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Abstract: The developments in sensing, actuation, and algorithms, both in terms of Artificial Intelli-
gence (AI) and data treatment, have open up a wide range of possibilities for improving the quality
of the production systems in diverse industrial fields. The present paper describes the automatizing
process performed in a production line for high-quality bearings. The actuation considered new
sensing elements at the machine level and the treatment of the information, fusing the different
sources in order to detect quality defects in the grinding process (waviness, burns) and monitoring
the state of the tool. At a supervision level, an AI model has been developed for monitoring the
complete line and compensating deviations in the dimension of the final assembly. The project also
contemplated the hardware architecture for improving the data acquisition and communication
among the machines and databases, the data treatment units, and the human interfaces. The resulting
system gives feedback to the operator when deviations or potential errors are detected so that the
quality issues are recognized and can be amended in advance, thereby reducing the quality cost.

Keywords: Industry 4.0; digitalization; waviness; burns; machine learning; grinding

1. Introduction

The use of modern information and communication technologies in the framework
of Industry 4.0 is fundamental for competitive and reliable manufacturing processes. The
present work focuses on the manufacture of roll bearings, where the complex processes in-
volved and high quality requirements can highly profit from the Industry 4.0 approach [1,2]
in order to assure the extreme accuracy of the final product. The surface quality, geometric
accuracy, and dimensional accuracy of manufactured bearings, as well as their surface
integrity, are achieved by grinding processes. Attaining defect-free surfaces with this
technology is an aspect that has been addressed through process control and optimization
using various approaches such as GRINDSIM® [3], GIGAS [4], or SUA [5]. However, these
solutions have shown serious limitations in becoming practical tools for industrial use due
to the lack of automation for acquiring and processing the necessary information to feed
and calibrate the models. In order to solve this limitation, the present work presents a
system for digitalizing grinding processes applied to a manufacturing line in Fersa Bear-
ings. It uses a distributed multisource layer, merging information from different sensors
in decision-making tools based on hybrid physical models and data-driven algorithms.
Through this approach, defects in the process (waviness, burns), final product quality, and
the state of the grinding tool for maintenance are continuously monitored and the operators
are informed in real time of potential deviations.
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The application of Industry 4.0 solutions are improving and optimizing the control of
grinding processes by advancements in process monitoring, connectivity, data processing,
and analysis capabilities [6]. The combinations of monitoring with physical simulation
models and various machine learning (ML) techniques, as well as the pure application
of these data-based techniques, are the most recent approaches [7]. In the present paper,
two quality faults are analyzed: waviness and burns. Waviness in the contact surfaces
causes operation noise, reduces the efficiency, and increases the probability of failure in
loaded conditions. The analysis of data from acoustic sensors and accelerometers is used for
predicting this, as proposed by [8]. The results of the statistical analysis of the information
(wavelets, Fourier analysis) are the input of AI models like the ones described in [9],
which compares Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM)
for identifying vibration faults in the raceways and the rolling element. The approach
described in the present work builds up a linear frequency model based on acquired quality
and accelerometer data for predicting the appearance of waviness. Apart from that, the
algorithm estimates the real speed of the part for avoiding errors derived from the sliding
of the workpiece in the magnetic clamp.

Burns is a thermal defect that affects the quality of the part and compromises the
mechanical properties of the final product. In order to predict it, models are proposed in the
literature for improving the traditional approach based on threshold evaluations. Ref. [10]
trains neural networks (NN) with power consumption and Acoustic Emission (AE) data.
Similarly [11] combines AE and vibration data for training. Ref. [12] extended the approach
by using stacked sparse autoencoder (SSAE) with the data coming from accelerometers,
AE and torque. The solution presented in the work combines physically power based
models for predicting the appearance of a burn. The model uses information from the
different sensors available (thermal camera, cooling fluid, wattmeter, accelerometer) and
process parameters.

