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Abstract: It is difficult to detect and identify natural defects in welded components. To solve this
problem, according to the Faraday magneto-optical (MO) effect, a nondestructive testing system for
MO imaging, excited by an alternating magnetic field, is established. For the acquired MO images
of crack, pit, lack of penetration, gas pore, and no defect, Gaussian filtering, bilateral filtering, and
median filtering are applied for image preprocessing. The effectiveness of these filtering methods is
evaluated using metrics such as peak signal–noise ratio (PSNR) and mean squared error. Principal
component analysis (PCA) is employed to extract column vector features from the downsampled
defect MO images, which then serve as the input layer for the error backpropagation (BP) neural
network model and the support vector machine (SVM) model. These two models can be used
for the classification of partial defect MO images, but the recognition accuracy for cracks and gas
pores is comparatively low. To further enhance the classification accuracy of natural weld defects, a
convolutional neural network (CNN) classification model and a ResNet50 classification model for
MO images of natural weld defects are established, and the model parameters are evaluated and
optimized. The experimental results show that the overall classification accuracy of the ResNet50
model is 99%. Compared with the PCA-SVM model and CNN model, the overall classification
accuracy was increased by 7.4% and 1.8%, and the classification accuracy of gas pore increased by
10% and 4%, respectively, indicating that the ResNet50 model can effectively and accurately classify
natural weld defects.

Keywords: magneto-optical imaging; natural weld defect; alternating magnetic field; convolutional
neural network; ResNet50

1. Introduction

Welding technologies play a crucial role in modern manufacturing, especially in high-
precision assembly and electronic component fabrication [1–4]. With advancements in
welding processes, the demand for high-quality welds has increased, making defect detec-
tion particularly critical. Traditional methods such as ultrasonic testing and radiographic
testing are already mature but have limitations, including an insufficient ability to identify
complex defects and radiation risks during the detection process [5,6]. Magneto-optical
(MO) imaging technology, with its advantages of no radiation and high sensitivity to minor
defects, is increasingly becoming a key technique in weld defect detection [7,8]. This tech-
nology has significant advantages in detecting subsurface defects, with a detection depth of
up to 6 mm, and its experimental costs are low [9]. The conventional MO detection method
uses a direct current (DC) magnetic field to excite the weldments; because the magnetic
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field strength and direction of the direct current magnetic field are constant, some useful
weld information may be lost, and it is easy to saturate [10]. The acquisition method of MO
images of weld defects under alternating magnetic field excitation can collect dynamic MO
images, thereby improving the problem of magnetic field information loss. Independent
component analysis is used to achieve denoising of MO images and compare the denoising
performance with dynamic filtering [11]. A dynamic MO imaging system is used to detect
weld defects, and an MO image detection model for weld defects is established through
support vector machine (SVM) models. The defect classification accuracy is only 91.5%,
with which, it is difficult to meet the detection requirements [12]. The processing and
analysis of MO imaging data remains challenging, especially in efficiently and accurately
extracting and classifying defect features from complex images [13]. To address these issues,
researchers are exploring solutions that combine advanced deep learning techniques to
improve the effectiveness of MO imaging in defect detection.

The core of deep learning lies in neural network models, which require the construction
of various neural network models to solve different problems [14,15]. Through self-learning,
it can obtain highly abstract feature information that cannot be extracted manually. All
neural network models will encounter the problem of generalization. The problem of gener-
alization mainly focuses on enriching the sample space, limiting the hypothesis space, and
changing the optimization objective. To enrich the sample space is to expand the sample
space and increase the inductive bias of the model. Limiting the hypothesis space refers to
reducing the risk of model overfitting by restricting the parameters and structure of the
model. Changing the optimization objective means changing the traditional method to min-
imize the empirical risk on the training set as the optimization objective. By enhancing data
through methods such as rotation, cropping, flipping, and brightness adjustment, the small
sample problem is solved through data augmentation, so that the generalization ability of
the weld image analysis model is improved [16,17]. An artificial neural network (ANN)
with modified performance function is studied for automatic recognition and detection of
weld defects in radiographic images [18,19]. A defect classification method based on direct
multi-class support vector machine is proposed, which aims to minimize structural risk as
the optimization objective and improve the generalization ability of the weld seam radio-
graphic image analysis model in the case of a small training set [20,21]. Transfer learning
in deep learning models can avoid overfitting, solve the problem of using small datasets,
and extract the features of the images to be classified [22]. Several pre-trained networks,
such as VGG16, ResNet50, DenseNet [23], AlexNet [24], and others, have served as feature
extractors in classification problems [25]. The introduction of VGG-Net [26] and ResNet [27]
further promotes the performance improvement of classification networks. As the depth of
the network increases, ResNet improves the problem of gradient vanishing during back-
propagation. A new CNN model based on ResNet50 is proposed to classify the defects in
the radiographic images. Techniques such as stratified cross-validation, data augmentation,
and regularization will be chosen to improve the model generalization ability and avoid
overfitting [28]. A TOFD image weld defect detection method based on multi-image fusion
and feature hybrid enhancement is proposed by combining deep learning techniques with
domain knowledge in the field of TOFD detection [29]. A defect classification model for
SMT welding images based on an improved ResNet model, namely the ResNet-34-ECA
model, was proposed, with an overall classification accuracy of 98.2% [30]. In the field
of aircraft engines, deep learning algorithms are also widely used. A hierarchical health
monitoring model called the adaptive thresholding and coordinate-attention-based tree-
inspired network (ATCATN) has been developed for the health monitoring of aero-engine
bearings under strong background noise. The experimental results show that this model
can accurately identify the fault locations and sizes of aero-engine bearings even under
strong noise interference [31]. A data-driven time–frequency analysis (TFA) technology for
CTNet was developed, which combines a fully convolutional auto-encoder network with
the convolutional block attention module (CBAM). The experimental results show that the
CTNet has good ability to detect wind turbine faults [32]. Deep learning algorithms can
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automatically learn and extract the features in images to effectively complete the tasks such
as image classification and object detection [33].

At present, there is increasing international attention on the application of MO imag-
ing technology. One study proposed using an improved remanence/magneto-optical
imaging combined with a cost-sensitive convolutional neural network (CNN) for auto-
matic defect detection and classification of low-carbon steel WAAM components [34]. The
study demonstrated that this method significantly improved detection accuracy for surface
defects in low-carbon steel products. Another study developed an MO imaging nonde-
structive testing system based on alternating magnetic field excitation, which effectively
addressed the issue of detecting hidden weld defects. By establishing a three-dimensional
finite element model and extracting texture features using gray-level co-occurrence matrix
(GLCM) and Tamura methods, the researchers successfully applied a backpropagation
(BP) neural network for defect classification, achieving an overall classification accuracy
of 91.1% [35]. Additionally, research has focused on image fusion technology, using pixel
standard-deviation-based image fusion methods to enhance the visual effect and detection
accuracy of MO imaging. This method significantly improved image quality and showed
promising results in weld defect detection [36].

There are still relatively few MO imaging weld defect detection methods based on deep
learning, and they do not take into account the fact that images need to be “dynamically”
observed during the evaluation process, resulting in low accuracy and credibility in the
defect detection results. This paper aims to explore automatic detection and classification
methods for natural weld defects by combining alternating MO imaging technology with
neural network algorithms. Classification models including BP neural networks, SVM
model, CNN, and ResNet50 are utilized for the recognition and classification of natural
weld defects. An alternating magnetic field excitation imaging system based on Faraday
MO effect is constructed to capture MO images of various weld defects. The collected
MO images were preprocessed using a Gaussian filter, a bilateral filter, and a median filter,
and the effectiveness of the different filtering techniques was evaluated. Image features
were extracted using principal component analysis (PCA), and these features were input
into the BP neural network and the SVM model for classification. These two models can
be used for the classification of partial defect MO images, but the recognition accuracy
of cracks and pores is relatively low. To improve the classification accuracy, the CNN-
based model and the ResNet50 model were established, and the model parameters were
optimized. The experimental results show that the overall classification accuracy of the
CNN and ResNet50 models is 97.2% and 99%, respectively. Compared with different
detection methods, the deep learning methods used for natural welded defects detection
and recognition demonstrates stronger noise resilience, and can maintain high detection
and recognition accuracy even under the significant deformation of welded defects.

The paper is organized as follows. Section 2 introduces the weld defect test system
based on MO imaging and analyzes the mechanism of MO imaging. Section 3 presents
the PCA method to extract the principal components of the column vector, establishes the
PCA-BP classification model and the PCA-SVM classification model, and compares the
classification performance of the models. Section 4 studies the CNN classification model
and the ResNet50 classification model, explores the parameter settings of the two models,
and compares and analyzes the classification performance of the models. Section 5 draws
conclusions.

2. Experimental Methods
2.1. Experimental Setup

The MO imaging detection device based on the leakage magnetic characteristics of
natural weld defects primarily consists of the tested weldment, an excitation mechanism,
an MO imaging sensor, a testing platform, and computer storage equipment. The schematic
diagram of the MO imaging detection system for welded defects excited by alternating
magnetic field is shown in Figure 1. The welding materials were carbon steel plate (No. 45)



Sensors 2024, 24, 7649 4 of 27

and high-strength steel (HSS). The excitation mechanism is an alternating current (AC)
excitation system that generates an alternating magnetic field by connecting AC power
to the excitation coil. The magnitude and direction of the alternating magnetic field will
change periodically with the change in time. The MO testing platform uses a three-axis
linkage motion platform, which can achieve motion and detection of the three directions
of the X, Y, and Z axes, as shown in Figure 2. The MO sensor is mainly composed of a
light-emitting diode (LED) light, an optical conduction system, a CMOS, and an MO film,
with a size of 20 × 15 mm2, and its surface is coated with a mirror layer. The primary
parameters of the MO sensor are detailed in Table 1.
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Table 1. Main parameters of MO imaging sensor.

