficient to fully convey the present feature vector’s context. The
context becomes increasingly noticeable as the size expands until it becomes saturated.
Classification accuracy suffers when window size is increased further. Hassan et al. [96]
applied a window-based approach to glove-based data and a 2D Discrete Cosine Transform
(DCT) to vision-based datasets. In 2D DCT, the feature extraction relies on two parameters
to be specified. The first parameter is cutoff, which is the number of DCT coefficients to
keep in a feature vector. The more coefficients there are, the higher the recognition rate.
However, recognition rates generally decline when the feature vector’s dimensionality
rises above a particular threshold; hence, there is typically a threshold beyond which any
increase in the DCT cutoff will result in a decline in recognition rates. The weighting
parameter x is the second parameter that needs to be specified empirically. When 100 DCT
coefficients and the value of x = 1 were used, the highest classification rate was obtained.

Elatawy et al. [68] developed an alphabet ArSLR system using the neutrosophic
technique and fuzzy c-means. They proposed to use the Gray Level Co-occurrence Matrix
(GLCM) to extract features from neutrosophic images. Three matrices—object (T), edge
(I), and background (F)—are used to describe neutrophilic images. The GLCM works by
scanning the image and recording the gray levels of each pair of pixels that are spaced
apart by a set direction (0 and distant). Pixels and their neighbors are, hence, the basis for
GLCM’s feature extraction process for neutrosophic images. The contrast, homogeneity,
correlation, and energy are the calculated GLCM parameters. From each image, a total
of 12 features, consisting of 4 GLCM parameters for each image component T, I, and F,
are extracted.

Hybrid feature extraction has been utilized in various studies to overcome the lim-
itations of single techniques and benefit from the advantages. Tharwat et al. [43] used
SIFT to extract the invariant and distinctive features and LDA to reduce dimensions and
thus increase the system’s performance in recognizing ArSL letters. A study conducted
by Ahmed et al. [33] to recognize the ArSL isolated dynamic gestures proposed a feature
integration between intensity histogram features and GLCM. The former contains six fea-
tures that represent the first-order statistical information about the image, such as mean,
variance, skewness, kurtosis, energy, and entropy, and the latter consists of 23 features to
represent the second-order statistical information about the image features, like contrast,
homogeneity, dissimilarity, angular second moment, energy, and entropy. The combined
integrated features vector comprises 26 features since three features are shared by both.

Other researchers have investigated the feature extraction techniques by conducting
a comparison between them to measure their performance. Sidig et al. [76] compared
different feature extraction techniques: Modified Fourier Transform (MFT), Local Binary
Pattern (LBP), Histogram of Oriented Gradients (HOGs), and combination of Histogram of
Oriented Gradients and Histogram of Optical Flow (HOG-HOF) for isolated word ArSL
recognition with Hidden Markov Model (HMM) for classification. With MFT and HOG,
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the best accuracy was achieved. In a previous study, Alzohairi et al. [49] conducted a
comparison between five texture descriptors for the purpose of ArSL alphabet recognition.
The descriptors are HOG, Edge Histogram Descriptor (EHD), GLCM, Discrete Wavelet
Texture Descriptor (DWT), and LBP. These texture descriptors include details on the edges
of the image as well as region homogeneity. The comparison results reveal that the HOG
descriptor outperforms the other descriptors. Agab and Chelali [41] applied individual
descriptors, including DWT, the Dual Tree Complex Wavelet Transform (DT-CWT), HOG,
and two combined descriptors, namely DWT + HOG and DT-CWT + HOG, when compared
to the individual descriptors, the combined descriptors DT-CWT + HOG outperformed
with respect to accuracy rate and execution times.

In addition to the feature extraction methods discussed above, other researchers
employed widely used deep learning techniques, such as CNNs, to extract pertinent
features. These techniques extract features in the first layers and then feed them into the
subsequent layers. CNNs have been utilized to extract features from fingerspelling ArSL
images [46,47,53,55–57,69,94] and video frames [94]. CNNs have been used in combination
with Long Short-Term Memory (LSTM) in order to extract spatial and temporal data
dependencies [78], where the CNN model was adopted to extract features from each
video frame separately and LSTM to learn the temporal features across video frames. Aly
and Aly [77] have utilized the Convolutional Self-Organizing Map (CSOM) to extract
hand-shape features from video frames and the Bi-directional Long Short-Term Memory
(BiLSTM) to model the temporal dependencies in the video sequences.

In transfer learning, pre-trained models, such as VGG, ResNet, AlexNet, and Inception,
have been trained on large-scale image datasets like ImageNet. These models function
as effective feature extractors, converting raw images into forms that contain significant
details about the visual material. By extracting features from pre-trained neural models, the
information gathered from massive datasets is used to improve the performance of others’
work. Most of the studies conducted in 2019 onwards in the context of fingerspelling
ArSLR have relied on pre-trained models to extract the features. Most of these studies have
experimented with and compared various models [52,54,58,59,62–65,73]. Ismail et al. [71]
have compared the performance of various single models and multi-models in feature
extraction and ArSL recognition.

A few researchers have implemented solo pre-trained models, for example, lightweight
EfficientNet with different settings [74] and EfficientNetB3 [66]. Islam et al. [66] have lever-
aged EfficientNetB3 to extract initial features and adopted stacked autoencoders to further
refine these features. Alnuaim et al. [60] implemented two models, ResNet50 and Mo-
bileNetV2, together. In isolated and continuous ArSLR, various studies investigated the
implementation of different pre-trained models accompanied by Recurrent Neural Net-
works (RNNs) or LSTM to extract spatial and temporal features accurately [35,88,90,92,98].
A few researchers have relied on single models to be feature extractors to generate a set
of feature vectors, such as a capsul neural network (CapsNet) [91] and the DenseNet169
model [93].

3.2.4. RQ2.4: What Algorithms Were Used for ArSLR?

Different ML/DL algorithms have been utilized in the field of ArSLR, including HMM,
Support Vector Machines (SVM), K-Nearest Neighbor (KNN), Random Forest (RF), CNNs,
CNN-based pre-trained models, RNNs, LSTM, and others.

Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that enables machines to
learn from data and make decisions or predictions without being specifically programmed
to do so. Fundamentally, machine learning is concerned with developing and applying
algorithms that help with these decisions and predictions. As they handle more data, these
algorithms are built to perform better over time, becoming more precise and effective. In the
following, ML algorithms employed in the reviewed ArSLR research papers are discussed.
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HMM is a powerful statistical modeling method that can identify patterns in the
complicated relationships between actions in a continuum of time and space. HMM has
been applied to the field of ArSLR by different studies to classify static hand gestures of
ArSL alphabets [42], isolated words [76,79], and continuous sentences [96]. Abdo et al. [42]
modeled the information of each sign with a different HMM. The model with the highest
likelihood was chosen as the best model, and the test sign was classified as the sign
of that model. The HMM was applied to the self-acquired dataset, ArASLRDB, with
29 Arabic alphabet signs. The recognition system was tested when splitting the rectangle
surrounding the hand shape into 4, 9, 16, and 25 zones. The optimal number of zones was
determined to be 16, with 19 states that recognize the Arabic alphabet of sign language.
The algorithm could reach a 100% recognition rate by increasing the zone number to 16 or
more, but it would take more time. To recognize ArSL at the word level, Abdo et al. [79]
proposed to utilize the Enhancement of Motion Chain Code (EMCC) that uses HMM. The
recognition rate achieved outperformed other systems by 98.8% when applied to a private,
self-gathered dataset of 40 ArSL words. Hassan et al. [96] compared two classification
algorithms, HMM (RASR and GT2K toolkits) and Modified K-Nearest Neighbor (MKNN),
which are adequate for sequential data on sensor-based and vision-based datasets. Despite
the high recognition rates obtained by the RASR and GT2K HMM toolkits, MKNN has the
best sentence recognition rates, exceeding both HMM toolkits.

The MKNN algorithm was first proposed by Tubaiz et al. [95] in 2015 to classify
sequential data for a glove-based ArSL. In this modification, the context prior to predicting
the label of each feature vector is considered. It relies on using the most prevalent label
within a surrounding window of labels to replace the predicted label. Once every label
in a given sentence has been predicted, the statistical mode of the labels that surround
it is used to replace each label. KNN is a non-parametric supervised machine learning
algorithm that has been adopted by a number of ArSLR researchers [37,43,48,72,85,97]. By
calculating the distances between unknown patterns and each sample, the KNN classifier
can recognize unknown patterns based on how similar they are to known samples. The K-
nearest samples are then chosen as the basis for classification. Among the K-nearest samples,
the class with the greatest number of samples is assigned the unknown pattern. It has been
noticed that the accuracy results of KNN for the miscellaneous ArSLR [37] or continuous
sentence recognition [97] outperformed other algorithms when compared. Hisham and
Hamouda [37] carried out a comparison between different algorithms, including SVM,
KNN, and ANN, for static and dynamic gestures depending on two different feature
sets: palm features set, and bone features set. KNN obtained the best accuracy results
for the static gestures, achieving 99% and 98% for the two sets, respectively. In another
study conducted by Hisham and Hamouda [97], the experimental results revealed that the
accuracy of KNN with majority voting outperformed the other algorithms in recognizing
dynamic medical phrase signs. On the other hand, when KNN was compared with other
algorithms, including SVM and nearest neighbor (minimum distance) [43], SVM and
RF [48] for fingerspelling ArSLR, and different variations of SVM and RF for isolated
word recognition [85], the findings indicated that the best performance was achieved by
SVM. In the context of fingerspelling recognition, just one study [68] demonstrates that the
KNN algorithm outperformed other algorithms, including C4.5, Naïve Bayes (NB), and
Multilayer Perceptron (MLP), in terms of accuracy.

SVM is a supervised machine learning approach that is mainly used for regression
and classification tasks. The SVM algorithm works by finding the optimal hyperplane
that maximizes the distance between each class in an N-dimensional space in order to
classify data. SVM is one of the popular algorithms that have been used for different
categories in the field of ArSLR, including fingerspelling recognition [41,43,48], isolated
recognition [85], continuous recognition [97], and miscellaneous ArSL recognition [37].
The performance of the SVM algorithm proved to be outstanding when compared to
other algorithms in fingerspelling and isolated recognition. Tharwat et al. [43] carried
out a number of experiments to compare different ML algorithms, which showed that
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the performance of the SVM was inferior to that of the KNN and minimum distance in
fingerspelling recognition with around 99% accuracy. While the experiments proved that
the SVM algorithm is robust against any rotation, achieving 99% accuracy, the performance
needs to be improved in the case of image occlusion. A different approach was proposed
by Almasre and Al-Nuaim [48], where two stages of classification were carried out using
SVM, KNN, and RF. Stage 1 involved training the three classifiers on the original dataset.
Stage 2 entailed training the classifiers on an ensemble dataset, where the output of each
classifier was coupled with an ensemble schema dataset to reclassify the classes. To see
if changing numbers affected the performance of the classifiers, different observations
for each letter were evaluated. When used as a standalone classifier, SVM yielded a
superior overall accuracy of 96.119%, regardless of the number of observations. SVM
would be a more efficient option because it requires less complexity while obtaining higher
accuracy. Agab and Chelali [41] proposed a static and dynamic hand gesture recognition
system that adopts the combined feature descriptors DT-CWT + HOG and compared the
classification performance of three Artificial Neural Networks (ANNs), MLP, Probabilistic
Neural Network (PNN), Radial Basis Neural Network (RBNN), SVM, and RF. Four distinct
datasets comprising alphabet signs and dynamic gestures, including alphabet ArSL, were
used for the experimental evaluation. The SVM classifier performed better for the ArSL
dataset with regard to recognition rates and processing time. To recognize ArSL gestured
dynamic words, Almasre and Al-Nuaim [85] proposed a dynamic prototype model (DPM)
using Kinect as an input device. A total of eleven predictive models based on three
algorithms, namely SVM, RF, and KNN, with varying parameter settings, were employed
by the DPM. According to research findings, SVM models using a linear kernel and a
cost parameter of 0.035 were able to attain the maximum accuracy for the dynamic words
gestured. Alzohair et al. [49] developed a model employing a one-versus-all SVM classifier
for each gesture. In their model, one class for each ArSL alphabet gesture was considered,
and thirty classes resulted from this. A model is learned for each gesture by training the
classifier using one particular class against all the others. The one-versus-all strategy looks
for a hyperplane that differentiates the classes by considering all classes and splitting
them into two groups, one for the points of the class under analysis and another for all
other points.