The tool is crucial in the quality of the grinding process and so it is important to
detect damage and wear to change it before affecting the product quality. There are
several approaches for monitoring the status of the tool and predicting the remaining
useful life [13]. Reference [14] proposes the use of Acoustic Emission (AE) sensors. The
data are treated with wavelets and the identification of the status is carried out with a
Support Vector Machine. Similarly, Refs. [15–17] use wavelets with AE and accelerometer
signals. The failure model is predicted with HMMs. The present project uses the RMS
(Root Mean Square) of the AE signal, as proposed by [18–20] for estimating the topology of
the grinding tool.

The application of ML models for monitoring production lines has attracted much
interest in the last years with the advances in the technology. In this connection, some ap-
proaches have been proposed for developing ML solutions in industrial environments [21].
One important field of application is the quality control, like the work [22], where the au-
thors tested different ML models in a PCB manufacturing line for automatic quality inspec-
tion. Another application is the recommendation of process parameters like in [23]. This is
the approach in the present work, where an ML model has been developed for providing
recommendations to the operators to improve the quality of the final bearing assembly.

The main contributions of this work are the development and deployment in real
production conditions of local digital twins for predicting different grinding defects in real
time. This permits identifying potential quality issues and applying corrective actions in
advance. In addition to these, a digital twin monitors the quality of the assembly at the
end of the line and supports the operators in modifying the parameters in the presence of
emerging deviations. This is achieved by means of a distributed and secure architecture
involving multiple information sources, sensor fusion, and sophisticated algorithms for
data treatment.

The present paper is organized in five sections. A description of the line and the
digitalization steps appears in Section 2.1. The algorithms are presented in Section 2.2
and the final results are in Section 3. Technical discussion is included in Section 4 and
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the conclusions are in section 5. Due to privacy requirements, the units are normally not
displayed in the presented results.

2. Materials and Methods
2.1. Description of the Process Line Digitalization

Figure 1 shows the main elements of the Z1 production line at Fersa Bearings. It has
two main process flows, corresponding with the outer and the inner rings. In both cases,
the grinding process is followed by honing, washing, and quality control. After the quality
control of the inner ring, the rollers are assembled and the quality of the subset is evaluated.
Following that, this subset is assembled with the outer ring by pairing the parts according
to their dimensions for fulfilling the highly restricted tolerances of the final product. The
last processes of the final assembly are marking, oiling, and packing.

Figure 1. Simplified schema with the main elements of the FERSA production line.

The present project is focused on the failure detection during the grinding process
of the inner ring (burns and waviness), and a supervisory system of the complete line for
improving the final dimension of the assembled product. In both cases, the developed
system warns the operator about potential quality errors and the supervisory system also
gives advice on the process parameters for assuring the quality of the final assembly.

Figure 2 shows the main elements in the architecture developed during the project. The
information from the line, including machine sensors, quality data, and process parameters,
is treated in data preparation modules and used for building behavior models in data
analytics modules. The obtained information is stored in process databases connected to a
DQM platform (Data Quality Management), which gathers and organizes data from the
distributed multi-sensor network in order to offer adequate levels of data accuracy and
precision for effective decision support and problem-solving. For strategic and sensitive
data, the information is also stored in smart contracts by using blockchain technology. The
data are represented in real time to the operator and process engineers via two Human
Machine Interfaces (HMI) showing information in the line. On the one side, process
information from the grinding machines is published using the Danobat Cloud system,
which enables the visualization of acquired data and the results of waviness, burns, and
tool state modules. It also serves as a notification tool for operators to take action to prevent
defects generated during the grinding process. On the other side, a second HMI uses a web
application with the results from the final assembly supervision model.

2.1.1. New Sensors

Several sensors (Figure 3) have been installed in the line for improving the capability
of the system for predicting quality defects (waviness and burns) and the status of the tool.
Waviness is related with the undulations per revolution (UPR) which characterizes the
roundness profile of the bearing surface and it is affected by various types of vibrations [24],
like imbalances in the rotating elements (grinding wheel, dressing actuator, workpiece) or
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external sources. In order to predict the risk of waviness in real time, ICP accelerometers
have been installed near the rotary elements.

