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Abstract: Blood pressure (BP) measurement is a major physiological information for people with
cardiovascular diseases, such as hypertension, heart failure, and atherosclerosis. Moreover, elders
and patients with kidney disease and diabetes mellitus also are suggested to measure their BP every
day. The cuffless BP measurement has been developed in the past 10 years, which is comfortable
to users. Now, ballistocardiogram (BCG) and impedance plethysmogram (IPG) could be used to
perform the cuffless BP measurement. Thus, the aim of this study is to realize edge computing for
the BP measurement in real time, which includes measurements of BCG and IPG signals, digital
signal process, feature extraction, and BP estimation by machine learning algorithm. This system
measured BCG and IPG signals from a bodily weight-fat scale with the self-made circuits. The
signals were filtered to reduce the noise and segmented by 2 s. Then, we proposed a flowchart
to extract the parameter, pulse transit time (PTT), within each segment. The feature included two
calibration-based parameters and one calibration-free parameter was used to estimate BP with
XGBoost. In order to realize the system in STM32F756ZG NUCLEO development board, we limited
the hyperparameters of XGBoost model, including maximum depth (max_depth) and tree number
(n_estimators). Results show that the error of systolic blood pressure (SBP) and diastolic blood
pressure (DBP) in server-based computing are 2.64 ± 9.71 mmHg and 1.52 ± 6.32 mmHg, and in
edge computing are 2.2 ± 10.9 mmHg and 1.87 ± 6.79 mmHg. This proposed method significantly
enhances the feasibility of bodily weight-fat scale in the BP measurement for effective utilization in
mobile health applications.

Keywords: blood pressure measurement; ballistocardiogram; impedance plethysmogram; bodily
weight-fat scale; edge computing

1. Introduction

Recently, the lifespans of the world’s population are increasing, and society is gradually
aging. According to the report of the United Nations [1], the number of elderly people
(over 65) in the world in 2019 was 703 million, and this is estimated to double to 1.5 billion
by 2050. From 1990 to 2019, the proportion of the global population over 65 years old
increased from 6% to 9%, and the proportion of the elderly population is expected to
further increase to 16% by 2050. Thus, the cost of home care for elders will significantly
increase. In home care, the monitoring of elderly people living alone is a major issue. Some
studies have proposed that engaged elders could use sophisticated digital technologies for
self-monitoring and self-care [2]. Large amounts of data and information are measured
from such digital apparatuses, relating to the past, present, and future physical and mental
health or condition of an individual, which can be analyzed to extract knowledge for
improving public health and providing basic services [3].
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The bodily weight-fat scale and blood pressure (BP) monitor are the most popular appara-
tuses used in the home environment [4]. The study of Lacey et al. showed that the usual systolic
blood pressure (SBP) of people ages 40–79 years in China was continuously and positively
associated with vascular diseases throughout the range of 120–180 mmHg, with each 10 mmHg
higher than usual; SBP was associated with an approximately 30% higher risk of ischemic heart
disease [5]. Neter et al. performed a meta-analysis of hypertension and bodily weight and found
that the SBP and diastolic blood pressure (DBP) would reduce by 1.05 mmHg and 0.92 mmHg
when expressed per kilogram of weight loss [6]. Hypertension during pregnancy was associated
with an increased risk of subsequent cardiovascular disease and arterial hypertension, such as
ischemic heart disease, myocardial infarcts, kidney disease, and diabetes mellitus [7]. The BP
control could be achieved to slow the progression of renal damage [8]. Thus, BP monitoring,
risk factor evaluation, and early intervention could benefit elders for self-management inter-
ventions of chronic disease. Moreover, a diet rich in fruits, vegetables, low-fat dairy products,
fiber, and minerals, would produce a potent anti-hypertensive effect [9]. Many studies show
that there is a positive relationship between being overweight or obese and BP with the risk
of hypertension [10]. Furthermore, weight management is extremely important for alerting
the risks related to abdominal adiposity and its complications [11]. However, sudden weight
loss may also indicate the dangers of sarcopenia, the loss of skeletal muscle mass combined
with low muscle function, and the increased risk of hip fracture [12]. Considering the associa-
tion between reduced mortality and increased body mass index in older adults, daily weight
measurement may enable successful weight loss interventions including physical activity and
nutritional interventions for older adults. Thus, if the bodily weight-fat scale has the function of
BP measurement, people will easily monitor their weight and BP every day.