The RF algorithm is a popular tree-learning approach in machine learning. During
the training stage, it generates a collection of decision trees. To measure a random subset
of characteristics in each partition, a random subset of the data set is used to build each
tree. Because each tree is more variable as a result of the randomization, there is less
chance of overfitting, and overall prediction performance is enhanced. In predictions, the
algorithm averages (for regression tasks) or votes (for classification tasks) the output of
each tree. The findings of this cooperative decision-making process, which is aided by
the insights of several trees, are consistent and accurate. Random forests are commonly
utilized for classification and regression tasks because of their reputation for managing
complex data, minimizing overfitting, and producing accurate predictions in a variety of
settings. A few studies have compared the RF performance to other ML algorithms for the
sake of fingerspelling recognition [41,48] and isolated recognition [85]. The comparative
results showed that while RF did not obtain the best recognition accuracy, it outperformed
all other classifiers in terms of recognition rates for non-ArSL datasets, such as the ASL,
Marcel, and Cambridge datasets [41]. Elpeltagy et al. [82] proposed to use the Canonical
Correlation Analysis (CCA) [101] and RF algorithms for isolated word recognition. The
proposed approach is based on hand shape and motion, where HOG-PCA is used for
hand shape description, CCA for hand shape matching, Cov3DJ+ for motion and feature
description, and RF for motion classification. The classification starts by applying the RF to
the Cov3DJ+ descriptor in order to determine which top sign corresponds to the highest
T probabilities. Subsequently, the CCA is used to determine which of these top signs is
right by applying it to the hand-shape descriptors that correspond to them. CCA enhances
classification performance by combining data from various performers and repetitions.
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Deriche et al. [83] proposed the use of dual LMCs to capture the signer performing
isolated Arabic dynamic word signs. The Gaussian Mixture Model (GMM) and a Bayesian
classifier were used to examine the features that were extracted from the two LMCs.
The individual Bayesian classifier findings were aggregated through an evidence-based
methodology, specifically the Dempster-Shafer (DS) theory of evidence. A medium-sized
vocabulary (100 signs) comprising signs frequently used in social settings was utilized to
evaluate the suggested method. A simple LDA-based method to examine the system’s
performance across several classifiers was employed. The results demonstrate that the
combination strategy based on DS theory performs approximately 5% better than the
LDA-based approach. About 92% recognition accuracy was attained.

The Euclidean distance classifier has been utilized in two isolated word recognition
studies [5,33]. Euclidean distance measures the similarity between two feature vectors
that are built directly from geometric features of the manual signs [33] or both man-
ual and non-manual signs [5]. The experimental results show that the proposed system
by Ahmed et al. [33] recognizes signs with an accuracy of 95.8%. Better outcomes were
achieved in the Ibrahim et al. study, where the system demonstrated its resilience against
various occlusion scenarios and reached a recognition rate of 97% in signer-independent
mode [5].

Similar images are grouped together in the image clustering phase. In clustering
problems, the fuzzy c-means approach is frequently employed. It is a clustering technique
that gathers every data pixel into two or more clusters. The membership of the data
changes to point in the direction of the designated cluster center as it moves closer to it.
The Euclidean distance can then be used to calculate the degree of fuzziness between the
cluster centers. This approach has been employed by Elatawy et al. [68] to recognize the
Arabic alphabet sign language after converting the images to the neutrosophic domain
and extracting their features. According to the experimental evaluation, the fuzzy c-means
approach resulted in a 91% recognition accuracy rate.

Dynamic Time Warping (DTW) is known as an optimal alignment algorithm between
two given sequences. DTW is used in many domains to quantify the similarity between two
sequences that are changing in speed or time. Because it can handle the speeds at which
signs are performed, the DTW is very appropriate for tasks involving sign recognition.
This involves utilizing DTW to compare a set of frames from the training set with a set of
frames from the test set. Each set of frames will be considered a signal or pattern. To find
the similarity of the sequences that will be compared, they need to be warped non-linearly
in the time dimension, independent of some non-linear changes in the time dimension. The
sequence in the training set with the shortest DTW distances is the most similar sequence
to the test sequence, as identified by the DTW based on the estimated distance between the
most similar group and the test sign. At last, it selects the group that is the most comparable
and assigns it to the test sign. Hisham and Hamouda [37] used LMC as an input device
and employed this algorithm for dynamic gestures. The study findings showed that DTW
dominated other models, including KNN, SVM, and ANN, for both the palm feature set
and the bone feature set, with accuracy of 97.4% and 96.4%, respectively. When DTW was
used for continuous sign recognition captured by Kinect [97], the performance was worse
than the other models, KNN, SV, and ANN, in terms of accuracy and response time.

Deep Learning

The field of deep learning is concerned with learning data representations. How-
ever, the intricacy of the models and the underlying features of the system’s input restrict
the ability of deep learning techniques to capture semantics embedded within data. The
advances in deep learning have improved sign language recognition accuracy and effec-
tiveness, leveraging ANNs, CNNs, and RNNs. An ANN is made up of several perceptrons
or neurons at each layer. Because an ANN only processes inputs in a forward manner,
it is often referred to as a feed-forward neural network. One of the most basic varieties
of neural networks is this kind of network. Information is passed through a number of
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input nodes in a single direction until it reaches the output node. The network’s operation
can be better understood whether or not it has hidden node layers. Hidden node layers
may or may not exist in the network, which would make its behavior easier to understand.
ANN did not show high performance when compared to other ML algorithms for static
gestures representing letters, numbers, and words [37]. A similar result was achieved when
applying ANN in the context of continuous ArSLR [97].

MLP is a feed-forward ANN with at least three layers of neurons: input, output, and
hidden. The MLP’s neurons usually employ fully connected neurons’ nonlinear activation
functions, which enable the network to recognize input with complicated patterns. Similar
to MLP, RBNN is a feed-forward neural network that has a single hidden layer made of
nonlinear radial basis functions (RBF), like a Gaussian function. Each neuron calculates the
distance between the input data and the function’s center; at shorter distances, the neuron’s
output value increases. PNN is another feedforward neural network that is frequently
utilized to address pattern recognition and classification issues [102]. A PNN classifier is
an application of Bayesian network and kernel discriminate analysis that develops a family
of probability density function estimators. Agab and Chelali [38] conducted a comparison
between five different classifiers, including three variants of the ANN, which are MLP,
PNN, and RBNN, as well as SVM and RF, for the purpose of fingerspelling recognition. The
results demonstrate lower performance of the ANN’s variants compared to the SVM and
RF algorithms. A similar low performance for MLP was obtained by another fingerspelling
recognition study [72] when comparing MLP with C4.5, NB, and KNN.

Two studies were carried out using MLP for the purpose of isolated word recognition [80,93].
ElBadawy et al. [80] proposed using MLP to classify manual sign input and a PCA network
followed by an MLP network for facial expressions and body movements. Due to the
integrated modules for body movement and facial expression recognition, the system
achieved an accuracy of 95% for a dataset with 20 dynamic signs. Al-Onazi et al. [93]
utilized the MLP classifier for sign recognition and classification in order to identify and
categorize the presence of sign language gestures for five words. The Deer Hunting
Optimization (DHO) algorithm is then applied to optimize the MLP model’s parameters.
With an accuracy of 92.88%, the comparison analysis demonstrated that the proposed
method produced better results for gesture classification than other methods.

A Deep Belief Network (DBN) is a class of deep neural networks used for unsupervised
learning activities like generative modeling, feature learning, and dimensionality reduction.
It is made up of several layers of hidden units that are trained to represent data in a
structured way. Among the reviewed studies, only one paper was found to utilize the
DBN approach paired with the direct use of tiny images to recognize and categorize Arabic
letter signs [44]. By identifying the most significant features from sparsely represented data,
deep learning was able to significantly reduce the complexity of the recognition problem.
After scaling and normalization, a total of about 6000 samples of the 28 Arabic alphabetic
signs were employed to extract features. A softmax regression was used to evaluate the
classification process, and the results showed an overall accuracy of 83.32%, demonstrating
the great reliability of the Arabic alphabetical letter recognition model based on DBN.

CNNs are the extended version of ANNs and one of the most widely utilized models
in use nowadays. This neural network computational model comprises one or more
convolutional layers that can be either pooled or fully connected. It is based on a variant of
multilayer perceptrons. CNN’s ability to autonomously recognize key features without
human oversight is by far its greatest advantage over its forerunners. Additionally, CNN
delivers remarkable accuracy and processing efficiency. Numerous studies have used
CNNs to recognize fingerspelling ArSL [46,47,53,55–57,69]. Althagafi et al. [53] developed a
system that automatically recognizes 28 letters in Arabic Sign Language using a CNN model
with a grayscale image as input [50,51]. Using 54,049 sign images [50,51], Latif et al. [55]
offered various CNN architectures. Their results show how the size of the dataset has a
significant impact on the proposed model’s accuracy. As the dataset size is increased from
8302 samples to 27,985 samples, the testing accuracy of the suggested model rises from
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80.3% to 93.9%. When the dataset size is raised from 33,406 samples to 50,000 samples, the
testing accuracy of the suggested model improves even further, rising from 94.1% to 95.9%.
Alshomrani et al. [56] utilized CNNs to categorize the images into signs. CNN has been
experimented with various settings for datasets containing Arabic and American signs.
With an accuracy of 96.4%, CNN-2—which comprises two hidden layers—produced the
best results for the Arabic sign language dataset [50,51]. Kamruzzaman [69] developed
a vision-based method that uses CNN to recognize Arabic hand sign-based letters and
transform them into Arabic speech with a 90% recognition accuracy. Utilizing the ArSL2018
dataset and a special ArSL-CNN architecture, Alani and Cosma [57] built a system for
recognizing Arabic signs. While training, the suggested ArSL-CNN model’s accuracy was
98.80%; while testing, it was initially 96.59%. In order to lessen the impact that unbalanced
data has on the model’s precision, they chose to use a range of resampling techniques for
the dataset. The results show that the synthetic minority oversampling method (SMOTE)
improved overall testing accuracy from 96.59% to 97.29%. During training, the proposed
ArSL-CNN model’s accuracy was 98.80%, and roughly 96.59% during testing. In order to
reduce the impact that unbalanced data has on the model’s accuracy, they opted to use
a range of resampling techniques on the dataset. The results show that SMOTE boosted
the overall testing accuracy from 96.59% to 97.29%. Abdelghfar et al. [47] proposed a new
convolutional neural network-based model for Qur’anic sign language recognition, QSLR-
CNN. A subset of the larger Arabic sign language collection, ArSL2018 [50,51], comprising
just 24,137 images, was used for the tests. This subset represents the 14 dashed letters in
the Holy Qur’an. The experiments were carried out on this portion of the dataset. The
QSLRS-CNN model obtained 98.05% training accuracy and 97.13% testing accuracy for
100 epochs. In order to address class imbalance, the model was then trained and tested
using several resampling techniques. Based on the findings, the testing accuracy increased
from 97.13% to 97.67% overall when SMOT is used. The same methodology was adopted
by Abdelghfar et al. [46] for 100 and 200 epochs. The SMOT method shows slightly better
performance using 200 learning epochs but takes more time.

Many researchers have utilized CNN-based transfer learning for ArSL recognition.
Conducting experiments to compare various pre-trained models was one of the methodolo-
gies proposed by several studies [52,54,58,59,62,63,65,66,71,73]. A deep transfer learning-
based recognition method for ArSL was proposed by Shahin and Almotairi [52]. They
employed several transfer learning techniques, including AlexNet, SqueezeNet, VGGNet16,
VGGNet19, GoogleNet, DenseNet, MobileNet, ResNet18, ResNet50, ResNet101, and In-
ceptionV3, based on data augmentation and fine-tuning to lessen overfitting and enhance
performance. The experiment results on the ArSL2018 dataset [50,51] show that ResNet101,
the suggested residual network system, obtained a maximum accuracy of 99.52%. Alsaadi
et al. [58] trained and evaluated four cutting-edge models: AlexNet, VGG16, GoogleNet,
and ResNet, using ArSL2018 [50,51], in order to determine which CNN model would be
best for classifying sign language. With 94.81% accuracy, AlexNet was found to have
the highest outcomes. Next, an AlexNet-based real-time recognition system was built. A
comparison analysis based on three popular deep pre-trained models—AlexNet, VGGNet,
and GoogleNet/Inception—was conducted [59] using the ArSL2018 dataset [50,51]. Test
accuracy varied throughout the models, with VGGNet achieving the best score of 97%.
Experiments have been performed by Islam et al. [61] on the ArSL2018 dataset using a vari-
ety of pre-trained models, including Xception, VGG16, Resnet50, InceptionV3, MobileNet,
and EfficientNetB4. With respect to its relative simplicity, EfficientNetB4 is a heavy-weight
architecture. We find that the top model has a 95% testing accuracy and a 98% training
accuracy. The architecture of EfficientNetB4 is heavy-weight and relatively intricate. The
findings reveal that the EfficientNetB4 model attained the best accuracy over the other
models, with 98%.