Light Source
Wavelength

Sampling
Frequency

Maximum
Resolution Pixel Equivalent Magnetic Field

Range

590 nm [8, 100] fps 2592 × 1944 pixel2 102 pixel/mm [−2, 2] kA/m

The weldment material was selected from the HSS plate with a length of 150 mm, a
width of 50 mm, and a thickness of 12 mm. Lack of penetration and pit were formed by
the YAG laser welding machine on the abutting steel plate. The laser power is 10 kW. The
defocus amount is −1 mm and the welding speed is 3 m/s. The shielding gas is argon, and
the gas flow rate is 30 L/min. The angle between the gas nozzle and the torch is 45◦. Under
high-power laser welding conditions, there is a deviation of 2 mm and −2 mm between
the starting and ending positions of the laser beam and the weld seam during welding,
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resulting in pits and incomplete penetration of the test weldment. The size and shape of
surface pits on welded parts can be measured, but the depth and location of incomplete
penetration cannot be predicted. Natural welding defects were formed on a carbon steel
plate (No. 45) by TIG welding. The welding current of the TIG machine was adjusted
within the range of 80 A–130 A, and the welding speeds for the initial welding tests were
set to 1, 1.5, 2, and 2.5 mm/s. At the same time, different types of natural weld defects were
obtained by rapidly cooling the high-temperature-welded specimens that had completed
the welding operation, including crack, pit, and incomplete penetration.

2.2. Principle of MO Imaging for Weld Defects

The principle of MO imaging for natural weld defects mainly involves the concepts of
leakage magnetic fields [37], the Faraday MO effect [38], and the application of external
excitation magnetic fields, as illustrated in Figures 3 and 4. When an external magnetic
field is applied to a ferromagnetic weldment with high magnetic permeability, it becomes
magnetized. If there are defects on the surface or inside of the weldment, the local magnetic
permeability of the weldment material will decrease, and the magnetic resistance will
increase, resulting in a non-uniform magnetic flux distribution. The magnetic field lines
that pass through the weld defect are distorted, with a portion of the magnetic field lines
passing through the weldment and another portion overflowing into the air and returning to
the weldment, forming a leakage magnetic field in the local area of the weld defect’s surface,
as shown in Figure 3. As the shape and size of the weld defect change, the magnitude of
the leakage magnetic field varies accordingly. MO imaging equipment is used to detect
changes in the leakage magnetic field and convert these signals into corresponding MO
images. By applying image processing algorithms to extract defect information from MO
images, the category of defects can be determined.

Sensors 2024, 24, 7649 5 of 27 
 

 

 
Figure 2. Physical diagram of MO imaging nondestructive testing platform for weld defects excited 
by alternating magnetic field. 

2.2. Principle of MO Imaging for Weld Defects 
The principle of MO imaging for natural weld defects mainly involves the concepts 

of leakage magnetic fields [37], the Faraday MO effect [38], and the application of external 
excitation magnetic fields, as illustrated in Figures 3 and 4. When an external magnetic 
field is applied to a ferromagnetic weldment with high magnetic permeability, it becomes 
magnetized. If there are defects on the surface or inside of the weldment, the local mag-
netic permeability of the weldment material will decrease, and the magnetic resistance 
will increase, resulting in a non-uniform magnetic flux distribution. The magnetic field 
lines that pass through the weld defect are distorted, with a portion of the magnetic field 
lines passing through the weldment and another portion overflowing into the air and re-
turning to the weldment, forming a leakage magnetic field in the local area of the weld 
defect�s surface, as shown in Figure 3. As the shape and size of the weld defect change, 
the magnitude of the leakage magnetic field varies accordingly. MO imaging equipment 
is used to detect changes in the leakage magnetic field and convert these signals into cor-
responding MO images. By applying image processing algorithms to extract defect infor-
mation from MO images, the category of defects can be determined. 

 
Figure 3. Schematic diagram of leakage magnetic field at welded defect. 

 
Figure 4. Principle diagram of MO imaging detection for weld defects. 

Figure 3. Schematic diagram of leakage magnetic field at welded defect.

Sensors 2024, 24, 7649 5 of 27 
 

 

 
Figure 2. Physical diagram of MO imaging nondestructive testing platform for weld defects excited 
by alternating magnetic field. 

2.2. Principle of MO Imaging for Weld Defects 
The principle of MO imaging for natural weld defects mainly involves the concepts 

of leakage magnetic fields [37], the Faraday MO effect [38], and the application of external 
excitation magnetic fields, as illustrated in Figures 3 and 4. When an external magnetic 
field is applied to a ferromagnetic weldment with high magnetic permeability, it becomes 
magnetized. If there are defects on the surface or inside of the weldment, the local mag-
netic permeability of the weldment material will decrease, and the magnetic resistance 
will increase, resulting in a non-uniform magnetic flux distribution. The magnetic field 
lines that pass through the weld defect are distorted, with a portion of the magnetic field 
lines passing through the weldment and another portion overflowing into the air and re-
turning to the weldment, forming a leakage magnetic field in the local area of the weld 
defect�s surface, as shown in Figure 3. As the shape and size of the weld defect change, 
the magnitude of the leakage magnetic field varies accordingly. MO imaging equipment 
is used to detect changes in the leakage magnetic field and convert these signals into cor-
responding MO images. By applying image processing algorithms to extract defect infor-
mation from MO images, the category of defects can be determined. 

 
Figure 3. Schematic diagram of leakage magnetic field at welded defect. 

 
Figure 4. Principle diagram of MO imaging detection for weld defects. Figure 4. Principle diagram of MO imaging detection for weld defects.

Faraday MO rotation effect means that when a beam of linearly polarized light travels
through an MO medium. If an external magnetic field is applied along the direction of light
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propagation, the vibration surface of the polarized light rotates by a Faraday rotation angle
θ. Although the trajectory of linearly polarized light does not change in a strong magnetic
field, it will deflect in the presence of a leakage magnetic field generated by defects. A
polarizer detects this deflection angle, and a CMOS camera captures the light intensity.
The left side of Figure 4 is a schematic diagram of Faraday MO rotation effect, where the
Faraday rotation angle θ is proportional to the magnitude of the external magnetic field, the
effective path of the light through the MO medium and the material properties of the MO
medium. The rotation direction of the incident polarized light is solely dependent on the
direction of the external magnetic field. The magnitude of θ can be expressed as follows:

θ = VBLm (1)

where B is the magnetic flux density and Lm is the effective path length of the polarized
light through the MO medium. V is the Verdet constant of the MO medium.

The vertical component of the leakage magnetic field Bz perpendicular to the weld-
ment is the primary cause of deflection. The weldment is located in the external magnetic
field generated by the magnetic field generator. In the defect-free area, the weldment will
form a complete magnetic circuit, and there will be no vertical magnetic field along the
propagation direction of polarized light. The vibration surface of polarized light will not
deflect. When there are defects, the weldment cannot form a complete magnetic circuit,
and the vertical magnetic field component at the defect below the reflective mirror surface
changes. If there is a vertical magnetic field along the propagation direction of the polarized
light, the vibration surface of the polarized light will be deflected. The linearly polarized
light containing welding quality information is received by the CMOS sensor after passing
through a polarizer, forming an MO image of the weld defect, as shown on the right side of
Figure 4. When the direction of the external magnetic field is toward the north pole, the
plane of polarization rotates clockwise by a Faraday rotation angle along the direction of
light propagation. When the direction of the magnetic field is toward the south pole, the
plane of polarization rotates counterclockwise by a Faraday rotation angle θ.

By applying AC power to the magnetic field generator can generate an alternating
magnetic field at both ends of the magnetic yoke that changes in direction and magnitude
at a certain frequency, and the Faraday rotation angle also changes accordingly. The light
intensity detected by the analyzer is represented as follows:

I1 = I0cos2α (2)

I2 = I0cos2(α − θ) (3)

I3 = I0cos2(α + θ) (4)

where I0 is the intensity of the incident linearly polarized light, and α is the inherent rotation
degree of the linearly polarized light without the application of an external magnetic field.
These equations show how the intensity of light detected by the polarizer varies with the
direction and intensity of the magnetic field, reflecting the corresponding variations in the
Faraday rotation angle [39].

2.3. Preprocessing of MO Images for Weld Defect Analysis

Each image filtering algorithm has its applicability. It is extremely difficult to judge
the filtering effect of MO images by observing the visual effect of the filtered image through
human visual perception, and this method is time-consuming and labor-intensive [40].
Therefore, by comparing the mean square error (MSE), the peak signal–noise ratio (PSNR),
the structural similarity (SSIM), and the filtering time between the filtered image and the
original image, the quality of the image filtering effect can be determined. This section
studied Gaussian filtering, bilateral filtering, and median filtering algorithms, and used
these three algorithms to filter MO images. The filtering effect was evaluated by MSE,
PSNR, and SSIM.
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MSE is an indicator used to evaluate the difference between the original image and
the filtered image. MSE calculates the average of the squared differences in pixel values
between the original image and the filtered image, as follows:

MSE =
1

mn
Σm−1

i=0 Σn−1
j=0

(
I(i,j) − K(i,j)

)2
(5)

where m and n denote the number of rows and columns of the image, respectively, I(i,j) is
the pixel value of the original image at (i, j), and K(i,j) is the pixel value of the filtered
image at (i, j). Therefore, a smaller MSE indicates that the filtered image approximates the
original image more closely, reflecting a higher image quality.