The cuffless BP measurement has been studied for the past 10 years since Sharwood-
Smith et al. in 2006 found a significant relation between the pulse transit time (PTT) and
the change in BP under anesthesia [13]. PTT generally is defined as the transmitting time
of a pulse wave from the aortic arch to the peripheral vessel, which can be measured by
electrocardiogram (ECG) and photoplethysmogram (PPG) [13]. The fundamental of this
measurement is the Moens-Korteweg equation [14]. Liu et al. proposed a novel method of
BP measurement which detected PTT with the ballistocardiogram (BCG) measured by a
weight scale and PPG measured at the toe [15]. Next year, they used the bodily weight-fat
scale to perform the cuffless BP measurement [16]. However, the parameters of PTT were
extracted by the manual process, and the linear regression algorithm was used to estimate
the BP. Thus, the Pearson correlation coefficient (PCC) and root mean square error (RMSE)
for SBP and DBP were only 0.754 vs. 0.533, and 7.3 ± 2.1 mmHg vs. 4.5 ± 1.8 mmHg.

An edge computing system combines 5G communication and modern computing tech-
niques, which can perform real-time monitoring or measurement in a mobile device. Zheng
et al. studied the wireless-powered multi-access edge computing network, where wireless
devices conducted either local computing or task offloading for their undividable computa-
tion tasks [17]. Now, some studies reviewed its approaches, opportunities, and challenges
in smart health [18,19]. The modern computing techniques focus on deep learning and en-
semble machine learning algorithms, which can be executed in a microcontroller. Chin et al.
used an Arduino Nano 33 BLE Sense development board to classify the emergency vehicle
sirens with an EfficientNet-based ensemble model [20]. Rahman et al. developed a deep
learning model to detect COVID-19 symptoms based on a smartphone [21]. Goossens et al.
proposed state-of-the-art algorithms of edge computing for real-time BP estimation and
ECG compression [22]. However, this study focused on power consumption and execution
time. Many studies proposed the methods of cuffless BP measurement but few researchers
studied the cuffless BP measurement in an edge computing environment. Bernard et al.
used a cloud server to collect the PPG signal measured by different bedside monitors and
built the deep learning and machine learning models to estimate BP [23]. Sun et al. also
used the PPG signal from the MIMIC-IV database to estimate BP with five convolutional
neural networks in the Arduino Nano 33 BLE development board. Only AlexNet had the
least loss in performance at about 8%. [24]. Ahmed et al. also used the MIMIC-IV database
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to build an edge computing system with six machine learning models in the ESP32 Wrover
Board [25]. The mean absolute error (MAE) of SBP and DBP were 14.08 ± 17.82 mmHg and
6.85 ± 9.16 mmHg, respectively. However, the edge computing technique should include
the sensors, signal measurement, signal process, feature extraction, building model, adjust-
ment of hyperparameters, imbedding in a microcontroller, and evaluation of performance.
The previous studies did not fully fit the requirements of the edge computing system.

The aim of this study is to show how a cuffless BP measurement system is realized in
an edge computing environment. The BCG and impedance plethysmogram (IPG) were
measured from a bodily weight-fat scale when a user was standing on it. Signals were
filtered and segmented to extract the calibration-based and calibration-free PTTs according
to a previous study [16]. Then, we explored the XGBoost to estimate BP in server-based
computing. The hyperparameters of the model would be limited to fit the resources of the
STM32F756ZG NUCLEO (STMicroelectronics NV, Plan-les-Ouates, Geneva, Switzerland)
development board, and also keep its performance. Finally, we compared the performance
of server-based computing with edge computing.

The main contributions of this study are summarized as follows:

• This study uses the self-made circuits to measure BCG and IPG signals from the
bodily weight-fat scale. These signals were filtered and segmented to extract the
calibration-free and calibration-based PTT parameters.

• This study proposes an operation procedure to extract these PTT parameters in the
edge computing system.