Using ArSL2018, Baker et al. [65] comprehensively assessed and compared the perfor-
mance of six different pre-trained models: Xception, ResNet50V2, InceptionV3, VGG16,
MobileNetV2, and ResNet152. Early stopping and data augmentation strategies were used
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experimentally to improve the pre-trained models’ robustness and efficacy. The results
demonstrated the greater accuracy attained by InceptionV3 and ResNet50V2, both of which
reached 100% accuracy—the best accuracy ever attained. Two pre-trained models with
intermediate layers, VGG16 and VGG19, were examined by Nahar et al. [63] to recognize
sign language for the Arabic alphabet. Following testing on several datasets and dataset-
specific adjustments, both models were trained using various methods. Analyzing the data
revealed that the best accuracy results were obtained by fine-tuning these two models’ fifth
and fourth blocks. With regard to VGG16, the testing accuracy was specifically 96.51%
for the fourth block and 96.50% for the fifth block. Similar findings were observed in the
testing accuracy of the second model. Saleh and Issa [54] exploited transfer learning and
deep CNN fine-tuning to increase the accuracy of 32-hand gesture recognition by using the
ArSL2018 dataset [50,51]. In order to address the imbalance resulting from the difference in
class sizes, the dataset was randomly undersampled. There were 25,600 images instead of
54,049 in total. The best accuracy for VGG16 was 99.4%, and for ResNet152, it was 99.57%.
Alharthi and Alzhrani [64] carried out a study that is made up of two parts. The first part
involves the transfer learning approach by using a variety of pre-trained models, including
MobileNet, Xception, Inception, InceptionResNet, DenseNet, and BiT, as well as two vision
transformers, ViT and Swin. A number of CNN architectures were trained from scratch
in order to be compared with the transfer learning approach in the second part, which
used a deep learning approach employing CNNs, the transfer learning method beat other
CNN models and achieved stable high performance on the ArSL2018 dataset [50,51]. A
comparable high performance of 98% was achieved by ResNet and InceptionResNet.

Ismail et al. [71] suggested a different approach by comparing the performance of
single pre-trained models: DenseNet121, VGG16, ResNet50, MobileNetV2, Xception, Effi-
cientB0, NASNetMobile, and InceptionV3, and multi-models: DenseNet121-VGG16 model,
ResNet50-MobileNetV2, Xception-EfficientB0, NASNetMobile-InceptionV3, DenseNet121-
MobileNetV2, and DenseNet121-ResNet50. It was found that DenseNet121 is the best CNN
model for extracting features and classifying Arabic sign language. For multi-models, the
DenseNet121-VGG16 multi-model CNN shows the highest accuracy. The study findings
reveal that when it comes to ASL feature extraction and classification, multi-models outper-
form single models. Faster R-CNN based on the pre-trained models VGG16 and ResNet18
was proposed by Alawwad et al. [73]. Using the dataset of self-collected ArSL images, this
linkage between the proposed architecture and the ResNet and VGG16 models obtained
93% accuracy.

A few studies have focused their experiments on specific pre-trained models such
as EfficientNet [66,74]. Islam et al. [66] presented an innovative approach to Arabic SL
recognition that builds feature extraction on a modified version of the EfficientNetB3 model.
Using stacked autoencoders, the approach ensures the best possible mapping of input
images through powerful feature selection. This approach shows enhanced performance
for Arabic sign language after a thorough testing process involving several CNN mod-
els. Arabic SL gesture detection becomes simpler and more precise with the addition of
densely coupled coding layers, which improves the model’s performance even further.
AlKhuraym et al. [74] proposed utilizing a CNN-based lightweight EfficientNet to recog-
nize Arabic sign language (ArSL). A dataset with hand gestures for thirty distinct Arabic
alphabets was gathered by numerous signers. Then, the classification outcomes obtained
by different versions of lightweight EfficientNet were assessed. With 94% accuracy, the
EfficientNet-Lite 0 architecture showed the best results and demonstrated its effectiveness
against background variations.

By combining several models rather than just one, ensemble methods seek to increase
the accuracy of outcomes in models. The accuracy of the results is considerably increased
by the combined models. Two recent studies were found to exploit ensemble methods for
alphabet ArSLR [60,62]. Alnuaim et al. [60] proposed a framework that consists of two
CNN models, each trained on the ArSL 2018 dataset [50,51]. The two models, ResNet50
and MobileNetV2, were used in conjunction with each other. After using a variety of
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preprocessing methods, several hyperparameters for each model, and data augmentation
strategies, the results reached an accuracy of almost 97% for the entire set of data. The
proposed solution by Nahar et al. [62] involves retraining 12 models, namely VGG16,
VGG19, ResNet50, InceptionV3, Xception, InceptionResNetV2, MobileNet, DenseNet121,
DenseNet169, DenseNet201, NASNetLarge, and NASNetMobile. Once the 12 predictions
are obtained, the majority of the predictions will be used by the classification module
to increase accuracy. Simple majority voting is a collective method that leverages the
majority of the classifiers to determine the prediction, increasing the output’s accuracy. The
findings demonstrate that, with a 93.7% accuracy in Arabic language sign classification, the
suggested approach outperforms conventional models in terms of speed and accuracy.

RNNs are a type of artificial neural network that is well-suited to capture temporal
dependencies and sequential patterns in data. In contrast to feedforward neural networks,
which process data in a single pass, RNNs handle data throughout many time steps. This
makes RNNs ideal for processing and modeling time series, speech, and text. The most
popular RNN architecture is LSTM. LSTM can efficiently capture long-term dependencies
in sequential data using the memory cell, which is managed by the input, forget, and
output gates. These gates determine what data should be input into, taken out of, and
output from the memory cell. Alnahhas et al. [84] proposed an innovative approach that
uses LMC and deep learning to recognize dynamic hand gestures that indicate expression
in Arabic sign language. In order to process dynamic gestures, the sensory data is first
represented as a series of frames, where each frame is made up of values that indicate
the hand posture features in that frame. The LSTM model is then used to process the
series of frames, which can be used to categorize the series into classes that correspond to
different sign language expressions. Using the proposed solution, a system that can identify
sign language expressions that can be executed with one or two hands was developed.
According to the experiment’s findings, the greatest accuracy was 89% for gestures made
with one hand and 96% for gestures made with two hands.

Another type of RNN is BiLSTM, which consists of two LSTM networks, one for
forward processing of the input sequence and another for backward processing. The
final outcome is then generated by combining the outputs of the two LSTM networks.
Some researchers have adopted BiLSTM in ArSLR research. Aly and Aly [77] proposed a
methodology to extract the features using a single-layer CSOM rather than depending on
the transfer learning of pre-trained deep CNNs. After that, deep BiLSTM—which consists of
three BiLSTM layers—was used to recognize the extracted feature vector sequence. BiLSTM
includes one fully connected layer and two softmax layers. The proposed approach’s
effectiveness was assessed using the Shanableh dataset [75], which comprises 23 distinct
terms that were recorded by three separate users. In the signer-independent mode, the
evaluation of the proposed solution yielded a high accuracy of 89.5%. Another study
carried out by Shanableh [98] has aimed at employing a camera in user-dependent mode
for continuous Arabic sign language recognition. The proposed solution is a two-step
process wherein the first stage uses deep learning to predict the number of words in a
sentence. Next comes a second stage, where a novel method based on motion images and
biLSTM layers is used to recognize words in a sentence. The experiments were conducted
using one LSTM layer, one biLSTM layer, two biLSTM layers, and three biLSTM layers.
According to experimental findings, the suggested method performed exceptionally well
when used on a dataset with 40 sentences [96]. BiLSTM with two layers produced the best
outcomes, with a word recognition rate of 97.3% and a sentence recognition rate of 92.6%.

Some studies have integrated RNNs with other deep learning architectures, such as
CNNs, to benefit from their individual advantages. These hybrid models aim to gather both
spatial and temporal information from sign language data, seeking enhanced performance
in ArSLR. The baseline study conducted by Luqman and El-Alfy [88] aimed to assess
and compare six models based on cutting-edge deep-learning techniques for the spatial
and temporal processing of sign videos for ArSL words. These models are CNN-LSTM,
Inception-LSTM, Xception-LSTM, ResNet50-LSTM, VGG-16-LSTM, and MobileNet-LSTM.
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Using both manual and non-manual features, two scenarios are examined for the signer-
dependent and signer-independent modes. Color and depth images were used directly
in the first scenario, whereas in the second scenario, optical flow was utilized to extract
more distinct features from the signs themselves instead of the signers. Using MobileNet-
LSTM yielded the best results, with 99.7% and 72.4% for signer-dependent and signer-
independent modes, respectively. Ismail et al. [92] proposed fusing different models in
order to precisely capture the spatiotemporal change of dynamic word sign language
movements and to efficiently gather significant shape information. The models include
RNN models, LSTM and gated recurrent unit (GRU) for sequence classification, and deep
neural network models that use 2D and 3D CNNs to cover all feature extraction approaches.
ResNet50-LSTM was the best multi-model using the same fusion technique among the
pre-trained models, including DenseNet121-LSTM, ResNet50-GRU, MobileNet-LSTM,
and VGG16-LSTM. Luqman and Alalfy [78] suggested utilizing three distinct models
for dynamic sign language recognition based on the combination of two architectures
exploiting layers from CNN and LSTM. These models are CNN-LSTM, CNN with two
stacked LSTM layers (CNN-SLSTM), and CNN followed by stacked LSTM layers and a
fully connected (FC) layer (CNN-SLSTM-FC). After evaluating the models, the results
show that CNN-SLSTM outperformed other models in terms of accuracy and training time.
Luqman and Alalfy [90] presented a novel approach that includes three deep learning
models for isolated sign language recognition: the Dynamic Motion Network (DMN), the
Accumulative Motion Network (AMN), and the Sign Recognition Network (SRN). In DMN,
different combinations of LSTM and CNN-based models were used to train and extract the
spatial and temporal information from the key frame of the sign gesture, and MobileNet-
LSTM outperformed all other combinations. The sign motion was encoded into a single
image using the Accumulative Video Motion (AVM) technique. AMN was fed this image
as its input. Finally, the SRN stream used the fused features from the DMN and AMN
streams as input for learning and classifying signals. In 2023, Podder et al. [35] proposed a
novel CNN-LSTM-SelfMLP architecture that can recognize Arabic Sign Language words
from recorded RGB videos. This study’s dataset comprises both manual and non-manual
sign gestures [88,89]. Six distinct CNN-LSTM-SelfMLP architecture models were built
using three SelfMLPs and MobileNetV2 and ResNet18 CNN-based backbones, with the
purpose of comparing performance in ArSLR. MobileNetV2-LSTM-SelfMLP obtained the
highest accuracy of 87.69% for the signer-independent mode. Balaha et al. [94] presented
their approach for integrating the CNN and RNN models to recognize isolated Arabic sign
language words. Two CNNs were combined, and the output was fed to five cascaded layers
of 512 BiLSTM units. To prevent network overfitting, a dropout layer comes after each of
these layers. An FC layer with a SoftMax activation function that predicts the output comes
after these layers. Using a self-acquired sign language dataset for 20 words, the proposed
architecture demonstrated a testing accuracy of 92%.

3.2.5. RQ2.5: Which Evaluation Metrics Were Used to Measure the Performance of
ArSLR Algorithms?

Evaluation metrics offer a quantified representation of the performance of the trained
model or algorithm. By employing metrics, researchers can evaluate various models and
choose which is most effective for their requirements. The evaluation metrics selected
are determined by the particular problem domain, the type of data, and the intended
outcome. In this section, the most and least used evaluation metrics are presented in all
categories of the reviewed ArSLR studies. As illustrated in Tables 14–17, the most common
fundamental metric to evaluate the effectiveness of the proposed ArSL recognition is
accuracy, which determines the model’s capability to differentiate ArSL signs correctly and
presents the ratio of correctly classified samples across the whole dataset. In continuous
ArSLR, researchers report the accuracy in terms of word recognition rate and sentence
recognition rate [95,96,98]. The ratio of correctly identified sentences to the total number of
sentences in the collection of test sentences is referred to as the sentence recognition rate.
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When all the words that form a sentence are correctly identified in their original order, the
sentence is correctly classified.

Precision, recall, and F1 scores were employed by around half of the fingerspelling
ArSLR, as shown in Table 14. The precision of a model is defined as the proportion of
true positive predictions among all positive predictions produced by the model. It shows
how well the model recognizes positive samples correctly. The proportion of true positive
predictions among all actual positive samples is called recall, which is often referred to
as sensitivity or true positive rate. It demonstrates how accurately the model represents
the positive samples. Precision and recall’s harmonic mean define the F1 score. By taking
precision and recall into account, it offers a balanced measure of the model’s performance.
The F1 score has a range of 0 to 1, where 0 denotes low performance, and 1 denotes
exceptional precision and recall. On the contrary, only one study for miscellaneous ArSL
recognition and a few studies for isolated word recognition utilized precision, recall, and
the F1 score, as shown in Tables 15 and 17.