PSNR is the ratio between the maximum possible value (peak signal) of an image and
the distortion of the image, and the formula is:

PSNR = 10 log10

(
MAX2

MSE

)
(6)

where MAX represents the maximum value of the image pixels, typically 255. The unit of
PSNR is decibels (dB), and the higher the value, the smaller the distortion and the higher
the image quality.

SSIM can be used to compare the structural similarity between two images, and its
formula is:

SSIM(x, y) =

(
2uxuy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) (7)

where x and y represent the two images to be compared; ux and uy represent the mean of
images x and y, respectively. µ2

x and µ2
y are the variance of images x and y and σxy is the

covariance of images x and y. C1 and C2 are constants. The range of SSIM values is [−1,1],
and the closer the SSIM is to 1, the more similar the two images are. Taking the example of
incomplete penetration MO image, Table 2 shows the evaluation results of three different
filtering algorithms.

Table 2. Filtering results and indicators of different filtering algorithms for incomplete penetration.

Type Filtering Result MSE PSNR (dB) SSIM Filtering Time (s)

Gaussian filtering
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It can be seen from the table that the MSE value of Gaussian filtering is the smallest,
the PSNR value is the largest, and the SSIM value is the closest to 1. Although its filtering
time is slightly longer than that of median filtering, its noise-reduction performance is
superior. Additionally, after multiple comparisons of different MO images using various
filtering algorithms, Gaussian filtering consistently produced the best results. Therefore,
for the purpose of filtering MO images, Gaussian filtering stands out as the optimal choice.

3. Detection and Classification by BP Neural Network and SVM
3.1. Feature Extraction Based on PCA

Multi-angle weld defects were formed on the weld seam using the experimental
method described in Section 2.1, including pit, crack, lack of penetration, gas pore, and
no defects. The excitation voltage of the alternating magnetic field was set to 120 V, and
the lift height of the magnetic field generator was consistently maintained at 20 mm. The
sampling frequency of the MO sensor was set to 75 Hz. MO images of natural weld defects
under alternating magnetic field excitation, including three consecutive frames of dynamic
MO images, are shown in Table 3. After image denoising, the collected MO images of
weld defects have a size of 400 pixel × 400 pixel. Its pixels are too large, which may affect
the efficiency of classification as input to the classification model. To reduce the amount
of information and still retain key features, a nearest neighbor method can be used to
downsample the Gaussian filtered MO images.

Table 3. MO images of five natural weld defects under alternating magnetic field excitation.

Defects Frame 1 Frame 2 Frame 3

Pit
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The downsampled images still contain the main original information, serving as input
for the subsequent principal component analysis to enhance feature extraction efficiency.
Figure 5 shows the downsampling results of the MO image; it can be seen from Figure 5d
that the image distortion is quite obvious. Therefore, a downsampling image with a size of
50 pixel × 50 pixel was ultimately selected.
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PCA is a commonly used data dimensionality reduction technique that aims to trans-
form original data into fewer features to extract the main information of the data [41,42].
The downsampled image is represented as a matrix X with dimensions 50 × 50. The data
need to be centralized by subtracting the mean of each feature from its value, resulting in a
standard normal distribution with a mean of 0 and a variance of 1 for each feature, which
can be expressed as:

Zij =
Xij − µj

σj
(8)

where Z denotes the standardized matrix, µj represents the mean of the j column pixels,
and σj indicates the standard deviation of the j column pixels. The standardized MO image
is represented as Z = (z1, z2, z3, · · · z50), with E

(
zj
)
= 0, D

(
zj
)
= 1, j = {1, 2, 3, · · · 50}.

The principal components Xi and the variance contribution rates Pi of the column
vector pixels in the MO image are given by:

Xi = ∑50
k=1 αikZk (9)

Pi =
λi

∑50
k=1 λk

(10)

Let P represent the sum of the variance contribution rates of the first m principal
components, which can be expressed as:

P =
Σm

i=1λi

∑50
k=1 λk

(11)

where αikZk denotes the product of the principal component’s feature vector and the
standardized matrix, and λ refers to the eigenvalue of the correlation coefficient matrix of
the downsampled MO images. P is set to 95%.

After processing a downsampled MO image through image processing methods to
extract the variance contribution of PCA column vectors as shown in Figure 6, it can be
observed that the sum of the variance contribution rates of the preceding three principal
components in the MO image of weld defects accounts for more than 95% of the information
in the original image. Considering the varying contributions of principal components across
different downsampled MO images, to adequately extract the original information of the
image, m is set to 4.

After applying PCA, the image feature matrix is transformed to 50 × 4, converting
the original feature matrix with a size of 200 × 1. The first 50 rows correspond to the
first principal component of the MO image, followed by the subsequent 50 rows that
correspond to the second principal component; then, another 50 rows correspond to the
third principal component; finally, the last 50 rows correspond to the fourth principal
component. The information of the image can be compressed into the four principal
components, thus realizing the dimension reduction processing. A total of 1250 MO images
of five types of natural weld defects were collected under the excitation of an alternating
magnetic field. After Gaussian filtering and downsampling, the principal components
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of the column vectors of each defect MO image were reduced. The four-dimensional
principal components of the column vectors were selected to be retained, forming an image
input matrix of 200 × 1250, which was used as the input set for the BP neural network
classification model and SVM classification model.
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To expand the sample, the MO image is improved as follows:

(1) Resize: Resize the original image either horizontally or vertically.
(2) Rotation: Make the original image rotate clockwise or counterclockwise according to

a certain angle.
(3) Flip: Flip the original images along the horizontal or vertical axes at their center

coordinates.
(4) Brightness change: Change the brightness of the original image.
(5) Contrast adjustment: Change the intensity of the brightness difference in the origi-

nal image.

The original number of defect’s MO images was expanded using the above method,
and the expanded dataset is shown in Figure 7.
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3.2. Classification by the PCA + BP Model

The principle of the BP neural network is to train the network through the back-
propagation algorithm, enabling it to learn the mapping relationship between inputs and
outputs [43,44]. PCA is a commonly used dimensionality reduction technique that helps
improve the training efficiency and classification performance of subsequent BP by remov-
ing redundant features from the data. The use of PCA effectively reduces the number of
input features, thereby reducing the complexity of the model, preventing overfitting, and
improving the performance of the model on small sample datasets. As shown in Figure 8,
the training set DT is defined as a dataset containing m samples, which can be expressed as:

DT = {(x1, y1), (x2, y2), . . . (xm, ym)} (12)

where xi ∈ Rd, yi ∈ Rl , meaning there are d input attributes and an output l- dimen-
sional vector.
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A multilayer forward feedback neural network defining an input neuron as d, hidden
layer neurons as q, and output neurons as l. v and w are the weights of input layer
and hidden layer and implied layer and output layer, respectively. For the hidden layer,
the input and output of the h-th neuron can be represented by Equations (13) and (14),
respectively:

zh = ∑d
i=1 vihxi + bh (13)

ah = f1(zh) (14)

where xi is the output value of the i neuron in the input layer, bh represents the deviation,
and f1(z) is the activation function for the hidden layer. The hyperbolic tangent function is
used as the activation function, which can be expressed as:

f (x) =
ex − e−x

ex + e−x (15)

For the output layer, the input and output of the j neuron can be represented by
Equation (16) and Equation (17), respectively.

zj = ∑q
h=1 whjah + cj (16)

aj = f2
(
zj
)

(17)

where cj represents the deviation, and f2(z) denotes the activation function of the output
layer, with the SoftMax function being utilized as the activation function in this study.
During the training process, the weights and biases are updated through the BP algorithm
to minimize the error. This includes the weights whj and deviations cj from the hidden
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layer to the output layer, as well as the weights vih and deviations bh from the input layer
to the hidden layer.

The experiment used 1250 MO images of natural weld defects as classification sam-
ples, of which 1000 were used as the training set. In the training set, there were 200
samples each of crack, pit, lack of penetration, gas pore, and no defects. PCA is em-
ployed to extract the preceding four principal components, P1, P2, P3, and P4, from the
vector pixel representations of the images. These components represent the primary fea-
tures of the weld defects and form the input set for the classification model, denoted
as =

{
X1j, X2j, · · · X200j

}
, where (j = 1, 2, 3, · · · 1250). The number of neurons in the hid-

den layer is set to q = 20, and the output set is defined as Y1j = 1, Y2j = 2, Y3j = 3,
Y4j = 4, Y5j = 5, with (j = 1, 2, 3, · · · 250) representing the output labels of the BP network
model corresponding to crack, pit, lack of penetration, gas pore, and no defects, respec-
tively. The learning rate is configured to 0.001, and the training employs the optimized
Levenberg–Marquardt backpropagation algorithm.

To prevent issues with the neural network during training, such as falling into local
optima, the random initialization of weights and deviations are set. Figure 9 shows the
classification model of the BP neural network for MO imaging of weld defects.
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Figure 9. Classification model of the BP neural network for MO imaging of weld defects.