• Our proposed models for SBP and DBP estimations in this study are tested on the
STM32F756ZG NUCLEO development board. This system could perform the cuffless
BP measurement in real time.

• This study verifies the performances of server-based computing and edge computing.
Edge computing has a loss in performance at about 8%.

2. Materials and Methods

Figure 1 shows the flowchart of this study. BCG and IPG signals were measured from
a bodily weight-fat scale, which were filtered by the infinite impulse response filters to
remove the baseline and noise. The signals were segmented for the feature extraction. In
the training phase, all samples were used to build a model in server-based computing to
estimate BP. Then, the hyperparameters of the model would be limited to let the memory
size fit the resources of the STM32F756ZG NUCLEO development board. In the testing
phase, the signals were fed into this edging computing system to estimate BP and show
them in a graphic liquid crystal display (LCD) in real time. The sampling rate is 500 Hz.
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2.1. BCG and IPG Measurement

We designed the circuits to measure BCG and IPG signals from the strain gauges and
electrode pads of the bodily weight-fat scale. Figure 2 shows the BCG schematic which
used two strain gauges to detect the BCG signal. U1 (AD620, Analog Device, Norwood
City, OH, USA) is an instrument amplifier, U2A (TL082, Texas Instruments, Dallas City, TX,
USA) and U4A (TL082) are two second-order Butterworth high pass filters, where the cutoff
frequency is 0.5 Hz, and U3 (TL082) and U4B are a fourth-order Butterworth low pass filter,
where the cutoff frequency is 20 Hz. U2B and U5A (TL082) are two noninverted amplifiers,
which all gain 500. U5B is a baseline shift, whose output is the BCG signal. Figure 3 shows
the IPG schematic which used four electrode pads to feed the fixed alternated current into
the body and extract the potential voltage of body. An oscillation frequency (32 kHz) is
generated by the crystal of the bodily weight-fat scale, which is inputted into the circuit
(U1A, TL082) of the fixed current source and demodulator (U3, AD835). U9A (TL082) is
a voltage follower. The fixed current is inputted into the first pad. The fourth pad is the
ground. The potential voltage is extracted from the second and third pads. U2 (AD620) is
an instrument amplifier (AD620), and U1B is a second-order Butterworth high pass filter
(0.3 Hz of cutoff frequency) to remove the baseline voltage, which is demodulated by U3.
Then, U4A (TL082), U5A (TL082), and U6A (TL082) are three second-order Butterworth
low pass filters, where the cutoff frequency is 10 Hz. U4B and U5B are the noninverted
amplifiers, which all gain 500. U6B is also a second-order Butterworth high pass filter. U7A
is a two-pole notch filter, where the stop frequency is 60 Hz. U7B is a baseline shift, where
output is the IPG signal.
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2.2. Signal Processing and Parameter Extraction

The infinite impulse response filters were used to remove the noises of BCG and
IPG. We used the recursive approach to filter signals in real time. For the BCG signal,
Equation (1) represents the Z transfer function of the fourth-order Butterworth high pass
filter (0.5 Hz of cutoff frequency), and Equation (2) represents the Z transfer function of
the fourth-order Butterworth low pass filter (20 Hz of cutoff frequency). For IPG signal,
Equation (3) represents the Z transfer function of the second-order Chebyshev high pass
filter (0.3 Hz of cutoff frequency), and Equation (4) represents the Z transfer function of the
fourth-order Chebyshev low pass filter (10 Hz of cutoff frequency).

H(z) =
0.98 + (−1.97)z−1 + 0.98z−2

1 + (−1.99)z−1 + 0.99z−2 , (1)

H(z) =
1.14e−5 + 4.56e−5z−1 + 6.84e−5z−2 + 4.56e−5z−3 + 1.14e−5z−4

1 + (−3.75)z−1 + 5.31z−2 + (−3.35)z−3 + 0.79z−4 (2)

H(z) =
0.99 + (−3.96)z−1 + 5.95z−2 + (−3.96)z−3 + 0.99z−4

1 + (−3.98)z−1 + 5.95z−2 + (−3.95)z−3 + 0.98z−4 (3)