More insight into the model’s performance across several classes is provided by the
confusion matrix, which visualizes the results from classifier algorithms. A confusion
matrix is a table that compares the number of actual ground truth values of a given class to
the number of predicted class values. Less than half of the studies in different categories of
ArSLR—except continuous ArSLR—benefited from using this visual representation.

The loss metric is a measure of the model’s performance in terms of its capability to
provide accurate predictions. It shows how the actual outcome, or target value, differs from
the model’s predicted outcome. The loss metric is widely used to express the cost or error
incurred in making the model’s predictions. The aim is to lower this error by modifying the
model’s parameters throughout training. Around one-third of the fingerspelling recognition
studies and one-fourth of the isolated word recognition studies used loss as a measure
of the model’s effectiveness. Among these studies, the commonly used classification loss
was categorical cross-entropy [52,55,58,63,69], whereas LogLoss was used by only one
study [85].

Training time was a concern in a few ArSLR studies, with three fingerspelling recog-
nition studies [46,47,55] and one isolated recognition [78]. Along with the training time,
testing time was considered in two continuous recognition studies [96,98] and one finger-
spelling recognition study [41]. In only one study [97], the response time was measured by
calculating the time required to capture and classify the sign in real time for continuous
sentence recognition.

Receiver Operating Characteristic (ROC) curve analysis is a chart that presents a
false positive rate (1-specificity) on the X-axis against a true positive rate (sensitivity) on
the Y-axis. This metric was utilized by three isolated recognition studies [35,91,93]. The
specificity metric is the capacity of the algorithm or model to predict true negatives for each
class. A few researchers considered this metric for either fingerspelling recognition [44,52]
or isolated recognition [35,95]. The Area Under Curve (AUC) is a metric that is speci-
fied by calculating the area under ROC curves, where the AUC should be between 0.5
and 1. It was used by two fingerspelling recognition studies [48,64] and one study for
isolated recognition [85]. The Kappa statistic was utilized by two studies for isolated
recognition [52,72] to assess the degree of agreement between two sets of multiclass la-
bels. Various evaluation metrics were rarely utilized in the reviewed papers, including
Matthews’s Correlation Coefficient (MCC) [52], Root Mean Squared Error (RMSE) [72] and
top-5 accuracy [63] for fingerspelling recognition and overlap ratio [76], Jaccard index [91],
standard error [35], confidence interval [35], top-1 accuracy [94], G-measure [93], and
precision-recall curve analysis [93] for isolated recognition.

3.2.6. RQ2.6: What Are the Performance Results in Terms of Recognition Accuracy?

The majority of research papers emphasize accurately recognizing sign language
content, and the main metrics employed in these studies aim to gauge this capacity. Al-
most all reviewed research papers contain a quantitative assessment of the proposed sign
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recognition method. The scope and intricacy of testing vary widely, and specific tests are
established based on the goals of the research study. Generally speaking, the tests were
created to gauge the algorithm’s capability to recognize sign language sentences, words, or
alphabets frequently by comparing it with a number of benchmarking techniques. Compar-
ing the performance of various ML/DL models in ArSLR research can be challenging due to
the diverse nature of the tests, differences in datasets, evaluation metrics, and experimental
setups. Overall, many approaches did rather well and identified over 90% of the signs that
were presented, as shown in Figure 24 and Tables 14–17. Although this typically involved
less difficult tasks and was often unsustainable across several datasets, there have been
instances where the stated effectiveness was above 97%. One of the most crucial aspects
of ArSLR research that can positively affect the proposed solutions’ effectiveness is the
optimization of training parameters. The accuracy of 55.57% for a signer-independent
isolated recognition [82] was the lowest recognition accuracy achieved among all the re-
viewed ArSLR studies. Recognition rates of more than 80% are regarded as very strong
for continuous ArSLR applications, especially when they are maintained across different
datasets; however, the reviewed continuous recognition papers obtained superior results,
with all of them above 90%.

Figure 24. Percentages of Recognition accuracy of the reviewed ArSLR papers.

One of the important factors that affect the performance results of the proposed ArSLR
models is sign dependency. Signer-independent recognition systems are usually tested on
different signers than those used for system training; augmenting the signer population
benefits these systems. The signer-independent option is more challenging to use than the
signer-dependent one, as shown by Tables 14–17, where, for the identical experimental
setting, the performance accuracy of the signer-independent case is consistently lower than
that of the signer-dependent case. The reason for the significant decline in recognition
accuracy in the signer-independent mode may be traced back to the models that began to
overfit the signers during the system learning phase. This has been seen clearly in studies
that apply both signer-dependent and signer-independent modes [39,88,90]. The exception
was when the input acquisition occurred through wearable sensor devices like gloves [70],
where there was no significant drop in the user-independent case. Despite the discomfort
and impractical need to wear the glove sensors during the signing, ArSLR systems that
utilize this approach achieve a high-performance accuracy of 96% and above [70,95,96].

3.3. Challenges, Limitations, and Future Directions in the ArSLR Papers

To answer the third research question, RQ3: What are the challenges, limitations, and
future directions mentioned in the reviewed papers? Three research sub-questions have
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been answered. Tables 18–21 summarize the papers in each category. Rows shaded in gray
indicate methods that utilize wearable sensors.

Table 18. Limitations and future work for fingerspelling ArSLR studies.

Year Ref. Limitations/Challenges Future Work

2015 [42] Not mentioned Not mentioned

2015 [43] Not mentioned

− Improve the results in case of image occlusion.
− Increase the size of the dataset.
− Recognize alphabets from video frames and real time

ArSL system.

2017 [48] Not mentioned Address how the proposed prototype can be utilized to collect
and classify dynamic sign gestures of one word or phrase.

2018 [49] Not mentioned

− Investigate kernel SVM to improve the performance of the
proposed method.

− A relevance feature weight is assigned to each
sign gesture.

2019 [52] The required training time.
− Implement a low depth residual network to reduce the

training time.
− Develop a fully automated system for ArSLR system.

2020 [53] Not mentioned Not mentioned

2020 [68] Not mentioned − Evaluate the proposed system on new datasets.
− Test it in a real-time recognition.

2020 [54] Not mentioned Not mentioned

2020 [69] Not mentioned
− More advanced hand gestures recognizing devices can be

considered such as Leap Motion or Xbox Kinect.
− Increase the size of the dataset and publish it.

2020 [44] Not mentioned

− Investigate the impact of normalization and whitening on
feature extraction.

− Investigate the sparsity factor with various parameters.
− Increase the dataset size.
− Add more images that were underrepresented in feature

extraction and have similar gestures, to investigate their
effect on the process of learning and classification.

2020 [55]

− Limitation of the dataset size and
number of signers used in obtaining
the dataset.

− Limitation in the system hardware
available as image processing and deep
learning algorithms require high
processing and memory requirements.

− Limitation of achieving acceptable
recognition within reasonable time
and accuracy.

− Extend the proposed solution by developing a system to
translate the words and sentences.

− Build effective algorithms to achieve higher accuracy.
− Increase the dataset size.
− Develop real-time mobile application for Arabic sign

language translation.
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Table 18. Cont.

Year Ref. Limitations/Challenges Future Work

2021 [72] Not mentioned

− Develop educational tools for deaf and dumb children
using the proposed AArSLRS.

− Provide translation systems for the meanings of the
Holy Quran.

2021 [71] Not mentioned

− Implement mobile-based application to recognize Arabic
sign language in real-time.

− Use dynamic gesture recognition for Arabic
sign language.

− Build video-based dataset.

2021 [73] Not mentioned Study the performance of YOLO algorithm instead of Faster
R-CNN for ArSL letter recognition.

2021 [57] Not mentioned
− Consider testing the ArSL-CNN on different datasets.
− Study the effectiveness of RNN for the application.
− Utilize transfer learning for ArSLR model.

2021 [56] Not mentioned
− Study CNN-2 and CNN-3 architectures on larger datasets.
− Consider time and space complexity optimization to

enable these architectures to be used on mobile phones.

2022 [58]

− The proposed model is limited to
detecting only one object (a hand)
without taking the background into
consideration, which would affect
the performance.

− The detection process in the proposed
model is highly sensitive to variations
in the hand’s pose.

− Build a mobile application based on the proposed model.
− Exploit transfer learning.
− Other sign language datasets such as the American Sign

Language dataset, MS-ASL can be used to pre-train a
model to utilize transfer learning.

− Implement data augmentation to produce
training samples.

2022 [74] Not mentioned
− Investigate utilizing transformers.
− Extend the proposed work to recognize the Arabic sign

language words or common expressions.

2022 [59] Not mentioned Generate real-time sentences and videos using sign language
based on CNN models.

2022 [60] Limitations in Real-Time recognition. Not mentioned

2022 [61] Not mentioned

− Combine different transfer learning models for
single-hand gesture recognition, such as MobileNet and
ResNet50 architectures.

− Apply these models to recognize the two-hand gestures.

2023 [46]

− The proposed model is limited to
images of static gestures that show the
discontinuous letters at the beginning
of the Qur’anic Surahs.

− Test the proposed model, QSLRS-CNN on various
datasets and

− Evaluate RNN and LSTM.
− Improve the proposed model by adopting

transfer learning.
− Develop a deep learning model to translate the Holy

Qur’an meanings into sign language.
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Table 18. Cont.

Year Ref. Limitations/Challenges Future Work

2023 [64]

− The dataset was not
representative enough.

− Real-world applications may require
solutions to practical implementation
issues such computational resources,
model deployment, real-time
performance, and user usability.

− Consider addressing the class imbalance found in ArSL
datasets to guarantee an equal representation and
enhance the accuracy of minority classes.

− Expand the study to include video-based
ArSL recognition.

− Investigate hybrid models that combine vision
transformers and pretrained models to enhance accuracy.

− Examine further the optimization methods and
fine-tuning approaches for transfer learning using
pretrained models and vision transformers.

− Examine methods for data augmentation that are
especially designed for ArSL recognition.

− Look into cross-language transfer learning.
− Carry out benchmarking and comparing various

pretrained models, architectures, and vision transformers
on ArSL recognition tasks and evaluate how well they
perform on bigger and more varied datasets.

2023 [65] Not mentioned Not mentioned

2023 [66] Not mentioned
Lower the learning parameters and model size using
quantization or model-pronening techniques to boost the
model’s efficiency.

2023 [41]

− The system is not robust to variations
in illumination.

− Only in the case where there is no
background clutter, the HOG descriptor
efficiently captures the hand structure.
Thus, for practical real-life applications,
an accurate segmentation is necessary.

− Real-time applications will consider the
1.2 s characterization time to be slow.

− The Random Forest classifier takes a lot
of trees to perform well, which makes
the model slower.

− Enhance the proposed system by including segmentation
and hand tracking phases for real-time acquisition
and recognition.

− The system needs to be enhanced in order to attain high
accuracy, particularly when dealing with a
complicated background.

2023 [47]

− The proposed model exhibits the
discontinuous letters at the beginning
of Qur’anic surahs using just
static gestures.

− Examine RNN and LSTM.
− Using many datasets when testing the QSLRS-CNN.
− Apply transfer learning to create a better deep learning

model for ArSL that is compatible with ArSL variations.
− Develop a deep learning model to translate the meanings

of the Holy Qur’an into sign language.

2023 [62] Not mentioned

− Investigate more cutting-edge deep-learning techniques to
enhance the model’s practicality and accuracy.

− Evaluate the model’s resilience and scalability for
additional sign languages.

2023 [63]

− Because training was done on a dataset
of remarkably similar images, testing
on the other two datasets revealed low
recognition accuracy.

− The training time was impacted by the
Internet speed.

− Continue the research to look into further deep learning
models, such ResNet.

− Further understanding of the decision-making
processes of the model’s layers is necessary for the
recognition process.
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Table 19. Limitations and future work for isolated ArSLR studies.

Year Ref. Limitations/Challenges Future Work

2015 [79] Not mentioned Not mentioned

2015 [80]

The suggested semantic oriented
post-processing module that detects and
corrects any translation errors would
perform well in a particular
predefined field.

By including a semantic-oriented post-processing module to
identify and fix any translation errors, the accuracy of the
translation can be improved.

2017 [81]

Since the dataset utilized in the study is
small, the outcomes of using a large
dataset with the linear and radial kernels
may change.

− Makes use of depth sensors and supervised machine learning
to identify ArSL phrases while considering the LMC’s
constrained workspace and the user’s motion.

− For Kinect and LMC to collect and recognize gestures more
accurately and instantly, they both need to be faster.

2018 [82] Not mentioned Not mentioned

2018 [5] Not mentioned Not mentioned

2019 [83] Not mentioned

− Examine various scenarios in which LMCs could be
combined with other sensors,

− Expand the system to incorporate continuous Arabic signs.
− Incorporate efficient techniques to decrease the

processing complexity.
− Develop an upgrade plan for the system to enable mobile

platform deployment.