Table 4 shows the classification results of the BP neural network model for natural weld
defects based on MO imaging. According to the table, the overall classification accuracy of
the BP neural network model is 90.8%. Among the 250 images in the test set, 23 images
were misclassified. Specifically, out of 50 MO images of cracks, 2 were classified as pit. Out
of 50 MO images of pits, 2 were classified as cracks and 2 were classified as incomplete
fusion. Out of 50 MO images of incomplete fusion, 5 were classified as gas pore. Out of
50 MO images of gas pore, 2 were classified as pit, 5 were classified as incomplete fusion,
and 4 were classified as no defects. Out of 50 MO images of no defects, 1 was misclassified
as gas pore. Thus, it is evident that the BP neural network classification model has poor
performance in classifying pits and gas pores.

Table 4. Classification results of the PCA-BP model for natural weld defects under alternating
magnetic field excitation.

Defect Types Number
of Images

Train
Samples

Test
Samples

Recognition
Result

Classification
Accuracy/%

Crack 250 200 50 48 96
Pit 250 200 50 46 92

Lack of penetration 250 200 50 45 90
Gas pore 250 200 50 39 78

No defects 250 200 50 49 98
Total 1250 1000 250 227 90.8
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3.3. Classification by the PCA + SVM Model

SVM is a commonly used machine learning algorithm, mainly to find an optimal
hyperplane given a dataset, so as to classify or regress the data, especially suitable for
high-dimensional feature spaces [45,46]. The use of PCA provides SVM with a more
effective feature set, thereby improving classification accuracy and helping SVM find
the best decision boundary in high-dimensional space. The hyperplane in SVM can be
represented using the linear Equation (18):

ωT + b = 0 (18)

where ω denotes the normal vector of the hyperplane, ωT is the transpose of the vector ω,
and b represents the bias term.

Let the sample set be {(xi, yi), i = 1, . . . , n , where n represents the sample size, which
in this study is n = 1250, and yi is the label for the i sample xi.

To solve the optimal hyperplane of the SVM, an optimization function is constructed
to find the maximum value of the Lagrangian multiplier, which can be expressed as:

max(α) = Σn
i=1αi −

1
2 ∑n

i = 1
j = 1

yiyjαiαjK
(

xi · xj
)

(19)

where αi corresponds to the Lagrange multiplier for the i sample, and K
(

xi, xj
)

is the kernel
function. The term 1

2 ∑n
i=1
j=1

yiyjαiαjK
(
xi · xj

)
represents the similarity between samples, as

computed by the kernel function.
The commonly used types of kernel functions currently include linear kernel function,

polynomial kernel function, and radial basis function (RBF). The linear kernel function
is applicable only to linearly separable datasets and is incapable of addressing nonlinear
issues. The polynomial kernel function has multiple undetermined coefficients and requires
parameter tuning through methods such as cross-validation, which is quite complex.
Conversely, The RBF does not require parameter adjustment and is suitable for processing
nonlinear data. Therefore, the RBF is used, which can be expressed as:

K
(
xi, xj

)
= e−γ||xi−xj ||2 (20)

where xi and xj are the feature vectors of the data points, and γ is a parameter of the kernel
function that governs the distribution of sample points after mapping to the feature space.

The discriminant function of the SVM classifier is obtained by solving it, which can be
expressed as:

f (x) = sign
(
∑n

i=1 α∗i yiK
(
xi · xj

)
+ b∗

)
(21)

where α∗i and b∗ are the optimal solutions for the Lagrange multipliers and bias terms
obtained through grid search, respectively. The sign function is a squashing function
that maps a real number to a binary output value of either 1 or −1, used for the final
classification decision.

The experiment utilized 1250 MO images of weld defects as classification samples, of
which 1000 were used as the training set. There were 200 samples each of crack, pit, lack of
penetration, gas pore, and no defects in the training set. These images were subjected to
noise reduction and downsampling to pixels. PCA was conducted to extract the preceding
four principal components, P1, P2, P3, and P4, which represent the main characteristics of
weld defects. This resulted in a total of 200 × 1250 inputs being classified using an SVM
multi-classification model. The classification results of the model are shown in Table 5, with
an overall classification accuracy of 91.6%.
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Table 5. Classification results of the PCA-SVM model for natural weld defects.

Defect types Number
of Images

Train
Samples Test Samples Recognition

Result
Classification
Accuracy/%

Crack 250 200 50 43 86
Pit 250 200 50 46 92

Lack of
penetration 250 200 50 47 94

Gas pore 250 200 50 44 88
No defects 250 200 50 49 98

Total 1250 1000 250 229 91.6

For the crack images, five were misclassified as pores and two were misclassified
as having no defects. For the pit image, one image was misclassified as a crack and
three images were misclassified as lack of penetration. For the lack of penetration image,
one image was misclassified as a crack, one image was misclassified as a pit, and one
image was misclassified as having no defects. For gas pores, six were misclassified as
cracks. For no defects, one image was identified as having a lack of penetration. This
section will utilize the reduced dimensional feature vectors obtained through PCA as
classification samples, establishing a classification model for weld defects based on the BP
neural network and SVM. The experimental results showed that the overall recognition
rate of the BP classification model was 90.8%, and the overall recognition rate of the SVM
classification model was 91.6%. During the experiment, MO images were continuously
acquired along the weld seam, sometimes only local characteristics of the weld defects were
captured, which also led to some pores to be misclassified as cracks, there is an obvious
misclassification between these two types of samples. Therefore, the classification accuracy
of pores is relatively low in the BP and SVM models. Due to the significant differences
between no defects and pit and other samples, the recognition rate in both BP and SVM
models can reach over 92%.

4. Detection and Classification by CNN and ResNet50
4.1. The Architecture of CNN

CNN is a type of deep learning neural network that applies convolution operations
on different parts of the input image to extract features and generate output, and then
downsamples through pooling operations to reduce computational complexity and overfit-
ting [47–51]. Then, the extracted features are transported to a fully connected layer, which
classifies or regresses these features. The structural flowchart of a CNN model is shown in
Figure 10. The primary components of a CNN consist of the input layers, convolutional
layers, pooling layers, fully connected layers, and the output layers. CNN is a mainstream
method in modern image processing and computer vision fields. Compared with tradi-
tional machine learning methods, CNN can automatically extract hierarchical features to
improve efficiency.
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Let an image of size [W1 × H1 × C1] be input, where H1, W1, and C1 represent the
height, width, and number of channels of the image, respectively, defining the image matrix
as [W1 × H1 × C1]. Consider a pixel located at (i, j), that feeds into the convolutional layer;
this layer consists of multiple convolutional kernels. Each kernel performs convolution
operations on the input image to extract various features. Let the size of each convolu-
tional kernel be K × K × C1, where C1 = 3 means that the input has three channels. The
convolution kernel has C2, and the size of the output feature map is W2 × H2 × C2. The
convolution operation is expressed by Equation (22):

zi,j,k = ∑C1
c=1 ∑K

p=1 ∑K
q=1 w(p,q,c,k)x(i+p,j+q,c) + bk (22)

where zi,j,k denotes the value at position (i, j) in the k-th channel of the output feature map,
and k corresponds to the number of kernels and k ≤ C2. The term w(p,q,c,k) represents
the weight for the k-th channel of the convolutional kernel at row p and column q of the
c-th input channel, and x(i+p,j+q,c) indicates the pixel value at position (i + p, j + q) in
the c-th channel of the input image. Consequently, for an input image with c channels
and k convolutional kernels, there will be a total of c × k weight tensors utilized in the
convolution operation. The term bk signifies the bias for the k channel.

The image after convolution operation enters a batch normalization (BN) layer, which
standardizes the output of the convolution layer to improve training efficiency and model
stability. The function of the activation layer is to introduce nonlinear factors and increase
the expressive power of the neural network, which can be expressed as follows:

ai,j,k = f
(

yi,j,k

)
(23)

where f (·) is the activation function, and the commonly used activation functions include
sigmoid, tanh, ReLU, etc. The ReLU is used as the activation function of the convolution
layer, which is expressed as follows:

f (x) =
{

0, x < 0
x, x ≥ 0

(24)

After the convolution layer operation, it is followed directly by a pooling layer, which
performs downsampling on the feature map, thereby reducing both the number of parame-
ters and computational complexity while enhancing the model’s robustness. The pooling
layer is typically categorized into max pooling and average pooling. This article adopts
max pooling, and the pooling layer is represented as follows:

Pi,j,k = max
p,q

(
ai×s+p,j×s+q,k

)
(25)

where Pi,j,k represents the feature value at the i-th row and j-th column of the k-th channel
output after pooling, with k as the size of the pooling window. The max function extracts
the maximum value from a specified region. Variables p and q represent the row and
column offsets of the pooling kernel in the input tensor, respectively. s is the step size,
usually taken as 2.

After being processed by multiple convolutional and pooling layers, the output feature
map will be flattened into a one-dimensional vector and entered into the fully connected
layer for classification or regression tasks. The output formula of the fully connected layer
is expressed as:

F = WP + b (26)

where W represents the weight matrix with dimensions (N, M), and N is the number
of neurons in the previous layer, and M denotes the number of neurons in the cur-
rent layer. P corresponds to the vector obtained from the pooling layer after flattening
into (N, 1), and b signifies the bias vector with a size of (M, 1), while F is the output vector.
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Following the fully connected layer, an activation function layer is applied, and this article
uses the SoftMax activation function. Finally, the process culminates in the output layer for
classification tasks. In convolutional neural networks, the cross-entropy loss function is
used to measure the difference between the model’s predicted values and the true values.
By minimizing the cross-entropy loss function, the prediction results of the model can be
made closer to the true labels, thereby improving the accuracy of the model.