H(z) =
1.83e−4 + 7.32e−4z−1 + 1.1e−3z−2 + 7.32e−4z−3 + 1.83e−4z−4

1 + (−3.34)z−1 + 4.23z−2 + (−2.4)z−3 + 0.51z−4 . (4)

The filtered signals were segmented with 1024 points of window and 512 points of
overlap. Thus, there were 22,620 segments. We chose 2262 segments as samples as the
signals were of good quality with the manual method. According to ref. [16], PTT was
extracted from BCG and differential IPG (dIPG) signals, which was defined as the time
between the J wave of BCG and main peak of dIPG. We assumed the range of heat rate
between 60 beats/minute (BPM) to 200 BPM. Because the window is 2 s and sampling rate
is 500 Hz, there are at least one to six PTT values in a segment. Figure 4 shows the flowchart
of PTT measurement. dIPG is the differential IPG, and ddIPG is the second differential
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IPG. There are three parts, first finding the peak of IPG (IPG_P), the second finding the
peak of dIPG, and the third finding the J wave of BCG (BCG_Peak). In the first part, all
IPG_P of IPG are detected from the zero-crossing points of dIPG, then the first three largest
peaks are averaged as the Threshold. If peaks are larger than the Threshold, they will
be marked as the T_IPG_Peak. T_IPG_Peak would be verified as the peak (V_IPG_Peak)
within 25 points before and after. The interval between two V_IPG_Peaks is captured.
Cycle_Average is the mean of all intervals, which is used to determine the truth IPG_P. In
the second part, all foots of dIPG (dIPG_F) are detected from the zero-crossing points of
ddIPG, which also are verified as the foot (V_dIPG_Foot) within 20 points before and after.
These verified foots are closed as the truth foots of dIPG by IPG_P and Cycle_Average.
Truth IPG_P searches forward to find the truth foot of dIPG (Truth dIPG_F) within the
range of Cycle_Average multiplied by 0.7. The peak of dIPG (dIPG_P) is found from truth
dIPG_F searching backward. In the third part, the differential BCG (dBCG) is obtained
from BCG. All peaks (BCG_P) of BCG are detected from the zero-crossing points of dBCG.
Truth BCG_P is the largest value between two dIPG_P. Because BCG_P is a phase lead of
dIPG_P, PTT(i) is defined below:

PTT(i) = dIPG_P(i)− BCG_P(i) , (5)

where i is the number of beat-to-beat in a segment. Thus, the calibration-free PTT is defined
as the average of all PTT(i). Calibration-based PTT parameters, PTTSYS and PTTDIA, are the
calibration-free PTT normalized by the SBP and DBP in the resting status.
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2.3. Models of Blood Pressure Estimation

This study employed the prevalent nonlinear regression model, XGBoost, developed by
Python 3.7. The server-based computing environment consists of an Intel Core i7-8700 CPU
and an GeForce GTX3070 GPU (Nvidia Corporation, Santa Clara, CA, USA). The edge comput-
ing system is the STM32F756ZG-NUCLEO development board designed by Advanced RISC
Machines Ltd., and produced by STMicroelectronics, in which the development environment
is STM32CubeIDE 1.7.0. where the microcontroller of the board uses ARM® Cortex®-M7 core
with a high-performance 32-bit, which has 1 MB Flash and 340 KB RAM.

2.3.1. XGBoost

XGBoost (eXtreme Gradient Boosting) represents an enhanced version of the Gradient
Boosting technique, combining numerous weak decision trees to construct a powerful
predictive model. It conducts feature splitting to grow each tree, with each new tree
representing a new function aimed at fitting the residual of the previous prediction. Once
N trees are generated, the model predicts the score of a sample based on its characteristics,
with each tree directing the sample to a corresponding leaf node, each of which holds a score.
The total scores from all trees determine the predicted value of the samples. Compared
to conventional classification and regression techniques, XGBoost typically demonstrates
superior accuracy due to its robustness and adaptive learning capability [26]. For this study,
the learning rate was set to 0.0497, the maximum depth to 12, and the number of trees to 100.