Figure 2. Main elements in the architecture.

The burns are thermal defects caused by the high temperatures between the grinding
wheel and the workpiece during the grinding process. The failure is normally evaluated
offline by using eddy current technology and acid etching tests. In order to have an online
prediction of the thermal damage, a virtual sensor is proposed to estimate the grinding
conditions when the temperature of the grinding area approaches the limit of workpiece
thermal damage. This virtual sensor uses a power meter connected to the three-phase
spindle motor, a coolant sensor, and a thermal camera.

For the state of the tooling, an acoustic emission sensor has been installed at the
dressing tool column.

2.1.2. Communication Hardware

The information from the different sensors at the grinding machines is transmitted to
the Danobat box system, which is used for data collection, analytics, and communication.
Its compatibility with different communication protocols simplifies the integration with the
different components. It connects the Danobat Cloud with the CNC (Computer Numerical
Control) local machine and the process databases. The communication protocol from
the new sensors to the Danobat box depends on the information source. OPC-UA is
used for coolant concentration acquisition, while MODBUS is used for pre-processed data
from accelerometers (10 kHz) and power meters coming from the installed PAC system
(Programmable Automation Controller) INGESYS IC3. The high rate information from the
AE sensor is acquired by a STEMlab system at 1 MHz and processed in a separate unit
connected to the Danobat box using Ethernet. This is also the case for the analysis of the
information from the thermal camera, which is connected via USB to a controller, which
afterwards sends the information to the Danobat box using Ethernet. The CNC parameters
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of the grinding machines are collected using specific libraries developed in C# that allow
access to the data via the machine manufacturer’s .DLL files.

Figure 3. Sensors in the figure framed with a red circle: (upper left) accelerometer (PCB Piezotronics
with a frequency range of 0.5 to 8000 Hz); (upper right) Equipment for grinding power acquisition;
(lower left) thermal camera (FLIR Lepton 3.5); (lower right) AE sensor (Steminc 20 × 1 mm 2 Mhz R).

For the analysis of the line, a dedicated server connects to the FERSA databases to
retrieve information from the manufacturing machines (ElasticSearch database) and the
quality inspection machine results (PostgreSQL). The information is treated in a Python
model of the line and the results are published in the line HMI with a web application
based on Streamlit.

2.1.3. Blockchain

The most sensitive data can be protected by using blockchain thanks to the digital-
ization of the line. This is a practice that has been used in other fields, like, for example,
in [25], where blockchain assured the traceability of data sets in the mining industry. This
technology has been implemented in the project for proving its potential in sharing critical
quality results with customers and suppliers. The system acquires the critical information
from a production batch, obtaining its digital fingerprint and storing it in blockchain. The
system can be configured to acquire different quality results and process parameters from
the DQM platform. Once implemented, the cost of its configuration and adaptation to
different production conditions is negligible. Figure 4 depicts the blockchain architecture
and its components for traceability and data management. The traceability is assured
through the hashing process. This process involves a one-way cryptographic function that
generates a consistent digital fingerprint of a certain length from any given dataset. Storing
the hash of the data on a blockchain ensures its immutability. However, the hash does not
reveal any original data information, as it cannot be reversed. The hashing outcome at any
point can be compared with the historical hash recorded when the dataset was first created.

The blockchain gateway is responsible for distributing the information between the
different modules. The smart contract with the original information and the hash (SHA256)
are obtained using Ethereum. The resulting hash is stored in a MySQL database and
it can be visualized by using Redash. The wallet contains the private key to execute
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reliable transactions in Ethereum Testnet and to confirm the ones coming from suppliers or
customers interested in data sharing.

Figure 4. Description of the traceability blockchain architecture.

2.2. Description of the Grinding Quality Prediction Algorithms

In this section, the grinding quality prediction algorithms running at machine level are
described. These algorithms are focused on the identification of grinding failures (waviness
and burns) and the evaluation of the grinding tool surface.