During training, a batch of data is used to calculate the loss function, and the gradient
of the loss function for each trainable parameter is calculated for each image in this batch.
This article uses the stochastic gradient descent (SGD) algorithm, which updates parameters
using only one batch of data at a time [52]. For each trainable parameter, wi, update its
current value, wi,t, as follows:

wi,t+1 = wi,t − η
1
m ∑m

i=1
∂Li
∂wi

(27)

where η represents the learning rate, m is the number of images in the batch, and Li is the
loss function for the i-th image, while ∂Li

∂wi
is the gradient of the loss function of the i-th

image with respect to wi.
This paper adopts a learning rate scheduling method, that is, the learning rate is

dynamically adjusted during the training to improve the performance of the model, which
is expressed as follows:

η = η0d
f loor( gs

ds
)

r (28)

where η0 represents the initial learning rate, dr denotes the decay rate, which is constrained
between 0 and 1. gs signifies the number of steps in the current iteration, and ds refers to
the count of decay steps. The floor( ) function represents the process of rounding down. By
managing the decay rate and the number of decay steps, it is feasible to reduce the learning
rate, allowing for a higher initial learning rate to be established.

4.2. Parameter Evaluation of CNN Models

To achieve optimal image classification performance, it is necessary to conduct experi-
ments on the various structural parameters of the CNN prediction model in the classifi-
cation of weld defect’s MO image, as well as to evaluate its accuracy and adaptability in
classification tasks. The size of the convolution kernel directly influences the receptive field
and the quality of the output features in deep convolutional neural networks. A larger
convolution kernel size can obtain a smaller receptive field, and the output single feature
can contain more information. However, a large size of the convolution kernel may lead
to a surge in model computation, and the network is more difficult to train and optimize.
Therefore, a network model with five convolutional layers, five pooling layers, and one
fully connected layer was used in the experiment, as shown in Figure 11.
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The effect of different structural parameters on the model is analyzed by comparing
the effect of the convolution kernel size K × K in the first layer on the classification results.
The odd-size convolution kernel has the advantages of facilitating the aggregation of
image features, improving the robustness of the model, and easily expanding the network,
so K = [3, 5, 7, 9, 11] is selected. In deep learning, accuracy and loss value are two
commonly used evaluation indicators, which are used to measure the quality of training
and model performance. The higher the accuracy and the smaller the loss value, the better
the fit of the model. Figures 12 and 13 show the training accuracy and loss values obtained
under different convolution kernel sizes, respectively.
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When the number of iterations, S, reaches 30, the accuracy of training reaches more
than 70%, and the loss value also drops to around 1. Therefore, the intercept interval 30–62
is taken, and the standard deviation of the accuracy and loss value of training with different
convolution kernel sizes is calculated, respectively, as shown in Table 6.

Table 6. Training results of different convolution kernels.

Convolution Kernel
Size

Accuracy Standard
Deviation

Loss Value Standard
Deviation

Training Set
Accuracy %

3 × 3 0.073 0.207 93.2
5 × 5 0.073 0.160 96.4
7 × 7 0.067 0.175 97.2
9 × 9 0.082 0.216 92.8

11 × 11 0.084 0.170 97.6
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The standard deviation of accuracy for the 7 × 7 kernel size is the lowest, while the
5 × 5 kernel size shows the lowest standard deviation for loss values. A smaller standard
deviation in accuracy and loss indicates a more stable optimization process, reflecting the
stability and reliability of the model. Although the 11 × 11 convolution kernel has the
highest accuracy, its standard deviation of accuracy is high, and the fitting effect between
the recognition model and the training set is poor. Therefore, considering all factors, the
optimal size for the convolution kernel in the first layer should be 7 × 7.

In a neural network architecture, the excitation layer plays a key role in performing
nonlinear transformation on the output of the convolutional layer. Without the excitation
layer, no matter how complex the network architecture is, its final output will only be a
linear superposition of the input, and it is difficult to capture the inherent law contained in
the complex dataset. The essence of the excitation layer lies in the application of activation
functions, such as Sigmoid function, Tanh function, and ReLU function, which are widely
used activation functions. The slope of the activation function directly affects the speed of
parameter iteration update, and the higher the slope, the faster the parameter update. The
Sigmoid function and Tanh function have saturation zones, which can prevent parameter
explosion during the training process. The Relu function has no saturation zone, and
its advantage is that it can ensure the update iteration speed within the positive inter-
val. Different activation functions have their own characteristics in various classification
models, and the differences are significant. Therefore, based on the above three typical
activation functions, the performance of them in the MO image classification model of
weld defects is analyzed, and the corresponding training accuracy and loss values are
shown in Figures 14 and 15. As can be seen from the figures, the loss value and accuracy of
Sigmoid are poor. Although Tanh can achieve faster convergence, it is less stable and will
produce large fluctuations. Therefore, ReLU activation function is more suitable for this
classification model.
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4.3. Classification by the CNN Model

According to the analysis in Section 4.2, the size of the first convolution kernel is 7 × 7,
and the weights and biases of the convolution and fully connected layers are initialized
using a normal distribution with a mean of 0 and a variance of 1. The scaling factor
of the batch normalization layer is initialized to 1, and the bias is initialized to 0. The
retention probability of the dropout layer is initialized to 0.5. Due to the significant impact
of training parameters on model prediction performance, the optimal training parameters
for the model were determined through experiments. This article uses the Adam optimizer
for model training. The Adam optimizer combines momentum and adaptive learning
rates, allowing for rapid convergence and effectively reducing the oscillation of parameter
updates. Its adaptive mechanism provides each parameter with a unique learning rate,
which is especially advantageous when handling high-dimensional data and complex
models. Additionally, the bias correction function of the Adam optimizer enhances the
stability during the initial training phase. Therefore, the choice of the Adam optimizer
ensures efficient and stable optimization of the model throughout the entire training process.
The primary initial parameters of the model are shown in Table 7.

Table 7. Initial parameters of the convolution neural network model.

Batch Size Initial
Learning Rate

Learning Rate
Decay Factor

Number of Learning
Rate Decay Steps

Number of
Iterations

32 0.0002 0.1 1 62

Table 8 shows the operational configuration parameters of the computer. The structure
of the CNN model for classifying these MO images of weld defects is illustrated in Table 9.

Table 8. Parameters of computer operation configuration.

Deep Learning
Framework CPU RAM GPU Operating

Environment
Programming

Language

Pytorch2.1.1 Intel(R)Core (TM)i7-10875 H 16 GB NVIDIA GeForceRTX 2060 Anaconda 3 Python3.11.5

Table 9. Structural parameters of CNN model.

Layers Types Input Size Filter Size Number of
Filters Stride Weights Biases

I0 Input
Layer 50 × 50 × 3 — — — — —

C1 Convolution
Layer 1 50 × 50 × 3 7 × 7 × 3 32 1 7 × 7 × 3 × 32 1 × 1 × 32

P2 Pooling Layer 1 50 × 50 × 32 2 × 2 — 2 — —
C3 Convolution Layer 2 25 × 25 × 32 3 × 3 × 32 64 1 3 × 3 × 32 × 64 1 × 1 × 64
P4 Pooling Layer 2 25 × 25 × 64 2 × 2 — 2 — —
C5 Convolution Layer 3 12 × 12 × 64 3 × 3 × 64 128 1 3 × 3 × 64 × 128 1 × 1 × 128
P6 Pooling Layer 3 12 × 12 × 128 2 × 2 — 2 — —
C7 Convolution Layer 4 6 × 6 × 128 3 × 3 × 128 256 1 3 × 3 × 128 × 256 1 × 1 × 256
P8 Pooling Layer 4 6 × 6 × 256 2 × 2 — 2 — —
C9 Convolution Layer 5 3 × 3 × 256 3 × 3 × 256 512 1 3 × 3 × 256 × 512 1 × 1 × 512
P10 Pooling Layer 5 3 × 3 × 512 2 × 2 — 2 — —
F11 Fully Connected Layer 1 × 1 × 512 — — — 5 × 512 5 × 1
S12 Classification Layer 1 × 1 × 5 — — — — —

The experiment used 5000 MO images of weld defects as classification samples, of
which 4000 were used as training set. In the training set, there were 800 samples each
of crack, pit, lack of penetration, gas pore, and no defects. After undergoing noise re-
duction and downsampling to 50 × 50 pixels, these images were used as the input for
training a CNN model. The training accuracy and loss value of the CNN model are shown
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in Figure 16. In order to improve the generalization ability of the model, K-fold cross-
validation method was adopted to divide the dataset. In this cross-validation method,
the dataset was first divided into K mutually exclusive subsets of similar sizes, and K − 1
subsets were trained each time, and the remaining subsets were used for testing. The
classification performance of the CNN on the training set is shown in Table 10. The CNN
model has the best classification performance for lack of penetration, reaching 100%, with
an overall classification accuracy of 97.2%. The classification results demonstrate that the
model can effectively identify cracks, pits, incomplete fusion, gas pores, and no defects in
the weldments. Therefore, it is feasible to use a multilayer CNN for the classification of
weld defect MO images. Figure 17 shows the confusion matrix of the classification results.
The classification effect of pores was the worst, and five pores were identified as cracks,
indicating that the similarity between MO images of defects may cause confusion.
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Table 10. Classification results of the CNN model for MO images of weld defects.