2019 [33] Not mentioned

− Increase the number of non-manual features for full
ArSL recognition.

− Increase the number of signs in the dataset and combine
classifiers for a higher recognition rate.

− Focus on continuous dynamic gesture (sentence) translation
and recognition.

2019 [76] Not mentioned Not mentioned

2020 [84] Not mentioned Provide a mechanism that can transform sign language movements
into complete sentences while recognizing overlapped gestures.

2020 [85] Not mentioned
− Work on implementing algorithms that can yield better

accuracy rates, including deep learning algorithms.
− Increase the number of observations in the dataset.

2020 [77] Not mentioned Not mentioned

2021 [70] Not mentioned

− Glove design: Bluetooth IMU sensors can be utilized, together
with 3D printed rings that allow the sensors to be positioned
on the fingers.

− Preprocessing: employing more sophisticated methods such
sensor fusion (e.g., Kalman filter)

− Feature Extraction: merging magnetometer data with ACC
and GYRO features to detect magnetic north.

− Dataset: expand the dataset by gathering the Arabic Deaf
people’s most commonly used words or gestures.

− Classification: utilizing sequence-based classification
techniques such as HMM and RNN.
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Table 19. Cont.

Year Ref. Limitations/Challenges Future Work

2021 [88] Not mentioned

− There will be further examination of the effectiveness of each
component of the non-manual gestures.

− Examine alternative deep learning methods for
distinguishing between isolated signs.

− Discover how the suggested methods may be applied to
different datasets of signs.

− Focus on ArSL continuous sign language recognition.

2022 [91] Not mentioned

− Expand the suggested model to recognize sign boards in
real-time applications.

− A real-time, large-scale dataset can be used to evaluate the
performance of the proposed model.

− To improve the SL recognition performance, a combination of
DL models can be developed.

2022 [92] Not mentioned Not mentioned

2022 [78] Not mentioned

− Alternative models and datasets can be employed
for comparison.

− Further study is needed to extend the suggested method for
continuous sign language recognition and

− Enhance the training time of the proposed model.

2022 [90]

− In the LSA64 dataset, signs are
performed by nonexpert signers.

− Differences in gestures represented
by the various signers of the sign.

− The enormous number of produced
frames, particularly when sign
gestures are captured at high
frame rates.

− Transformers and the attention mechanism are two other
models that can be utilized to recognize sign language.

− It is also possible to employ alternative sign language
recognition modalities.

2023 [93] Not mentioned Employing sophisticated DL classification models would enhance
the ASLGC-DHOML model’s performance.

2023 [35]
There are only a few subjects and
classes in the dataset used to classify
sign language.

− Build a larger dataset with sign alphabets, numbers, words,
and sentences from various signers, as well as variations in
background, lighting, and camera angles.

− Create a sign language transformer that uses MediaPipe
Holistic’s landmark data rather than videos as input.

− Include the attention mechanism in the model for Arabic sign
video classification so that the model can be trained on bigger
datasets and be capable of recognizing sign videos in
real-life scenarios.

− Incorporate more cutting-edge 1D and 2D CNNs into a
real-time Arabic Sign Language Transformer.

2023 [94] Not mentioned

− Include additional users and new signs in the
proposed dataset.

− Focus on phrases as opposed to words.
− Adjust the suggested model to accommodate the new videos

through incorporating grammatically correct sentences.
− Employing various strategies, networks, architectures

and techniques.
− More research can be undertaken with more Arabic datasets.
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Table 20. Limitations and future work for continuous ArSLR studies.

Year Ref. Limitations/Challenges Future Work
2015 [95] Not mentioned Not mentioned

2018 [97] Not mentioned

− Utilize alternative techniques in the recognition phase, such
as DTW for the purpose of improving the proposed system.

− The segmentation method can be improved for
increased accuracy.

− Further testing of more words from various domains will
improve the proposed system and increase its ubiquity.

2019 [96] Not mentioned Not mentioned

2023 [98] For sign language recognition in the real
world, the suggested solution is unsuitable.

Minimize the computation time and make the proposed solution
appropriate for real-time sign language recognition.

Table 21. Limitations and future work for miscellaneous ArSLR studies.

Year Ref. Limitations/Challenges Future Work

2017 [37] Not mentioned
Enhance recognition accuracy by utilizing deep learning with large
samples of complete sentences and incorporating more
features engineering.

2020 [38] Not mentioned
− Improve deep learning with ontology to address dynamic real

video in real-time applications.
− Transform the system into a mobile application.

2021 [39]

− Each camera’s field of vision was
excessively wide, capturing the entire
scene. This resulted in two thirds of
worthless side pixel information.

− Some singers had trouble coordinating
their hands and making the
same gestures.

− The research focused on the initial,
less-than-ideal factory calibration
parameters of both Kinect cameras.

− Owing to some blurry pixels in the
original frames, finger key points were
not produced correctly, primarily for
the transient frames.

− To determine whether a shape is a sign or a transitory gesture,
add a sign boundary detector or a network to the
proposed solution.

− Group the produced frame key points into meaningful
reduced clusters would be the subject of further research in
order to make the deep model lighter and more compact on
mobile devices.

− Improve delay removal across the pipeline using convolution
suppression and optimum data propagation to minimize
network size and maximize classification performance.

− Additional enhancements include the ability to zoom in on
singers and the addition of an automated method for
detecting palm positions.

3.3.1. RQ3.1: Has the Number of Research Papers Regarding ArSLR Been Increasing in the
Past Decade?

Figure 6 illustrates the distribution of the 56 papers gathered by the selection process
described above, according to the years of publication. From our pool of papers, we can
notice an overall pattern of increasing publications over the last ten years, which should be
a good indicator of a rising volume of publications in the area in all journals.

3.3.2. RQ3.2: What Are the Limitations and/or Challenges Faced by Researchers in the
Field of ArSLR?

The majority of the assessed ArSLR publications omitted information about the con-
straints or the difficulties they faced in conducting their studies. Approximately 26.79% of
the ArSLR studies acknowledged the challenges and limitations that they encountered dur-
ing their research process. Different aspects were discussed as limitations, including dataset,
signers, model performance, training time, and suitability for real-world applications.
With regard to the dataset, the small size was considered a limitation by Latif et al. [55]
for alphabet recognition and Almasre and Al-Nuaim [81] for isolated word recognition.
Abdelghfar et al. [46,47] utilized a limited set of images of static gestures that show the
discontinuous letters at the beginning of the Qur’anic Surahs. Alharthi and Alzahrani [64]
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pointed out that the dataset was not representative enough for alphabet recognition.
Fadhil et al. [63] used a dataset of similar fingerspelling sign language images. Extra
data and low-quality blurred frames in the captured signs stored in the dataset were re-
ported by Bencherif et al. [39]. The enormous number of produced frames in the dataset,
particularly when sign gestures are captured at high frame rates, was a challenge pointed
out by Luqman [90]. Limitations in the process of video capturing were discussed by
Bencherif et al. [39], including relying on the original suboptimal factory parameters for the
two Kinect cameras, capturing at a low frame rate, and including a large field of view of
each camera. Signers were another aspect mentioned in a number of studies; for example,
Latif et al. [55] reported the limitation in the number of signers who volunteered to perform
alphabet signs. Luqman [90] stated that word signs in the dataset were performed by
nonexpert signers who incorporated non-sign language gestures into the sign language.
Moreover, the various signers who perform the same signs show differences in their ges-
tures. A few signers were recruited to perform the word signs stored in the dataset used by
Podder et al. [35]. Bencherif et al. [39] reported that some singers had trouble coordinating
their hands and making the same gestures. A few researchers highlighted the limitation
in real-time recognition of alphabet signs [41,55,64] and continuous sentences [98] for real-
world applications due to the required computation time. Agab and Chelali [41] pointed
out that accurate segmentation is necessary when using their model in practical, real-life
applications. Model training time was another limitation that impacted fingerspelling sign
recognition, as mentioned by Shahin and Almotairi [52] and Fadil et al. [63]. The limitation
in system hardware, including processing and memory requirements for alphabet sign
language recognition, was discussed by Latif et al. [55]. Some researchers admit the limi-
tations in their proposed models; for example, the model proposed by Alsaadi et al. [58]
is limited to detecting only one object (a hand) without taking the background into con-
sideration, which would affect the performance. The detection process in their proposed
model is highly sensitive to variations in the hand’s pose. In addition to the limitation in
model robustness to illumination reported by Agab and Chelali [41], the HOG descriptor
efficiently captures the hand structure only if there is no background clutter. The semantic-
oriented post-processing module suggested by Badawy et al. [80] to detect and correct any
translation errors would perform well in a particular predefined field.

3.3.3. RQ3.3: What Are the Future Directions for ArSLR Research?

Many of the reviewed publications, with a percentage of 78.57%, exhibited future
work for their proposed solutions. This percentage is distributed among the different
categories of ArSLR studies, as illustrated in Figure 25. Different dimensions for future
work have been discussed, including datasets, data acquisition devices, data preprocessing
and segmentation, feature extraction, recognition models, expanding to other ArSLR
categories, and developing practical real-time systems.

In the category of finger spelling recognition, some researchers discussed increasing
the dataset size in their future plans [43,44,55,56,64]. Other researchers planned to utilize dif-
ferent and various datasets to test and evaluate their proposed solutions [46,47,57,58,62,68].
Publishing the self-acquired dataset was pointed out by Kamruzzaman [69]. Building
video-based was a concern for Ismail et al. [71]. In terms of data acquisition devices,
Kamruzzaman [69] planned to consider more advanced hand gesture-recognizing devices
such as Leap Motion or Xbox Kinect. In data preprocessing, implementing different data
augmentation techniques was a concern for a few researchers [58,64]. With regard to
feature extraction, Alzohairi et al. [49] discussed the potential improvement of the model
by assigning a relevant feature weight to each sign gesture. Investigating the impact of
normalization and whitening on feature extraction was a concern for Hasasneh [44].
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Figure 25. Percentages of papers that discuss future work in each category.

The majority of the studies have focused on recognition models and how to boost their
performance as one of the future directions. For example, some researchers have focused
on improving the accuracy of results in cases of image occlusion [43] or complicated back-
grounds [41]. Decreasing the learning parameters and model size using quantization or
model-pronening techniques was proposed by Islam et al. [66]. Shahin and Almotairi [52]
discussed a possible reduction of the training time by implementing a low-depth residual
network. Hasasneh [44] suggested investigating the sparsity factor with various models’
parameters. A number of researchers have mentioned specific recognition models to be in-
vestigated in their future studies, such as kernal SVM [49], RNN [57], YOLO algorithm [73],
and RNN together with LSTM [46,47]. The interest has been shifted toward transfer learn-
ing by many researchers [46,47,58,61,63], where it was first mentioned as a future direction
in 2021 by Alani and Cosma [57]. Zakariah et al. [61] suggested combining different transfer
learning models for single-hand gesture recognition, such as MobileNet and ResNet50 ar-
chitectures, and applying these models to recognize the two-hand gestures. Fadhil et al. [63]
emphasized the necessity of further understanding the decision-making processes of the
transfer learning model’s layers, such as ResNet. It was also suggested that future research
would extend the current proposed approaches to be capable of recognizing words and
sentences [48,55,64,71,74].

Other studies pointed out the need to enhance the proposed systems for real-time
acquisition and recognition [41,43,68]. One potential avenue for future improvement is the
development of real-time mobile applications for ArSLR [55,56,58,71]. Tharwat et al. [74]
recommended creating educational materials for deaf and dumb children, while Shahin
and Almotairi [52] proposed creating an entirely automated ArSLR system. Using deep
learning models, Abdelghfar et al. [46,47] and Tharwat et al. [72] suggested translating the
meanings of the Holy Qur’an into sign language.

In the category of isolated word recognition, some researchers suggested expand-
ing the dataset by increasing the number of signs [33,70,91,94], observations [85], and
signers [94]. Exploring how the proposed methods can be applied to different datasets was
in the plans for a number of studies [78,88,91,94]. Podder et al. [35] pointed out that the
work would be improved by building a larger sign dataset of alphabets, numbers, words,
and sentences from various signers, as well as variations in background, lighting, and
camera angles. With regard to data acquisition devices, Almasre and Al-Nuaim [81] empha-
sized the need for employing faster Kinect and LMC to collect and recognize gestures more
accurately and instantly. Deiche et al. [83] suggested examining various scenarios in which
LMCs could be combined with other sensors to improve the overall performance. Glove
design was a concern for Qaroush et al. [70], where Bluetooth IMU sensors can be utilized,
together with 3D printed rings that allow the sensors to be positioned on the fingers.