2.2.1. Waviness Prediction Algorithm

The waviness algorithm predicts the appearance of this failure in the current workpiece
by using the information from the accelerometers near the machined part. This prediction
is performed in two phases: firstly, the turning speed of the part is estimated; and, secondly,
the presence of waviness is evaluated. The estimation of the turning speed is necessary
due to the slippage of the workpiece on the magnetic clamp, resulting in a discrepancy
between the commanded velocity and the actual one. To fix this error, the algorithm in
Figure 5 is used for estimating the real speed Ω (rad/s). First of all, the accelerometer
signal is divided into sections, each corresponding to one wheel revolution. After that,
the algorithm compares a control section that represents the most recent revolution with a
sample section from the previous revolutions. The estimation of the speed is obtained by
maximizing the correlation between both sections.

Figure 5. Speed algorithm global architecture.

With the refined workpiece speed, the accelerometer signal xacc(t) is again split into
individual revolutions for evaluating the appearance of waviness. The analysis uses the
signal sections corresponding with the fine grinding and chirp phases, as the surface is
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closer to the final result. After being filtered, the FFT of the signal Xacc(w) is calculated.
The frequency scale w (rad/s) is converted to the UPR scale by the expression below:

UPR =
w
Ω

(1)

The prediction of the waviness measurement X̂(UPR) (Figure 6) is performed by
scaling the values Xacc(UPR) with a discrete gain model Fs,i:

X̂(i) = Xacc(i) · Fs,i (2)

for each i = 1 . . . UPRmax.
The values Fs,i have been identified by an offline process correlating quality measure-

ments with the accelerometer signals in different parts. The result of this identification is a
set of gain models. The probability of waviness is estimated by evaluating the number of
models that predict values over the quality limit (Figure 6).

Figure 6. Post-manufacturing quality process result for waviness analysis. Purple line shows the
threshold harmonic content for the waviness appearance. Light blue line shows 80% probability
threshold for waviness appearance.

2.2.2. Thermal Damage Prediction Algorithm

For the thermal damage prediction, the approach uses models based on the theoretical
development by Jaeger and its application by Malkin [26], which rely on estimating maxi-
mum temperature as the sole indicator [27,28]. This concept is based on the relationship
between the surface’s thermal damage-free temperature limit θm and the grinding power P
required to reach that temperature:

θm =
βα1/2

w ϵP
kwbd1/4

e v1/2
w a1/4

(3)

Other parameters influencing the calculation include the thermal parameters of the
workpiece, such as the thermal conductivity kw and thermal diffusivity αw of the material,
the equivalent diameter de, the grinding width b, and the grinding conditions corresponding
to the workpiece speed vw and the depth of cut a, as well as the constant dependent on
the considered shape of the energy source β. One critical parameter in the calculation is
the energy partition ϵ, typically obtained through experimentation. The use of a thermal
camera permits approaching it by estimating the power used for heating the workpiece
and the tool from the measured temperature (Figure 7).

This approach has been adapted to the case of bearing grinding, where different
bearing surfaces are ground on each machine, requiring a specific formulation in each case.

Once the power limit calculations are developed, the solution of the predictive model
relies on comparing the consumed power with the calculated limit. If the grinding power
exceeds it on a particular workpiece, there is a risk of thermal damage occurrence. Figure 8
shows a schematic example of the power evolution of different workpieces over time.
The red dots are the sampled measurements from the complete measured power signal
(blue line). These values are then compared with the power limit (green line). In the case
described in the figure, thermal damage would occur after the sixth piece.
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Figure 7. Thermal image obtained during the grinding process.

Figure 8. Schematic example of the virtual sensor solution for thermal damage prediction based on
the grinding power measurement and the calculation of the limiting value.

2.2.3. Tool State Identification Algorithm

This algorithm is intended to identify variations in the surface of the grinding tool.
Given its influence in the quality of the process, its state is evaluated after each dressing
in order to detect deviations in its topology. For this, AE sensors are employed to acquire
high-frequency patterns. The approach follows the works from Oliveira in [18,19]. The
sensor is placed near the diamond tool used for the dressing process, which has point
contact with the wheel surface.