Defect Types Number
of Images Train Samples Valid

Samples Test Samples Recognition
Result

Classification
Accuracy/%

Crack 1000 800 100 100 97 97
Pit 1000 800 100 100 97 97

Lack of penetration 1000 800 100 100 100 100
Gas pore 1000 800 100 100 94 94

No defects 1000 800 100 100 98 98
Total 5000 4000 500 500 486 97.2
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4.4. Classification by ResNet50 Model

ResNet is an important improvement in comparison with traditional convolutional
neural networks. Introducing the residual unit makes it easier for deep networks to learn
the identity mapping, thus solving the degradation problem in the training process of
deep neural networks. Compared with ordinary stacked deep neural networks, it is easier
to optimize and obtain higher accuracy, thus showing superior performance in image
classification. The residual module is the key of the ResNet network. Its structure is shown
in Figure 18. After input x is obtained by convolution operation of the main line, the
module performs addition operation with the eigenmatrix in the identity mapping. If the
original base mapping that the network needs to fit is F(x), then there is Y = F(x) + x;
that is, the residual module makes it so that the network does not need to fit the real
base mapping, but only needs to fit the offset F(x) based on the original input identity
mapping. So, there is no need to introduce additional parameters, reduce the computing
burden of the network, or make the network performance at least not worse than the
original. The ResNet network model has evolved into five structures, such as ResNet18,
ResNet34, ResNet50, ResNet101, and ResNet152. With the increase in the number of
network layers, the calculation accuracy of ResNet network is gradually improved. The
number of computation loads and parameters also increases with the depth of the network.
Considering accuracy, parameter counting, and calculation load, the ResNet50 network
was used in this study [53]. During the training process, RTX2060 is used to classify and
predict MO images of weld defects.
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The experimental dataset is consistent with that in Section 4.3. A total of 4000 images
were used as the training set, 500 as the validation set, and 500 as the test set. After noise
reduction and downsampling to 50 × 50 pixels, these images were used as the input for
training ResNet50. Model weights were updated using optimization techniques, and the
model was gradually adapted to a specific classification task through repeated iterative
training, and the performance of the model was evaluated on the test set. Figure 19
shows the loss value and accuracy of the ResNet50 training process. According to the
data in Figure 19, the accuracy remains at a high level, which indicates that the ResNet50
network model has strong classification ability. The optimal recognition rate is obtained
by constantly debugging the training times. The higher the training times, the better. The
confusion matrix of the ResNet50 model is shown in Figure 20. The classification results
of the ResNet50 model for MO images of weld defects are shown in Table 11. The overall
classification performance is excellent, and the classification effect of incomplete fusion and
gas pore is the best, both reaching 100%, and the overall classification accuracy is 99%.
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Table 11. Classification results of the ResNet50 model for MO images of weld defects.

Defect Types Number
of Images

Train
Samples

Valid
Samples Test Samples Recognition

Result
Classification
Accuracy/%

Crack 1000 800 100 100 99 99
Pit 1000 800 100 100 98 98

Lack of penetration 1000 800 100 100 100 100
Gas pore 1000 800 100 100 98 98

No defects 1000 800 100 100 100 100
Total 5000 4000 500 500 495 99

4.5. Experimental Analysis

The classification methods proposed in this article include image downsampling,
feature extraction, and PCA-BP, PCA-SVM, CNN, and ResNet50 classification models. The
classification results for MO images of weld defects are shown in Tables 4, 5, 10 and 11. The
classification accuracy of the PCA-BP model is 90.8%. Since there are significant differences
between cracks and no defects compared to other defects, the recognition rates can reach
96% and 98%, respectively. PCA-SVM shows a recognition rate of 94% for incomplete
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fusion and 98% for no defects. The recognition rates of cracks and gas pores are relatively
low, at 86% and 88%, respectively. The classification accuracy of the PCA-SVM model can
reach 91.6%, which is 0.8% higher than the PCA-BP model. However, the classification
accuracy of gas pores in BP and SVM models is relatively low, which affects the overall
classification accuracy. In Table 10, CNN achieves a recognition rate of 100% for MO
images of incomplete fusion, demonstrating the model’s advantage in processing specific
categories. However, the recognition rate for gas pores in MO images is the lowest at just
94%. Compared with the PCA-BP and PCA-SVM models, the classification accuracy of gas
pores in the CNN model increased by 16% and 6%, respectively. The overall classification
accuracy of the CNN model reaches 97.2%. Compared with PCA-BP and PCA-SVM models,
the classification accuracy has been improved by 6.4% and 5.6%, respectively. Experimental
results show that compared with the BP neural network model, the overall classification
accuracy of the SVM classification model under alternating magnetic field reaches 91.6%,
indicating that the SVM model has higher classification accuracy in small samples and high-
dimensional pattern recognition. In large samples, the CNN and ResNet50 classification
models are less prone to overfitting, and their classification accuracy has been greatly
improved. These results highlight the effectiveness of different neural network models in
classifying MO images of weld defects and emphasize the importance of deep learning
methods in classification accuracy.

As shown in Figure 11, the ResNet50 model achieved classification accuracies of 99%
for cracks and 98.0% for pores, surpassing the CNN model by 2% and 4%, respectively.
The overall classification accuracy is 1.8% higher than the CNN model. This performance
improvement may stem from the advantages of the ResNet50 model in feature extraction,
particularly its effectiveness in capturing high-level features when processing complex
images. In a deeper analysis of the experimental results, we observed that the classification
accuracy for the four types of MO images (cracks, pits, lack of penetration, and no defects)
exceeded 95% in both CNN and ResNet50 models, demonstrating good classification
performance. The experimental results demonstrate the effectiveness of different neural
network models in the classification of weld defect MO images, indicating that ResNet50
has certain advantages in this respect. The comparison of the four proposed algorithms is
shown in Table 12. The parameters and floating-point operations per second (FLOPS) of the
PCA-BP and PCA-SVM classification models are much lower than those of the CNN and
ResNet50 models, which is due to their relatively simple network architectures. Despite
the high computational complexity of CNN and ResNet50 deep learning models, they
have performance advantages. Especially, the significant increase in accuracy is sufficient
to compensate for the burden of computational complexity, which makes the ResNet50
model the best choice. These findings provide an important basis for further research on
the identification and processing of MO images of weld defects. The forthcoming study
will focus on improving the accuracy of target classification, especially in defect MO images
with complex backgrounds, to further enhance the overall robustness of the system.

Table 12. Comparison of the four proposed algorithms.

Methods Params FLOPS Classification
Accuracy/% Complexity

PCA-BP 6.12 × 103 6.17 × 103 90.8 Low
PCA-SVM 3.01 × 105 1.5 × 107 91.6 Intermediate

CNN 1.94 × 106 3.76 × 109 97.2 High
ResNet50 2.35 × 107 1.34 × 1010 99 Highest

5. Conclusions and Outlook

The MO images of natural weld defects are obtained by the nondestructive testing
system excited by an alternating magnetic field. The defect MO images featuring crack, pit,
incomplete fusion, gas pore, and no defects have been acquired for weld defect diagnosis.
After image enhancement and feature extraction of the collected defect MO images, PCA-BP
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model, PCA-SVM model, CNN model, and ResNet50 model are used to classify the MO
images of natural weld defects.

Different image filtering techniques of weld defect images are compared, and the
filtering effect of Gaussian filter, bilateral filter, and median filter is evaluated by mean
square error. At the same time, the dimensionality-reduced feature vectors obtained by
PCA are used as the input layers of BP neural network classification model and SVM
classification model. The experimental results show that the overall recognition rate of the
PCA-BP neural network classification model is 90.8%. The classification accuracy of the
PCA-SVM model can reach 91.6%, which is 0.8% higher than the PCA-BP model. However,
these two models have poor recognition performance for cracks and gas pores.

The CNN and ResNet50 classification models for MO imaging of natural weld defects
are designed, and the forward propagation and iterative optimization process of the CNN
model are studied. The experimental results show that the classification accuracy of the
ResNet50 model is higher than that of the PCA-SVM model and CNN model, with an
overall classification accuracy of 99%. Its total classification accuracy has increased by 7.4%
and 1.8%, respectively. In particular, the classification accuracy of the gas pores is 10%
and 4% higher than the PCA-SVM model and the CNN model, respectively, indicating
that ResNet50 model can effectively improve the classification accuracy of MO images
for natural welded defect. Therefore, the proposed method in this paper can provide
high-precision diagnostic results for natural welded defects.

At present, the MO imaging detection technology of natural weld defects depends
on the magnetic field excitation device, and different excitation modes have different
imaging effects. Especially in the actual process of weld defect detection, there are many
external factors that affect the effect of defect MO imaging, which require more theoretical
research, simulation analysis, and practical experimental verification. Next, it is necessary
to further develop a magnetic field excitation device and introduce frequency conversion
function into the self-made excitation device to realize the MO imaging technology to
detect weld defects at different frequencies, so as to meet the needs of automatic online
detection. In future work, the author of this paper aims to investigate effective algorithms
for automatically optimizing the parameters of the deep learning method and improved
methods for reducing background noise to enhance accuracy. In addition, the method
proposed in this article lays the foundation for extending the detection of welded defects
using MO imaging technology under alternating magnetic field excitation to weld defect
detection under rotating magnetic field excitation.