In the preprocessing stage, Qaroush et al. [70] suggested employing more sophisti-
cated methods such as sensor fusion (e.g., Kalman filter). In terms of feature extraction,
Ahmed et al. [33] planned to increase the number of non-manual features for full ArSL
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recognition, whereas Hisham and Hamouda [37] suggested incorporating more feature
engineering. Qaroush et al. [70] mentioned merging magnetometer data with ACC and
GYRO features to detect magnetic north.

Many of the studies have paid attention to recognition models and improving their
accuracy. Some of the researchers suggested incorporating efficient techniques to de-
crease the processing complexity and increase accuracy rates, including deep learning
algorithms [78,83,85,88,93,94]. Qaroush et al. [70] suggested utilizing sequence-based clas-
sification techniques such as HMM and RNN. To improve the SL recognition performance,
a combination of DL models can be developed [33,91]. Luqman [90] mentioned that trans-
formers and the attention mechanism are two other models that can be utilized to recognize
sign language. Podder et al. [35] suggested creating a sign language transformer that
uses MediaPipe Holistic’s landmark data rather than videos as input, incorporating more
cutting-edge 1D and 2D CNNs into a real-time Arabic Sign Language Transformer and
including the attention mechanism in the model for Arabic sign video classification so that
the model can be trained on bigger datasets and be capable of recognizing sign videos in
real-life scenarios.

A number of studies showed that further work is needed to extend the proposed
approaches to incorporate continuous sign language recognition [33,78,83,88,94] and to
provide a mechanism that can transform sign language movements into complete sen-
tences while recognizing overlapped gestures [84]. Almasre and Al-Nuaim [81] highlighted
their intention to make use of depth sensors and supervised machine learning to iden-
tify ArSL phrases while considering the LMC’s constrained workspace and the user’s
motion. Marzouk et al. [91] underlined the importance of expanding the proposed model
to recognize sign boards in real-time applications. Developing an upgrade plan for the
system to enable mobile platform deployment was pointed out by Deriche et al. [83].
Badawy et al. [80] stated that the accuracy of the translation can be improved by including
a semantic-oriented post-processing module to identify and fix any translation errors.

In the category of continuous sentence recognition, Hisham and Hamouda [97]
recommended conducting further testing of more words from various domains. They
also suggested improving the segmentation method and utilizing alternative techniques
in the recognition phase, such as DTW, for the purpose of increasing accuracy and im-
proving the proposed system. Shanableh [98] emphasized the importance of making the
proposed solution appropriate for real-time sign language recognition and minimizing the
computation time.

In the category of miscellaneous recognition, Hisham and Hamouda [37] suggested
incorporating more feature engineering, working on large samples of complete sentences,
and utilizing deep learning to enhance recognition accuracy. Bencherif et al. [39] pointed
out the need to add a sign boundary detector or a network to the proposed solution in
order to determine whether a shape is a sign or a transitory gesture. They stressed that
more research should be done to find the smallest group of unique frames and/or key
points that show a sign by putting the produced frame key points into meaningful reduced
clusters. This would make the deep learning model smaller and lighter for mobile devices.
They also highlighted the significance of minimizing network size and maximizing classi-
fication performance by improving delay removal across the pipeline using convolution
suppression and optimum data propagation. Additional enhancements, including the
ability to zoom in on singers and the addition of an automated method for detecting palm
positions, were also suggested by Bencherif et al. [39]. Elsayed and Fathy [38] underlined
the necessity of improving deep learning with ontology to address dynamic real video in
real-time applications and transforming the system into a mobile application.

3.4. Discussion, Future Perspectives and Limitations

Our analysis of the relevant literature indicates that vision-based recognition algo-
rithms for alphabet, isolated words, and sentences for ArSL recognition have been suc-
cessfully applied by researchers in this field. It is noteworthy to mention that I did not
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find any study that used a sensor-based technique for fingerspelling ArSL recognition.
Despite their performance being promising, limited sensor-based studies were found for
isolated words and continuous recognition. Research on ArSLR has recently focused more
on vision-based solutions because they offer minimal to no constraints on users, unlike
sensor-based approaches. Despite being non-invasive, vision-based techniques are limited
by the low-quality images of traditional cameras. One more issue is that simple hand
features can lead to ambiguity, while more complex features need more processing time.
As both vision-based and sensor-based approaches have the potential to attain the best
performance in this field, this shows the feasibility of research efforts utilizing both of them.

This section discusses the results found in the analyzed papers and is based on the
answers to the research questions.

3.4.1. Dataset Characteristics

The ArSLR process relies heavily on the dataset to train and test models. Therefore,
when selecting a dataset, several requirements should be considered, including:

Availability: Whether the dataset is publicly available or not.
Diversity: To ensure that models are capable of handling real-world circumstances,

datasets need to be diverse. Thus, the datasets should incorporate a variety of backgrounds,
lighting situations, camera angles, and representations of signs by different signers.

Size: The size of the dataset affects model performance. Therefore, larger datasets are
generally better for improving model accuracy.

Sign representation: Different representations of signs are available in the dataset in
the form of different modalities, including RGB, depth, skeleton joint points, or others.

Data quality: Performance may suffer from a large amount of poor-quality data.
Therefore, data should be high-resolution and free of watermarks.

Annotation quality: Any dataset should include accurate, comprehensive, and consis-
tent annotations for key points and sign detection.

The fact that the ArSLR datasets available today only partially meet these requirements
is disappointing and could negatively impact the performance of the model. This systematic
review shows that a few datasets are publicly available. However, publicly available
datasets are important in creating benchmark datasets to compare the performance of
different algorithms proposed in previous studies on ArSLR. The lack of available datasets
is one of the challenges impeding research and improvement in Arabic sign language
recognition. This is mainly caused by a shortage of experienced ArSL specialists as well
as the time and cost involved in gathering sign language data. Furthermore, researchers
might have trouble acquiring reliable ArSL datasets since Arabic is a complicated language
by nature. It could be challenging to directly compare the recognition accuracy of the
various approaches because some studies created their own data, which is typically private
or unavailable to other researchers.

One of the variables that affects the diversity of the ArSL dataset is the total num-
ber of signers. This aspect is crucial for assessing the generalization of the recognition
systems. The majority of the reviewed ArSL datasets were built with a relatively small
number of signers and only a few classes, which calls into doubt their representative value.
Signer-independent recognition systems that are tested on signers other than those who
participated in the system training benefit from having more signers. Thus, when faced
with slightly varying presentations of sign language gestures, the performance of any
ML/DL model that relies on those datasets may be jeopardized.

An additional consideration in evaluating a sign language dataset is the number
of samples. Training ML/DL models requires numerous samples per sign with certain
variances per sample. Data on sign representation is very crucial for assessing datasets.
Most of the reviewed Arabic sign language datasets are available in RGB format. However,
a number of the datasets capture the signs using multimodality devices such as Microsoft
Kinect and LMC, which provide additional representations of the sign sample, like joint
points and depth. A few datasets rely on wearable devices, such as DG5-VHand data gloves
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and 3-D IMU sensors, to record the required features of the hand gestures. Multi-modal
datasets are becoming more prevalent, especially in the categories of isolated words and
continuous sentence recognition. This is a positive indicator showing the next phase of
ArSLR research and providing more opportunities for creative thinking.

One of the most important factors that might influence the rate of advancement in any
branch of AI research is the availability of high-quality datasets for model training and
testing. As a relatively new field of interest, ArSLR research experienced this issue at first,
but the reviewed papers show that situations are beginning to improve in this matter.

Owing to these issues with current datasets, some researchers tend to integrate two or
more datasets while training their models. The goal of combining datasets is to overcome
the shortcomings of each one individually. Despite the features of these datasets, data
augmentation remains required to enhance data diversity. Therefore, for ArSLR tasks, an
exhaustive dataset with a variety of data that tackles the issue of occlusions and enables
accurate labeling is still essential.

ArSLR research shows considerable promise for enhancing accessibility for the deaf
and hard-of-hearing groups; however, it raises a number of significant ethical and privacy
issues. These issues mostly focus on informed consent, data privacy, and security. The
ethical and privacy considerations that researchers must carefully consider when gathering
and utilizing data for ArSLR are discussed below.

A key ethical principle in research is informed consent, which guarantees that study
participants are aware of the goals, methods, risks, and intended use of their data. Partici-
pants must be clearly informed about the following when conducting ArSLR research:

• How their sign language gestures will be captured and examined.
• What data will be gathered, such as motion data or video footage?
• The data’s intended use, such as sharing it with third parties or using it to train models,

and who will have access to it.
• The possible risks include invasions of privacy or improper use of personal information.

Data anonymization is essential for protecting the privacy and identity of research
participants. Researchers must ensure that identifiable features like faces, clothing, or
locations are eliminated or obscured when using motion data or video footage to train
ArSLR systems. They also need to ensure that data linkage is avoided, which means that
individual participants cannot be identified through combined data from multiple sources
or over time. In video-based data collection, this becomes especially difficult because
identifying people by their body language may unintentionally lead to identification. In
addition to ensuring that all identifying features of the data are anonymized before usage,
researchers should investigate methods like face-blurring.

The storage and protection of data must also be carefully considered in ethical research.
Researchers must ensure that data is stored securely, with only authorized individuals
having access; data is stored in accordance with relevant data protection laws, ethical stan-
dards, and regulations; and participants’ rights to request removal of data and withdrawal
of consent are upheld.

3.4.2. ArSLR Methodologies and Techniques

In Section 3.2, a number of elements that constitute the ArSLR methodologies and
techniques were discussed. One of these elements is data preprocessing, which mainly
prepares the data for the next ArSLR phases, and therefore choosing suitable preprocessing
techniques would affect the performance of the model. Various techniques were adopted
by the reviewed studies, including color space conversion, resizing and cropping, nor-
malization, data augmentation, and noise reduction. Utilizing these techniques rely on
different factors, such as

• The quality of acquisition devices: These devices usually produce low-quality data,
which may lead to decreased accuracy.



Sensors 2024, 24, 7798 75 of 87

• The calibration of acquisition devices: Some researchers do not calibrate their devices
to the appropriate parameters and work with default settings, which are not ideal in
most situations.

• Improper distance between the signers and the acquisition devices: The distance
should be adjusted to be adequate. The performance may be affected by how close or
how far away the signer is from the acquisition device.

• The background, illumination, and surroundings all have a significant impact on the
way the dataset is prepared.

• Small datasets: To improve the model’s performance, augmentation techniques could
be applied to increase the amount of training data.

The results from the analyzed papers show high popularity of data augmentation
recently, especially in the category of fingerspelling recognition, where the data tend to
be static images. A number of recent research cases show how transfer learning and data
augmentation techniques help overcome dataset scarcity issues and reach recognition
accuracy of 100% [65,66,92].

The primary focus of vision-based ArSLR is typically hand segmentation, with non-
manual segmentation for facial expressions and body gestures coming in after. Segmen-
tation is accomplished by using a variety of segmentation approaches, such as neural
network-based segmentation, region-based segmentation, thresholding, edge detection,
and clustering. The findings reveal that since 2020, the segmentation has been shifted to-
wards CNN-based algorithms and transfer learning, including VGG, AlexNet, MobileNet,
Inception, ResNet, Densnet, SqueezeNet, EfficientNet, CapsNet, and others. A few re-
searchers adopted pretrained vision transformers, such as ViT and Swin, and semantic
segmentation DeepLabv3C, where they proved their contribution to enhancing the accuracy
of the model.

Feature extraction is a crucial step in the ArSLR process. Thus, the feature vectors
obtained from this process serve as the classifier’s intake. The feature extraction approach
should identify structures robustly and consistently, irrespective of changes in the bright-
ness, location, size, and orientation of the item in an image or video. The findings show
that some ArSLR studies tend to adopt hybrid feature extraction techniques to address
the shortcomings in any individual technique and take advantage of their benefits. Other
researchers have recently used popular deep learning methods, such as CNNs, to extract
relevant features. These methods take features from the first layers and input them into
the ones that come after. CNNs and LSTM have been used together by some researchers
to extract temporal and spatial data, which are useful in isolated words and continuous
sentence recognition. Pretrained models have been used to extract features in the majority
of studies on fingerspelling ArSLR that have been conducted since 2019.