The data collected from the acoustic emission sensor is acquired at very high frequency
to identify surface effects at grain level. This high acquisition rate generates a vast amount
of raw data, which demands considerable computational resources to process and convert
them into meaningful information. In consequence, this process is carried out offline
after the data acquisition. The signal is treated using a high-pass filter to remove the
low-frequency components. This step is critical to enhance the clarity of the data so that
only the most relevant high-frequency components are analyzed.

Once the noise has been filtered out, the cleaned signal is used for different analyses
in the frequency and the time domains. The resulting signal is divided into sections
for each revolution of the wheel. With this information, the tool surface is estimated
using the values from the last rotations of the dressing process by calculating RMS, mean,
maximum, and minimum AE values at specific angles (Figure 9). These values are tracked
to estimate the wear of the tool or the appearance of surface defects. Apart from topological
representations, the RMS value of the final turn is also used as a numerical indicator of
the tool state. Figure 10 shows the increase in this value over consecutive dressings. This
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test was performed after several machining processes without dressing. After that, the
effect of consecutive dressings can be seen in the evolution of the RMS value as the tool
grain is recovered. From that test, a threshold RMS value of 142 was identified for the tool
surface quality.

Figure 9. Tool profile estimation with maximum, minimum, mean, and RMS values.

Figure 10. Evolution of RMS value over consecutive dressing operations.
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2.3. Assembly Quality Prediction

In this section, the assembly quality supervisory algorithm at complete line level is de-
scribed. The main purpose of this solution is assuring the dimensions of the final assembly.
It uses the information from the existing quality inspection machines in the production line,
the different machine CNCs, and the sensors previously described. Therefore, a data-driven
digital twin has been developed to estimate the required outer ring dimension for fulfilling
the tolerance of the final assembly, considering all components (inner ring, outer ring,
rollers). The optimization algorithm is described in Figure 11. The dimensions of the outer
ring and the final assembly are continuously measured at the end of the line. If they do
not meet the specified tolerances, the data-driven digital twin is consulted and it provides
recommendations for manufacturing parameters in the grinding machines of the outer ring
(Figure 1).

Figure 11. Line dimensional control.

In the following, the phases for developing the machine learning model are described.

2.3.1. Feature Extraction & Feature Engineering

The sources of the data are:

• CNC: Manufacturing configuration parameters comprising 79 variables with a sam-
pling frequency of 5–8 s. These parameters are measurement once per part.

• IC2: 39 accelerometer variables sampled at 1 Hz.
• IC3: 4 power consumption measurements sampled at 1 Hz.

Since the different groups of variables have different sampling frequencies, it was
decided to standardize all variables to the CNC frequency, which coincides with the pro-
duction of each part. During the analysis, some variables were removed from the data flow
when they were either informative or constant. In addition to that, derived variables are also
obtained by applying PCA (Principal Component Analysis) and Univariate linear regres-
sion relating each variable with the height of the outer ring. Finally, all generated variables
are normalized using a standard scaler to have zero mean and unit standard deviation.

2.3.2. Feature Selection

Once the candidate variables have been generated for the machine learning models, a
feature selection process is carried out. The selected technique has been Recursive Feature
Elimination with Cross-Validation (RFECV), which is a method used with models like
Random Forest for automatic feature selection. It starts with all features, evaluates their
importance through cross-validation, and iteratively removes the least important ones until
the optimal performance is achieved. The RFECV model has been trained with all candidate
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variables to predict the outer ring dimension. The result of the analysis showed that the
CNC production variables are the most important when manufacturing the outer rings.

2.3.3. Data Preparation

From the selected variables, two subsets are distinguished: High-Variability Variables
(HVV) (grinding tool diameter, final advance of the tool), which take different values for
each successive part; and Low-Variability Variables (LVV), which remain constant during
entire production runs and their value is 0 or 1. The input to the system is a set of the
previous variables.