Author Contributions: Data curation, Y.L. (Yanfeng Li), Y.L. (Yongbiao Luo) and G.L.; Funding
acquisition, Y.L. (Yanfeng Li), Y.Z., W.X., C.X. and P.G.; Methodology, Y.L. (Yanfeng Li), W.X., Y.Z., C.X.
and J.C.; Project administration, Y.L. (Yanfeng Li), P.G., Y.L. (Yongbiao Luo) and Y.Z.; Writing—original
draft, Y.L. (Yanfeng Li), J.C. and X.L.; Writing—review and editing, Y.L. (Yanfeng Li), G.L., X.L., Y.L.
(Yongbiao Luo), C.X. and J.C.; Conceptualization, Y.L. (Yanfeng Li), W.X. and Y.Z.; Supervision,
Y.L. (Yanfeng Li), G.L., C.X. and W.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Opening Project of Key Laboratory of Ministry of Ed-
ucation (Cultivation), Southwest University of Science and Technology, grant number 24kfsk04;
Guangdong Provincial Natural Science Foundation of China, grant number 2023A1515012172; Sci-
ence and Technology Program of Guangzhou, grant number 202201011405; Guangzhou Municipal
Special Fund Project for Scientific and Technological Innovation and Development, grant number
2023B03J1326, 202002030147; Special Talents for Scientific Research Projects of Guangdong Poly-
technic Normal University, grant number 2021SDKYA018, 991641218; Guangdong Province Key
Construction Discipline Research Ability Improvement Project, grant number 2021ZDJS027.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.



Sensors 2024, 24, 7649 25 of 27

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gao, X.; Wang, Y.; Chen, Z.; Ma, B.; Zhang, Y. Analysis of welding process stability and weld quality by droplet transfer and

explosion in MAG-laser hybrid welding process. J. Manuf. Process. 2018, 32, 522–529. [CrossRef]
2. Gao, X.; Wen, Q.; Katayama, S. Analysis of high-power disk laser welding stability based on classification of plume and spatter

characteristics. Trans. Nonferrous Met. Soc. China 2013, 23, 3748–3757. [CrossRef]
3. Zhang, Y.; Gao, X.; You, D.; Zhang, N. Data-driven detection of laser welding defects based on real-time spectrometer signals.

IEEE Sens. J. 2019, 19, 9364–9373. [CrossRef]
4. Wang, L.; Mohammadpour, M.; Yang, B.; Gao, X.; Lavoie, J.P.; Kleine, K.; Kovacevic, R. Monitoring of keyhole entrance and molten

pool with quality analysis during adjustable ring mode laser welding. Appl. Opt. 2020, 59, 1576–1584. [CrossRef] [PubMed]
5. Hawwat, S.; Shah, J.; Wang, H. Machine learning supported ultrasonic testing for characterization of cracks in polyethylene pipes.

Measurement 2025, 240, 115609. [CrossRef]
6. Chen, L.; Li, B.; Zhang, L.; Shang, Z. 3D positioning of defects for gas turbine blades based on digital radiographic projective

imaging. NDT E Int. 2023, 133, 102751. [CrossRef]
7. Gao, X.; Mo, L.; Xiao, Z.; Chen, X.; Katayama, S. Seam tracking based on Kalman filtering of micro-gap weld using magneto-optical

image. Int. J. Adv. Manuf. Technol. 2016, 83, 21–32. [CrossRef]
8. Gao, X.; Chen, Y.; You, D.; Xiao, Z.; Chen, X. Detection of micro gap weld joint by using magneto-optical imaging and Kalman

filtering compensated with RBF neural network. Mech. Syst. Signal Process. 2017, 84, 570–583. [CrossRef]
9. Gao, X.; Du, L.; Ma, N.; Zhou, X. Magneto-optical imaging characteristics of weld defects under alternating and rotating magnetic

field excitation. Opt. Laser Technol. 2019, 112, 188–197. [CrossRef]
10. Arakelyan, S.; Galstyan, O.; Lee, H.; Babajanyan, A.; Lee, J.H.; Friedman, B.; Lee, K. Direct current imaging using a magneto-optical

sensor. Sens. Actuators A Phys. 2016, 238, 397–401. [CrossRef]
11. Cacciola, M.; Megali, G.; Pellicano, D. Heuristic enhancement of magneto-optical images for NDE. EURASIP J. Adv. Signal Process.

2010, 2010, 44–55. [CrossRef]
12. Li, Y.; Gao, X.; Zhang, Y.; You, D.; Zhang, N.; Wang, C.; Wang, C. Detection model of invisible weld defects by magneto-optical

imaging at rotating magnetic field directions. Opt. Laser Technol. 2020, 121, 105772. [CrossRef]
13. Gao, X.; Ma, N.; Du, L. Magneto-optical imaging characteristics of weld defects under alternating magnetic field excitation. Opt.

Express 2018, 26, 9972–9983. [CrossRef] [PubMed]
14. Su, G.; Qin, Y.; Xu, H.; Liang, J. Automatic real-time crack detection using lightweight deep learning models. Eng. Appl. Artif.

Intell. 2024, 138, 109340. [CrossRef]
15. Zhao, B.; Zhou, X.; Yang, G.; Wen, J.; Zhang, J.; Dou, J.; Li, G.; Chen, X.; Chen, B. High-resolution infrastructure defect detection

dataset sourced by unmanned systems and validated with deep learning. Autom. Constr. 2024, 163, 105405. [CrossRef]
16. Yu, H.; Deng, Y.; Guo, F. Real-time pavement surface crack detection based on lightweight semantic segmentation model. Transp.

Geotech. 2024, 48, 101335. [CrossRef]
17. Jin, G.S.; Oh, S.J.; Lee, Y.S.; Shin, S.C. Extracting weld bead shapes from radiographic testing images with U-Net. Appl. Sci. 2021,

11, 12051. [CrossRef]
18. Golodov, V.A.; Maltseva, A.A. Approach to weld segmentation and defect classification in radiographic images of pipe welds.

NDT E Int. 2022, 127, 102597. [CrossRef]
19. Zapata, J.; Vilar, R.; Ruiz, R. Automatic inspection system of welding radiographic images based on ANN under a regularisation

process. J. Nondestruct. Eval. 2012, 31, 34–45. [CrossRef]
20. Malarvel, M.; Singh, H. An autonomous technique for weld defects detection and classification using multi-class support vector

machine in X-radiography image. Optik 2021, 231, 166342. [CrossRef]
21. Shen, Q.; Gao, J.; Li, C. Automatic classification of weld defects in radiographic image. Insight Non-Destr. Test. Cond. Monit. 2010,

52, 134–139. [CrossRef]
22. Kumaresan, S.; Jai Aultrin, K.S.; Kumar, S.S.; Anand, M.D. Transfer learning with CNN for classification of weld defect. IEEE

Access 2021, 9, 95097–95108. [CrossRef]
23. Li, Z.; Li, Y.; Liu, Y.; Wang, P.; Lu, R.; Gooi, H.B. Deep learning based densely connected network for load Forecasting. IEEE Trans.

Power Syst. 2021, 36, 2829–2840. [CrossRef]
24. Singh, A.; Bruzzone, L. Mono- and Dual-Regulated Contractive-Expansive-Contractive deep convolutional networks for classifi-

cation of Multispectral Remote sensing images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5513605. [CrossRef]
25. Mohanasundari, L. Performance analysis of weld image classification using modified Resnet CNN architecture. Turk. J. Comput.

Math. Educ. (TURCOMAT) 2021, 12, 2260–2266.
26. Chinta, B.; Moorthi, M. EEG-dependent automatic speech recognition using deep residual encoder based VGG net CNN. Comput.

Speech Lang. 2023, 79, 101477. [CrossRef]

https://doi.org/10.1016/j.jmapro.2018.03.024
https://doi.org/10.1016/S1003-6326(13)62925-8
https://doi.org/10.1109/JSEN.2019.2927268
https://doi.org/10.1364/AO.383232
https://www.ncbi.nlm.nih.gov/pubmed/32225662
https://doi.org/10.1016/j.measurement.2024.115609
https://doi.org/10.1016/j.ndteint.2022.102751
https://doi.org/10.1007/s00170-015-7560-x
https://doi.org/10.1016/j.ymssp.2016.07.041
https://doi.org/10.1016/j.optlastec.2018.11.005
https://doi.org/10.1016/j.sna.2016.01.002
https://doi.org/10.1155/2010/485695
https://doi.org/10.1016/j.optlastec.2019.105772
https://doi.org/10.1364/OE.26.009972
https://www.ncbi.nlm.nih.gov/pubmed/29715942
https://doi.org/10.1016/j.engappai.2024.109340
https://doi.org/10.1016/j.autcon.2024.105405
https://doi.org/10.1016/j.trgeo.2024.101335
https://doi.org/10.3390/app112412051
https://doi.org/10.1016/j.ndteint.2021.102597
https://doi.org/10.1007/s10921-011-0118-4
https://doi.org/10.1016/j.ijleo.2021.166342
https://doi.org/10.1784/insi.2010.52.3.134
https://doi.org/10.1109/ACCESS.2021.3093487
https://doi.org/10.1109/TPWRS.2020.3048359
https://doi.org/10.1109/LGRS.2022.3211861
https://doi.org/10.1016/j.csl.2022.101477