Section 3.2 reveals that deep learning algorithms, such as RNNs and CNNs, have
emerged as powerful tools in ArSLR research and have seen widespread use since 2019.
However, despite their advances, they also encounter a number of challenges that should
be overcome in order to fully exploit their effect and applicability in ArSLR research. The
scarcity of longitudinal datasets presents one of the problems RNNs encounter. RNNs excel
at modeling temporal dependencies and capturing sequential patterns, making them ideal
for recognizing continuous sentences. However, collecting diverse large-scale longitudinal
datasets is the key to training resilient RNN models. Furthermore, RNNs are challenged
by the wide range of sign language data. CNNs have proven to be remarkably effective
at recognizing ArSL. They do, however, have challenges in the field of ArSLR research.
The requirement for diverse and large-volume datasets for the effective training of CNN
models is one of these challenges. ArSLR data may demonstrate class imbalances and
tend to be small in size; therefore, careful data augmentation techniques are needed to
overcome these problems. Moreover, CNNs struggle with generalizing across different
signers and acquisition modalities. Developing robust techniques to handle these chal-
lenges and ensure model generalization is a key area of research. For this reason, a method
called transfer learning—in which the model is trained on a large training set—has been
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suggested as a remedy. The results of this training are then treated as the starting point
for the target task. Transfer learning using pretrained models has been successful in the
field of ArSLR. Frequently used pretrained deep learning models include common models
such as AlexNet, SqueezeNet, VGGNet16, VGGNet19, GoogleNet, DenseNet, MobileNet,
Xception, Inception, and ResNet, which are all typically utilized for image classification. In
an attempt to improve model accuracy, ensemble approaches—which incorporate different
models—have also been used recently. The integrated models significantly improve the
results’ accuracy. Additionally, some researchers have integrated RNNs with other deep
learning architectures, such as CNNs for isolated words and continuous sentence recogni-
tion. These hybrid models aim to gather both spatial and temporal information from sign
language data, seeking enhanced performance in ArSLR. A few more recent studies have
boosted the performance by adopting vision transformers and attention mechanisms.

The capacity of the proposed models to accurately accomplish the main task—that is,
to recognize or translate sign language—is how their performance is often evaluated. The
primary metric to evaluate the effectiveness of the model is the average accuracy over the
whole dataset; a greater percentage denotes a more accurate approach. It can be difficult
to compare the effectiveness of different ML/DL models in ArSLR research because of
the variety of tests, differences in datasets, evaluation metrics, and experimental setups.
Overall, many approaches did rather well and identified over 90% of the Arabic signs that
were displayed. The fact that many of the studies adopt signer-dependent mode testing
contributes to achieving such high accuracy. Although the ML/DL model’s capacity is
typically limited to the signs learned from the training set, it is possible to accomplish some
generalization with regard to other individuals exhibiting the same sign. Thus, one of
the most crucial aspects of SLR research is the optimization of training parameters, which
can significantly affect the effectiveness of the proposed solutions. More sophisticated
systems seek to comprehend increasingly complicated continuous sign language speech
segments and to enhance their real-time recognition capabilities. These applications are far
more complicated than simple word or letter recognition and often require combining the
analysis of various signs to decipher a particular sequence’s meaning. In order to capture
semantic nuances and prevent comparable signs from being confused, researchers have to
use hybrid architectures and advanced sequence-to-sequence models.

The relationship between computational resources and model complexity is crucial
in ASLR, particularly as the field moves toward the use of deeper and more complex
neural networks. Earlier research on ArSL recognition may have relied on less complex
models like shallow neural networks, decision trees, or support vector machines. The
accuracy of these models is often lower, particularly in more complicated sign sequences or
gestures, but they may not reflect the subtleties or contextual dynamics of sign language.
More recently, deeper neural networks are being investigated to enhance performance,
particularly for dynamic and continuous sign gesture recognition. For instance, RNNs or
transformers for sequential sign interpretation and CNNs for spatial feature extraction
(from images or videos). These models demand considerably more memory, processing
power, and training time than other models. ArSLR systems frequently need to process a
variety of input data types, such as images, video, depth sensors, or motion capture data.
This boosts model complexity and calls for more advanced networks.

The complexity of the model has a substantial impact on the computational resources
required for both training and deployment. For efficient training and inference, deeper
networks with more parameters require more processing power, such as high-performance
GPUs or TPUs. In order to maintain large datasets and model weights, complex models
demand a substantial amount of memory and storage capacity. Deeper network training
also necessitates processing massive amounts of video data, frequently in real-time, which
can be computationally costly. Longer training times for more complicated models could
result in increased expenses and consumption of power. This is especially problematic
when scaling up to large datasets for ArSLR or in circumstances with restricted resources.
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There is a trade-off between the model’s performance on ArSLR tasks and its com-
plexity. Deeper models typically offer higher accuracy, but they also come with a higher
processing cost. Model performance and efficiency must be balanced, particularly in
real-time applications where speed is critical. Researchers are investigating methods like
transfer learning, quantization, and model pruning to lessen the computational load with-
out appreciably compromising performance.

Both the Arabic language and sign languages in general have inherent complexities
that contribute to the difficulty of handling contextual interactions and advanced semantic
analysis in ArSLR. Like other sign languages, ArSL mostly depends on the surrounding
signs and contextual cues, such as body posture, facial expressions, and hand shape, to
accurately express meaning. A sign’s meaning might change depending on the context. For
instance, depending on its position, speed, and the facial expressions that accompany it, a
single sign may have several meanings. Several signs in continuous sign language have
similar hand shapes or movements but differ slightly (e.g., by speed, direction, or facial
expressions), and gestures also frequently overlap. It might be challenging to recognize
these subtle variations. Parsing the semantic structure of ArSL, or comprehending the
meaning behind a sequence of signs, remains a challenging task. This includes contextual
factors such as the link between signs, pronominal reference, negations, and non-manual
markers. The lack of comprehensive ArSL datasets restricts the ability to train robust
models, particularly for continuous signing.

A comparison of the most popular ML/DL techniques in ArSLR research, such as
SVM, KNN, HMM, RF, MKNN, NB, CNNs, RNNs, hybrid CNN-RNN, transfer learning,
and transformer-based techniques, is provided in Table 22 in terms of recognition accuracy,
efficiency, and robustness. This comparison has been derived from typical patterns ob-
served in the reviewed ArSLR papers. The performance can differ considerably depending
on the dataset, preprocessing and segmentation methods, feature extraction techniques,
and the specific recognition task (static vs. dynamic signs) used.

Table 22. Comparison of the most popular ML/DL techniques in ArSLR research.

ML/DL Methods Recognition Accuracy Efficiency Robustness Comments

SVM
Tends to be high, >85,

especially with
small datasets.

Moderate depending
on kernel.

Tends to be high, which
makes it good for

noisy data.

Performs well with
high-dimensional data but can
be computationally expensive

with large datasets or
non-linear kernels.

KNN Moderate to high,
depending on metrics.

Low (distance
computation-heavy). Fast to

train; slow during testing.

Low to Moderate
(sensitive to noise)

Simple to implement but
computationally intensive for
large datasets; performance

depends heavily on the choice
of k and distance metric.

HMM Very high > 95% Highly efficient in
sequential data.

Moderate in handling
sequence noise.

Excels in temporal sequence
recognition but requires

feature-rich sequential data.

MKNN Very high > 95% Moderate Moderate
It addresses KNN limitations
but remains computationally
intensive for large datasets.

RF Moderate to high High High robustness to noise
and outliers.

Highly robust and efficient,
which makes it ideal for large

feature sets with
proper tuning.

NB Moderate High

Low. It assumes feature
independence. Sensitive to

noisy, incomplete, or
irrelevant features.

Fast and efficient, but makes
strong assumptions (e.g.,

feature independence), which
are rarely true in

ArSLR applications.



Sensors 2024, 24, 7798 78 of 87

Table 22. Cont.

ML/DL Methods Recognition Accuracy Efficiency Robustness Comments

CNNs High for static
signs > 90%.

Moderate (requires substantial
computational resources for

training but is efficient
during inference).

High (handles noise and
variations in gesture
images effectively).

Excellent for static gesture
recognition but requires a

large dataset for
optimal performance.

RNNs High for dynamic
gestures > 90%

Moderate (sequential
processing can be

time-consuming, especially for
long sequences).

High.

Suitable for sequential gesture
recognition, therefore it is

commonly used for
recognizing continuous

gestures in
dynamic sequences.

Hybrid
CNN-RNN High for both tasks > 90%

Low to Moderate (training is
computationally expensive
due to hybrid architecture).

Very high (effective for
spatial-temporal data).

Powerful for complex gestures
combining static and dynamic

gestures but requires
significant

hardware resources.

Transfer Learning Very high when fine-tuned
on ArSLR datasets.

Faster training as it requires
less data due to pre-learned

features. However, the
efficiency can be moderate

depending on
architecture depth.

Robust to variations in
input data.

Benefits from the
generalization capabilities of

large-scale pretrained models.

Transformer-
based Models Very high > 95%. Low. Requires significant

computational power.

Very High (captures
complex spatial-temporal

dependencies).

State-of-the-art but requires
extensive computational

resources and large datasets.

3.4.3. Comparison with SOTA Systems Used in Related Languages

In this section, a comparison of ArSLR research with state-of-the-art (SOTA) systems
used in larger and well-established corpora like Ankara University Turkish Sign Language
Dataset (AUTSL) [103], Word-Level American Sign Language Dataset (WLASL) [104],
BBC-Oxford British Sign Language Dataset (BOBSL) [105], RWTH-PHOENIX-Weather
2014T [106], and Microsoft American Sign Language (MS-ASL) [107] is provided. The
aspects for this comparison include dataset size and diversity, modeling techniques,
multimodal data integration, performance metrics and benchmarks, and scalability and
global relevance.

• Dataset Size and Diversity

ArSLR datasets are generally small, with limited vocabularies (e.g., specific letters
or isolated signs) and minimal variation in signer identity, environment, or recording
settings, often featuring fewer than 100 signs and scarce continuous signing samples. In
contrast, SOTA systems utilize much larger and more diverse datasets. For example, AUTSL
includes 226 signs with multiple signers, capturing both isolated and continuous gestures
with style and context variations. WLASL offers over 2000 signs recorded across varied
settings and multiple signers, making it one of the largest for isolated word recognition.
BOBSL emphasizes conversational British Sign Language with continuous signing and a
large vocabulary, while RWTH-PHOENIX-Weather 2014T provides a highly structured
corpus for German Sign Language (DGS) with subtitles for context alignment. MS-ASL
features 1000+ signs recorded in diverse environments with signer variability, enabling
robust testing. To achieve global SOTA, ArSLR datasets must grow in size, vocabulary,
signer diversity, and recording conditions.

• Modeling Techniques

ArSLR modeling techniques primarily rely on CNNs for spatial feature extraction
and hybrid CNN-LSTM models for temporal learning in dynamic signing tasks, with
limited adoption of advanced frameworks such as graph-based models, transformers,
or multimodal attention mechanisms. On the contrary, SOTA systems employ more so-
phisticated approaches. AUTSL incorporates models like Spatio-Temporal Features with
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LSTM (STF + LSTM) for spatio-temporal features [108], 3D-DCNN for video-based learn-
ing, and Spatio-Temporal Multi-Graph Convolutional Neural Network (ST-MGCN) for
skeleton-based recognition [109]. WLASL leverages graph-based neural networks, includ-
ing Spatial-Temporal Graph Convolutional Networks (ST-GCN) [110] and transformer
architectures for robust spatio-temporal learning [111]. BOBSL and RWTH-PHOENIX uti-
lize sequence-to-sequence models, attention mechanisms, and transformers for continuous
signing recognition [112–114]. MS-ASL explores multimodal architectures and pre-trained
deep learning models, such as I3D, ResNet, and transformers, for both isolated and con-
tinuous tasks [110,115]. To advance, ArSLR research must adopt SOTA techniques like
transformers, Graph Convolutional Neural Networks (GCNs), and multimodal networks
to enhance spatio-temporal and contextual learning.

• Multimodal Data Integration

ArSLR systems primarily rely on RGB video data, with limited exploration of addi-
tional modalities such as depth or skeletal representations. In contrast, SOTA systems
incorporate multimodal data for enhanced performance. AUTSL combines RGB, depth,
and skeletal data for comprehensive feature extraction. WLASL and MS-ASL leverage
skeletal data for graph-based learning to enrich gesture representation. RWTH-PHOENIX
aligns subtitles with continuous signing to provide contextual disambiguation, and BOBSL
utilizes both contextual and visual cues to improve accuracy in conversational signing.
Expanding ArSLR systems to integrate depth, skeletal, and contextual data can significantly
enhance their robustness and versatility.

• Performance Metrics and Benchmarks

ArSLR systems often achieve high performance with accuracy above 90% in signer-
dependent recognition but struggle with signer-independent tasks due to limited dataset
variability and lack of standardized evaluation benchmarks for cross-dataset comparisons.
On the contrary, SOTA systems excel in signer-independent recognition. WLASL and
MS-ASL achieve accuracy above 90% by utilizing diverse datasets and robust models.
RWTH-PHOENIX sets standardized benchmarks for continuous signing, enabling models
to achieve state-of-the-art accuracy. AUTSL consistently delivers high accuracy—above
95%—for both isolated and continuous recognition tasks. To align with global standards,
ArSLR research must develop signer-independent benchmarks and test systems on more
diverse datasets.