2.3.4. Modeling

The model training had the following characteristics:

• Five types of machine learning models were trained: Multi-Layer Perceptron, Decision
Tree, Random Forest, SVM, and Gradient Boosting;

• For each model, a hyper-parameter-tuning process was conducted using Bayesian
optimization methods;

• Model evaluation was performed using cross-validation techniques, using the R2

metric as the selection criterion.

The selected model is a Random Forest with a minimum leaf node size of 3 observa-
tions, 190 trees, and no limit on the maximum depth of the tree.

3. Results

This section summarizes the results obtained with the previous algorithms.

3.1. Waviness

Several test batches have been conducted at Fersa Bearings facilities to validate the
waviness prediction algorithm. For this, the operation conditions were changed in order
to force the appearance of defects. The comparison of the predicted signals and the
measured ones can be observed in Figure 12. Figure 13 shows the predicted quality result
obtained with two different parts. As a result of the algorithm, which is shown in the
HMI, the operator should consider modifying the grinding parameters or dressing the tool
to reduce the probability of waviness in the case of receiving a warning notification. To
make that decision, the operator also has the information from the tool state algorithm
(Figures 9 and 10).

3.2. Burns

A series of tests have been conducted on the different grinding processes, where
different batches were processed without intermediate dressing. The grinding power was
acquired during the process. Apart from that, controlled variations were made to evaluate
the influence of other parameters like workpiece rotational speed or feed rate. After that,
the ground surfaces were inspected using acid baths or visual inspection. Figure 14 shows
the power results for each ground workpiece and their trend over time. It was observed
that, once the power exceeded the predicted limit in each series, the workpieces exhibited
thermal damage, thereby validating the predictive model for different grinding conditions.

3.3. Line Dimensional Control

The machine learning model that constitutes the data-driven digital twin achieves
an R2 above 0.93, as shown in Figure 15. Figure 16 shows that the dimensional model
recommends different production patterns (a set of manufacturing parameters for the
grinding machine of the outer ring) adapted to the operating point—in this case, the
grinding wheel diameter.
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Figure 12. Comparison between the predicted harmonic content and the result from the offline
quality control.

Figure 13. Comparison of the predicted harmonic content and the limits of the waviness protocol.

Figure 14. Results of thermal damage for different tests and validation of the prediction tool. The
blue line represents the thermal limit and the dots represent the measured power. The circled dots
show the workpieces that presented burns during the quality control.
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Figure 15. Values predicted by the dimensional line model versus actual values measured on the
control machine. Scatter plot (left); 2D histogram (right).

Figure 16. Recommended production pattern based on operating point (each number/color repre-
sents a production pattern ). Units are not displayed due to Fersa’s privacy policy.

3.4. Data Visualization

All the information generated is visualized in two different HMIs placed at the line:
one for the assembly quality (Figure 17) and another one for the grinding quality (Figure 18).
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Figure 17. Example of the interface for the assembly quality control.

Figure 18. Example of the interface for the grinding quality control.

4. Discussion

Throughout the project, the Z1 line at Fersa Bearings was equipped with sensors and
networked computation units at machine and line levels. After that, different tests have
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been carried out in real production conditions for evaluating the implemented algorithms,
whose results are presented in Section 3.

The algorithm for estimating the waviness using the information from the accelerome-
ters has shown good results. The Figure 12 compares the quality control of the part surface
obtained in the laboratory (Xoriginal) with the predicted one using sensor data during the
grinding process (Xestimated). The figure represents the spatial frequency distribution in
a machined inner ring. The quality of the part requires that this distribution lays below
certain threshold curve fixed in the quality norm provided by the customer OEMs (Original
Equipment Manufacturer). The Figure 6 shows the result in two different samples, one ful-
filling the restriction and another one laying out of tolerance. The possibility of predicting
this result using online accelerometer data permits detecting the failure much faster than
only using sampled laboratory measurements.