Sensors 2024, 24, 7649 26 of 27

27. Slama, A.; Sahli, H.; Amri, Y.; Trabelsi, H. Res-Net-VGG19: Improved tumor segmentation using MR images based on Res-Net
architecture and efficient VGG gliomas grading. Appl. Eng. Sci. 2023, 16, 100153. [CrossRef]

28. Palma-Ramírez, D.; Ross-Veitía, B.D.; Font-Ariosa, P.; Espinel-Hernández, A.; Sanchez-Roca, A.; Carvajal-Fals, H.; Hernández-
Herrera, H. Deep convolutional neural network for weld defect classification in radiographic images. Heliyon 2024, 10, e30590.
[CrossRef]

29. Yang, D.; Jiang, H.; Ai, S.; Yang, T.; Zhi, Z.; Jing, D.; Gao, J.; Yue, K.; Cheng, H.; Xu, Y. Detection method for weld defects in
time-of-flight diffraction images based on multi-image fusion and feature hybrid enhancement. Eng. Appl. Artif. Intell. 2024, 138,
109442. [CrossRef]

30. Zhang, Q.; Zhang, K.; Pan, K.; Huang, W. Image defect classification of surface mount technology welding based on the improved
ResNet model. J. Eng. Res. 2024, 12, 154–162. [CrossRef]

31. Zhao, D.; Cai, W.; Cui, L. Adaptive thresholding and coordinate attention-based tree-inspired network for aero-engine bearing
health monitoring under strong noise. Adv. Eng. Inform. 2024, 61, 102559. [CrossRef]

32. Zhao, D.; Shao, D.; Cui, L. CTNet: A data-driven time-frequency technique for wind turbines fault diagnosis under time-varying
speeds. ISA Trans. 2024, 154, 335–351. [CrossRef] [PubMed]

33. Chandni; Sachdeva, M.; Kushwaha, A.K.S. Effective Brain Tumor Image Classification using Deep Learning. Natl. Acad. Sci. Lett.
2024, 47, 257–260. [CrossRef]

34. He, X.; Wang, T.; Wu, K.; Liu, H. Automatic defects detection and classification of low carbon steel WAAM products using
improved remanence/magneto-optical imaging and cost-sensitive convolutional neural network. Measurement 2020, 173, 108633.
[CrossRef]

35. Li, Y.; Gao, X.; Liu, J.; Zhang, Y.; Qu, M. Detection and classification of invisible weld defects by magneto-optical imaging under
alternating magnetic field excitation. Sens. Actuators A Phys. 2024, 374, 115507. [CrossRef]

36. Liu, Q.; Ye, G.; Gao, X.; Zhang, Y.; Gao, P.P. Magneto-optical imaging nondestructive testing of welding defects based on image
fusion. NDT E Int. Indep. Nondestruct. Test. Eval. 2023, 138, 102887. [CrossRef]

37. Shen, Y.; Wang, Y.; Wu, B.; Li, P.; Han, Z.; Zhang, C.; Liu, X. A novel sensor based on the composite mechanism of magnetic flux
leakage and magnetic field disturbance for comprehensive inspection of defects with varying angles and width. NDT E Int. 2024,
145, 103131. [CrossRef]

38. Vandendriessche, S.; Valev, V.K.; Verbiest, T. Faraday rotation and its dispersion in the visible region for saturated organic liquids.
Phys. Chem. Chem. Phys. 2012, 14, 1860–1864. [CrossRef]

39. Cheng, Y.; Deng, Y.; Bai, L.; Chen, K. Enhanced laser-based magneto-optic imaging system for nondestructive evaluation
applications. IEEE Trans. Instrum. Meas. 2013, 62, 1192–1198. [CrossRef]

40. Pradhan, K.; Patra, S. A semantic edge-aware parameter efficient image filtering technique. Comput. Graph. 2024, 124, 104068.
[CrossRef]

41. Zhang, C.; Gai, K.; Zhang, S. Matrix normal PCA for interpretable dimension reduction and graphical noise modeling. Pattern
Recognit. 2024, 154, 110591. [CrossRef]

42. Bisheh, H.; Amiri, G. Structural damage detection based on variational mode decomposition and kernel PCA-based support
vector machine. Eng. Struct. 2023, 278, 115565. [CrossRef]

43. Hu, D.; Liu, H.; Zhu, Y.; Sun, J.; Zhang, Z.; Yang, L.; Liu, Q.; Yang, B. Demand response-oriented virtual power plant evaluation
based on AdaBoost and BP neural network. Energy Rep. 2023, 9, 922–931. [CrossRef]

44. Liu, Z.; Yuan, J.; Shen, J.; Hu, Y.; Chen, S. A new DEM calibration method for wet and stick materials based on the BP neural
network. Powder Technol. 2024, 448, 120228. [CrossRef]

45. Hayati, R.; Munawar, A.A.; Lukitaningsih, E.; Earlia, N.; Karma, T. Combination of PCA with LDA and SVM classifiers: A model
for determining the geographical origin of coconut in the coastal plantation. Aceh Prov. Indones. Case Stud. Chem. Environ. Eng.
2024, 9, 100552. [CrossRef]

46. Zhang, G.; Carrasco, C.; Winsler, K.; Bahle, B.; Cong, F.; Luck, S. Assessing the effectiveness of spatial PCA on SVM-based
decoding of EEG data. Neuro Image 2024, 293, 120625. [CrossRef] [PubMed]

47. Zhang, S.; Wu, J.; Shi, E.; Yu, S.; Gao, Y.; Li, L.C.; Kuo, L.R.; Pomeroy, M.J.; Liang, Z.J. MM-GLCM-CNN: A multi-scale and
multi-level based GLCM-CNN for polyp classification. Comput. Med. Imaging Graph. 2023, 108, 102257. [CrossRef]

48. Wang, J.J.; Sharma, A.K.; Liu, S.H.; Zhang, H.; Chen, W.; Lee, T.L. Prediction of vascular access stenosis by lightweight
convolutional neural network using blood flow sound signals. Sensors 2024, 24, 5922. [CrossRef]

49. Zheng, X.; Zhang, L.; Xu, C.; Chen, X.; Cui, Z. An attribution graph-based interpretable method for CNNs. Neural Netw. 2024, 179,
106597. [CrossRef]

50. Mohajelin, F.; Sheykhivand, S.; Shabani, A.; Danishvar, M.; Danishvar, S.; Lahijan, L.Z. Automatic recognition of multiple
emotional classes from EEG signals through the use of graph theory and convolutional neural networks. Sensors 2024, 24, 5883.
[CrossRef]

51. Xie, G.; Wang, L.; Williams, R.A.; Li, Y.; Zhang, P.; Gu, S. Segmentation of wood CT images for internal defects detection based on
CNN: A comparative study. Comput. Electron. Agric. 2024, 224, 109244. [CrossRef]

https://doi.org/10.1016/j.apples.2023.100153
https://doi.org/10.1016/j.heliyon.2024.e30590
https://doi.org/10.1016/j.engappai.2024.109442
https://doi.org/10.1016/j.jer.2024.02.007
https://doi.org/10.1016/j.aei.2024.102559
https://doi.org/10.1016/j.isatra.2024.08.029
https://www.ncbi.nlm.nih.gov/pubmed/39261267
https://doi.org/10.1007/s40009-023-01309-9
https://doi.org/10.1016/j.measurement.2020.108633
https://doi.org/10.1016/j.sna.2024.115507
https://doi.org/10.1016/j.ndteint.2023.102887
https://doi.org/10.1016/j.ndteint.2024.103131
https://doi.org/10.1039/c2cp23311h
https://doi.org/10.1109/TIM.2012.2220039
https://doi.org/10.1016/j.cag.2024.104068
https://doi.org/10.1016/j.patcog.2024.110591
https://doi.org/10.1016/j.engstruct.2022.115565
https://doi.org/10.1016/j.egyr.2023.05.012
https://doi.org/10.1016/j.powtec.2024.120228
https://doi.org/10.1016/j.cscee.2023.100552
https://doi.org/10.1016/j.neuroimage.2024.120625
https://www.ncbi.nlm.nih.gov/pubmed/38704056
https://doi.org/10.1016/j.compmedimag.2023.102257
https://doi.org/10.3390/s24185922
https://doi.org/10.1016/j.neunet.2024.106597
https://doi.org/10.3390/s24185883
https://doi.org/10.1016/j.compag.2024.109244


Sensors 2024, 24, 7649 27 of 27

52. Vrbancic, G.; Podgorelec, V. Efficient ensemble for image-based identification of Pneumonia utilizing deep CNN and SGD with
warm restarts. Expert Syst. Appl. 2022, 187, 115834. [CrossRef]

53. Yu, Q.; Zhang, Y.; Xu, J.; Zhao, Y.; Zhou, Y. Intelligent damage classification for tensile membrane structure based on continuous
wavelet transform and improved ResNet50. Measurement 2024, 227, 114260. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2021.115834
https://doi.org/10.1016/j.measurement.2024.114260

	Introduction 
	Experimental Methods 
	Experimental Setup 
	Principle of MO Imaging for Weld Defects 
	Preprocessing of MO Images for Weld Defect Analysis 

	Detection and Classification by BP Neural Network and SVM 
	Feature Extraction Based on PCA 
	Classification by the PCA + BP Model 
	Classification by the PCA + SVM Model 

	Detection and Classification by CNN and ResNet50 
	The Architecture of CNN 
	Parameter Evaluation of CNN Models 
	Classification by the CNN Model 
	Classification by ResNet50 Model 
	Experimental Analysis 

	Conclusions and Outlook 
	References