• Scalability and global relevance

ArSLR research faces scalability challenges due to small datasets and the limited
adoption of advanced modeling techniques, making it less prominent in global SLR research
and reducing participation in shared tasks or standardized benchmarks. In contrast,
SOTA systems leverage larger datasets and advanced models, enabling scalability across
languages and domains, facilitating cross-dataset evaluations, and supporting real-world
applications. Expanding datasets and adopting transferable frameworks can enhance the
scalability of ArSLR systems and make the research more globally competitive.

In conclusion, ArSLR research has made progress but lags behind SOTA systems like
AUTSL, WLASL, BOBSL, RWTH-PHOENIX, and MS-ASL in terms of dataset diversity,
modeling sophistication, multimodal integration, and benchmarking. By adopting ad-
vanced models, expanding datasets, and standardizing evaluations, ArSLR can align with
global standards and improve scalability for real-world applications.

3.4.4. Future Perspectives

Despite significant progress in recognizing Arabic sign language, existing deep learn-
ing models still face challenges with accuracy and efficiency. In this section, several potential
ideas for future directions in ArSLR are proposed and discussed.

• The difficulties posed by the scarcity of high-quality publicly available datasets in
ArSLR research must be addressed. Deep learning algorithms typically require a
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lot of labeled data for optimal results. However, the complexity and expense of
obtaining data usually result in limited ArSLR datasets. Transfer learning approaches,
which fine-tune pretrained models on relevant tasks or datasets for ArSLR analysis,
can help researchers overcome this problem. Designing effective transfer learning
models for ArSLR involves several strategies, each aimed at enhancing the model’s
generalization capabilities and accuracy, especially when dealing with the limited
availability of labeled data in ArSL. It is feasible to implement transfer learning
from pre-trained models on large, diverse datasets, such as ASL (American Sign
Language) or other gesture-based datasets. Even in underrepresented languages,
cross-lingual transfer learning can improve generalization and save the time and
effort needed to create an ArSL-specific model from the ground up. Moreover, the
model can be fine-tuned using a more specific but smaller ArSL dataset. This requires
gathering a comprehensive dataset of Arabic signs and using techniques such as data
augmentation to increase the available volume and diversity of the available data,
creating more resilient and generalizable models. Multiple input modalities, such
as depth, skeletal joint data, and RGB video frames, may also be combined. In real-
world situations where sign language may change based on the context, signer, and
surroundings, multi-modal learning can assist in capturing various elements of sign
language, such as motion, hand shape, and spatial context, and result in improved
recognition accuracy and robustness. Transfer learning models can be designed to
extract fine-grained features specific to Arabic sign language, such as local variations
in hand gestures, facial expressions, and body language, to improve performance in
recognizing subtle differences in signs. This can entail focusing on the most significant
features for ArSL recognition by training attention-based models or specialized CNNs.

• Building high-quality, large-scale, and diverse ArSL datasets is another avenue for
research that could lead to more progress in the field and enable direct comparison
of the recognition accuracies of the various methodologies. Although situations
continue to improve, it is still challenging to test more sophisticated applications that
demand large vocabulary sizes in order to fully utilize current or upcoming techniques.
Building high-quality ArSL datasets requires a well-structured, systematic approach
to ensure both accuracy and diversity. A wide range of participants from different
backgrounds, ages, and genders who are fluent in ArSL or have experience with
it should be involved in the data gathering process. Clear motion capture requires
the use of high-resolution cameras (1080p or higher) and a steady frame rate (e.g.,
30 fps) to maintain the subtle details of hand shapes and movements. To increase
robustness and generalizability, recordings should be made in a variety of settings,
including different lighting and backgrounds. In order to record dynamic gestures,
facial expressions, and hand configurations in different environments, researchers
can use a variety of data collection techniques, including video recordings and real-
time capture with depth sensors, like Kinect and LMCs. For consistent labeling,
researchers may also employ a team of experienced annotators who are fluent in
ArSL or create a comprehensive set of standardized labels for signs that consider
variations in handshape, movement, orientation, facial expressions, and contextual
usage. A broad variety of signs, such as numbers, common phrases, and simple words,
would also be covered by the dataset. To reduce noise, enhance clarity, and normalize
illumination, the gathered data must be preprocessed. Researchers can assure data
privacy by obtaining participants’ consent for data usage and anonymizing personal
identifiers. ArSLR researchers may use open data formats such as the sign language
corpus framework [116] to facilitate data sharing and integration. Furthermore, it is
feasible to establish a feedback system whereby ArSL users evaluate early dataset
versions for comprehensiveness and accuracy. The dataset can be enhanced using
iterative refinement procedures in response to user feedback.

• Although significant progress has been made in fingerspelling and isolated ArSLR,
where algorithms only need to recognize a single letter sign or word, continuous Ar-
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SLR, which interprets longer speech segments, has not seen the same level of progress.
This task cannot be simplified to the recognition of individual gestures because con-
textual interactions among signs have a significant effect on the interpretation of the
sentences. Current efforts to create continuous ArSLR capabilities have shown very
limited success and often produce errors when advanced analysis of semantic nuances
is necessary. This is certainly one of the hottest topics in ArSLR research, and it will
keep being investigated in a variety of ways in an effort to find a configuration that may
solve the issues impeding the development of extremely powerful tools. Considering
current findings, I anticipate that future research in this particular area will focus on
context-aware models that use sequence-based analysis, such as transformers or RNNs,
to capture the sequential nature of signs and their contextual relationships. The imme-
diate context (prior or subsequent signs) and the global context (the overall sentence
structure, non-manual signs like facial expressions, etc.) should both be considered
by these models. More accurate interpretations of ambiguous signs could be made
possible by using attention mechanisms to emphasize the most contextually relevant
portions of a sign sequence. ArSLR models can also be improved by integrating multi-
modal data, such as body posture, face expression, and hand gesture recognition. By
processing multiple inputs concurrently, multimodal deep learning frameworks—like
multimodal transformers—may enhance the model’s comprehension of the semantic
information that is communicated by combining these inputs.

• Deep learning models for ArSLR can evolve by integrating advanced frameworks
from state-of-the-art research, as demonstrated in datasets like AUTSL [103]. These
frameworks emphasize the fusion of spatial and temporal features, multimodal data
processing, and cutting-edge model architectures. Here is how these approaches can
be adapted for ArSLR:

• Frameworks like STF + LSTM [108] and Feature Engineering with LSTM
(FE + LSTM) [117] demonstrate how the system can model sequential depen-
dencies by combining spatial information, such as hand shapes and locations,
with temporal dynamics, like movement trajectories, using LSTM networks. Con-
tinuous signing may be processed efficiently by such models, which can also
handle variations in the speed and execution of gestures and extract distinctive
spatial features from ArSL gestures (e.g., finger positions for specific letters).

• 3D Convolutional Models for Video Input including 3D-DCNN [109] and MViT-SLR [118]:
These networks are highly suited to sign language video data since they can
capture motion and depth. Hierarchical feature scaling transformers can also be
applied for temporal and spatial learning using Multiscale Vision Transformers
for Sign Language Recognition (MViT-SLR). Using 3D convolutions to learn hand
gestures and combining them with MViTs for hierarchical temporal modeling
could be one way to adapt to ArSLR.

• Graph-Based Models for Skeleton Dynamics (e.g., ST-MGCN [109], HW-GAT [119]):
These models use graph convolutional networks (GCNs) to model relationships
between skeletal keypoints and temporal dynamics. ST-MGCNs are used to
model complex joint movements over time, and Hand-Weighted Graph Attention
Networks (HW-GAT) are used to assign higher weights to critical joints like
fingers in hand-dominated gestures. Adaptability to ArSLR comprises applying
ST-MGCNs or HW-GAT for fine-grained recognition of Arabic sign trajectories
and leveraging skeletal data, such as OpenPose or MediaPipe, to track hand and
body keypoints.

• Transformer-Based Architectures, such as Video Transformer Networks with Pro-
gressive Filtering (VTN-PF) [120], can be applied for global temporal modeling,
progressively refining key gesture features. These architectures can be adapted
to ArSLR to process Arabic sign videos with high variability in signer style and
environmental conditions. Moreover, progressive filtering can be employed to
emphasize critical frames, such as key transitions in signs.
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• Multimodal integration: Advanced frameworks can integrate video, depth, and
skeletal data inputs for a richer feature representation. Sign Attention Module
(SAM-SLR) [121] integrates spatial, temporal, and modality-specific features
using attention mechanisms. Such attention modules can be applied to prioritize
relevant features, for example, hand motion overhead position.

• Further research can be conducted to examine hybrid methods by incorporating
different models, for example, vision transformers and pretrained models. More
efforts are required to explore how to leverage the advantages of different architectures
to improve reliability and performance even further for applications involving ArSL
recognition. This might entail fusing the attention mechanisms of vision transformers
with features from pretrained models.

• Further research on simultaneous recognition of manual and non-manual signs, includ-
ing facial expression, hand gestures, and body movement, in real-time with improved
performance is encouraged. This can be achieved using fine-tuned deep learning
techniques with a high configuration system to process the input data with minimal
computational time.

• One possible direction for future advancement is the development of real-time mobile
applications for ArSLR, as the majority of the work on ArSLRS is still in the research
and prototype stages. Practical implementation issues that could arise for real-world
applications include those related to computational capabilities, model deployment,
real-time performance, and user friendliness. It is fair to state that, despite certain
obstacles, the ArSLR community is steadily moving closer to creating real-time recog-
nition systems that will eventually be used in everyday scenarios. Prior to that, it will
be essential to improve performance consistency and remove a few common error
places, where most algorithms often misinterpret a targeted sign.

3.4.5. Limitations of the Study

This systematic review has some limitations. Firstly, this study only surveyed research
papers published between 2014 and 2023, extracting them based on a predetermined
keyword combination. Secondly, this review restricted the search of papers from only three
online electronic databases, namely WoS, Scopus, and IEEE Explore. It is expected that many
more papers on Arabic sign language recognition have been published in other academic
journals. Thirdly, papers from conferences, editorials, prefaces, discussions, comments,
tutorial summaries, workshop summaries, panels, and other non-journal publications are
not included in this systematic review. Consequently, gray literature is not considered in
this study.

4. Conclusions

Intelligent solutions for Arabic sign language recognition are still gaining interest from
academic scholars thanks to recent developments in machine learning and deep learning
techniques. This study presents a systematic review of ML/DL techniques utilized in
ArSLR-relevant studies in the period between 2014 and 2023. Using data from 56 full-
text research publications that were obtained from the Scopus, WoS, and IEEE Xplore
online databases, an overview of the current trends in intelligent-based ArSL recognition
is provided.

Thorough analysis of the dataset characteristics utilized in the reviewed papers was
conducted. The datasets were grouped according to the recognition category they represent,
whether it is fingerspelling, isolated words, continuous sentences, or a combination of them.
The findings reveal that the most widely used dataset was ArSL2018, where it has been
adopted by many fingerspelling recognition researchers since 2019. The analysis of the
datasets shows that the area of ArSLR lacks high-quality, large-scale, publicly available
datasets, particularly for isolated words and continuous recognition. Availability of such
datasets would play a significant role in advancing this field and enable researchers to
focus on improving recognition algorithms in order to boost performance and achieve
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high accuracy outcomes. The adoption of deep learning models—which are still being
refined and will only gain more traction in the upcoming years—has been a major driving
force behind recent advancements in this field. The past decade has seen the development
of numerous unique and extremely creative ideas for ArSLR systems, such as feature
extraction from sensor data or videos and passing them into neural classifiers.

In this study, I reviewed the state-of-the-art techniques for ArSLR tasks based on
ML/DL algorithms, which have been developed over the last 10 years, and categorized
them into groups according to the type of recognition: fingerspelling, isolated words,
continuous sentences, and miscellaneous recognition. Due to their superior qualities, CNN-
based algorithms are used in the most popular method to extract discriminative features
from unprocessed input. Several different types of networks were frequently combined
to increase overall performance. These models can handle data from a variety of sources
and formats; they have been successfully applied to static images, depth, skeleton, and
sequential data. Many researchers have shifted toward employing CNN-based transfer
learning for ArSL recognition. When compared to conventional CNN-based deep learning
models, the reviewed studies show that the transfer learning approach—which makes use of
both pretrained models and vision transformers—achieved a greater accuracy. Even though
the pretrained models outperformed the vision transformers in terms of accuracy, vision
transformers demonstrate more consistent learning. Recent fingerspelling recognition
studies were found to exploit ensemble methods, where several models are combined,
seeking to increase the overall performance.

Ultimately, regardless of the advancements in research on ArSL recognition, there is
still an apparent lack of practical applications and software for performing these tasks. In
order to narrow the gap between research and practical implementation, it is necessary that
accessible and user-friendly software and applications for ArSL recognition be developed.
The development of trustworthy, usable, high-performance software solutions will help
those who are hard of hearing or deaf, and it may enhance their daily interactions and
communication in general.
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