With regard to the thermal damage, the presented algorithm has been tested in differ-
ent conditions until exceeding the power limits for the appearance of burns. This can be
seen in Figure 14, where the conditions were modified with the logical change in the power
threshold (blue line). During the first run, the thermal damage starts appearing in the ninth
part after dressing. After that, the decrease in the workpiece speed causes a reduction
in the power limits, and the thermal damage is already present in the first part. Using
an intermediate workpiece speed and following the same procedure, results show that
the thermal damage appears in the second or third part. This influence of the workpiece
speed was already analyzed in previous research [28], but under controlled conditions
in a lab environment. In this case, the prediction model is able to accurately predict the
thermal behavior under industrial conditions with slight differences coming from changes
in process parameters. It was observed in every case that, once the power exceeded the
predicted limit in each series, the workpieces exhibited thermal damage when tested in the
laboratory thereby validating the predictive model for different grinding conditions.

The tool state identification algorithm tracks the evolution in the surface of the tool
by analyzing the high-frequency acoustic emission signals collected during the dressing
process. By applying a high-pass filter to isolate relevant high-frequency information and
selecting key features such as RMS evolution and FFT, the algorithm monitors changes
in the tool’s surface. For example, Figure 10 shows that the AE RMS value increases in
consecutive dressing operations showing a correlation with the surface state. This analysis
will be extended in future activities.

The previous results were related with the appearance of machining defects by using
the machine local estimating algorithms. The line also has a quality supervisory algorithm
for the quality of the final assembly. Figure 15 shows the capability of the developed data-
driven digital twin model to predict the outer ring height dimension, which is critical for
the bearing assembly. The coefficient of determination obtained by the model (R2 = 0.937)
shows a high linear correlation between the predicted and the observed (measured) value
of the outer ring height dimension. By taking into account the real time quality value
measured in the quality inspection machines (outer ring and assembly dimensions) the
supervisory algorithm proposes an optimal set of parameters, according to the current
operating point, for obtaining the required dimension in the assembly. In this way, actions
performed by the model (prediction and recommendation) define an operator support
system for improving the assembly process. An example of the model recommendations,
given a specific operating point, is shown in Figure 16.

Although this article focuses on a digitalization solution tailored to grinding processes
applied to small-sized bearings in the automotive sector, this solution is easily scalable to
other grinding processes and sectors. The architecture can be directly adapted to other
manufacturing lines, as the equipment is designed to work with various numerical controls,
and the integration of sensors is similar across different grinding machines. In all cases, a
similar hardware structure is possible. First, local sensors at the machine level are connected
to edge computing devices for fast evaluations (data treatment, virtual sensors). Then,
communication networks link those local elements to data lakes, receiving all information
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and feeding it to ML models, which support the activity of the operator and process
engineer. The interaction with the human operator is assured by one or several HMIs.
Likewise, the ML models can be deployed for other grinding applications, as they are
properly parameterized based on part data (such as geometry or material), tool data, and
process parameters. This approach enables the digitalization of manufacturing lines for
large bearings in sectors like energy, as well as other types of components in the automotive
sector, such as drive shafts or rotor shafts for electric vehicles.

5. Conclusions

The present work describes the activities for digitalizing the Z1 line at Fersa Bearings.
The main contributions are twofold. On the one side, it presents the complete digitalization
of a real production line with hardware (sensors, control units, communication modules,
and HMI) and software elements (data treatment, observers, and models) to improve the
knowledge of the process in real time and to take measures when deviations are detected.
On the other side, it presents the models and algorithms for predicting grinding failures
(waviness and burns) and estimating the tool state at the machine level, combined with the
supervisory system at the line level, recommending process parameters for assuring the
dimensions of the complete assembly. Once the digitalization of the line has been achieved,
the complete system has been tested in real operation conditions.

Once the line has been digitalized, the quantity of data available is much larger and it
is possible to improve the existing algorithms using the available components. In the short
term, the main future actions will be focused on improving the available models with more
experimental data and tuning them for several part references, as the current results have
been obtained for a single part number. With regard to the blockchain components, it is
under analysis to extend it to data spaces from the automotive industry for data exchange
between suppliers and OEMs.
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