2.3.2. Python to C Codes

In a server-based computing system, the format of the trained model could be .pb, .onnx,
kept, tflite, or .h5. However, these formats cannot be directly imported into the microcon-
troller, so a special conversion of the format is required. When training the model, we use
the m2cgen (Model 2 Code Generator) function library to convert the XGBoost model as C
code, as shown in Figure 5. The last three comments convert the estimation models of SBP
and DBP as C-code models. First, we import the m2cgen tool, “import m2cgen as m2c”. Then,
we export C-code models of SBP and DBP estimation as SBP_code and DBP_code, “SBP_code
= m2c.export_to_c(SBP_model)” and “DBP_code = m2.export_to_c(DBP_model)”.
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2.4. Data Collection

There were 17 subjects (11 males and 6 females) participating in this study, whose
ages were 20.2 ± 1.1 years (from 22 to 19 years of age), weights were 62.8 ± 16.1 kg (from
115 to 43 kg), and heights were 166.1 ± 8.0 cm (from 186 to 152 cm). This experiment
was approved by the Research Ethics Committee of Chung Shan University Hospital (No.
CS2-21194), in Taichung City, Taiwan.

When subjects were resting for about five minutes, they filled out an informed consent
form to confirm their participation in this experiment. All subjects did not have any cardiac
disease. Their BPs were measured by a digital sphygmomanometer (HM-7320, Omron,
Osaka, Japan), which served as the reference BP. The cuff was wrapped on the left upper
arm. A commercial bodily weight-fat scale (HBF-371, Omron, Osaka, Japan) which was
modified by adding self-made circuits was used to measure the BCG and IPG signals. The
experiment procedure is mentioned below.

1. Subjects stood on the bodily weight-fat scale for five minutes to measure IPG and
BCG signals, with blood pressure measured once. This BP was the baseline, which
was used to normalize PTT.

2. Subjects ran on a treadmill at a fixed speed for a minimum of six minutes to boost
SBP above 20 mmHg from the resting SBP. If the SBP is less than 20 mmHg, subjects
continually ran about 1 min.

3. After treadmill exercise, subjects stood on the bodily weight-fat scale for six minutes
to measure IPG and BCG signals. Blood pressure was concurrently measured every
minute. Thus, there were six times for BP measurements.

4. Subjects underwent the procedure four times and rested at least one week between
two experiments.

We hypothesized that BP would drop after the exercise while standing on the bodily
weight-fat scale. Thus, we utilized the linear interpolation method to determine the
reference BP for each pulse between two BP measurements. The reference BP of the segment
was the average of all pulses. According to the IEEE Standard for Wearable, Cuffless
Blood Pressure Measuring Devices [27], BPs were defined as four categories, normal
BP (SBP < 120 mmHg and DBP < 80 mmHg), prehypertension (SBP between 120 mmHg
and 129 mmHg and DBP < 80 mmHg), stage_1 hypertension (SBP between 130 mmHg
and 139 mmHg or DBP between (80 mmHg and 89 mmHg), and stage_2 hypertension
(SBP > 140 mmHg or DBP > 90 mmHg). The numbers of samples for the normal BP,
prehypertension, stage_1 hypertension, and stage_2 hypertension were 597, 182, 590, and
893. In each category, the ratio between training and testing samples was 4:1.

2.5. Statistical Analysis

The PCC, ρ, is used to establish the relationship between the target and estimated BPs.
Equation (6) shows the correlation coefficient,

ρ(X, Y) =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

, (6)

where xi and yi are the target and estimated BPs, x and y are the mean of target and
estimated blood pressures, and n is the number of testing samples. The quantitative
analysis is expressed as the mean ± standard deviation. Computations of mean error (ME)
and mean absolute error (MAE) were performed to evaluate discrepancies between the
target and predicted values when using the test data. The ME and MAE are delineated in
Equations (7) and (8).

ME =
1
n

n

∑
i=1

(yi − xi), (7)
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MAE =
1
n

n

∑
i=1

|yi − xi|. (8)

3. Results

We utilized server-based computing to evaluate the performance of XGBoost with the
different number of trees according to PCC, ME, and MAE. Then, the optimal models for
SBP and DBP estimations were selected and converted to C-code models. The models were
imbedded in the STM32F756ZG-NUCLEO development board. Finally, we showed the real
performances in the edge computing system.

3.1. Analysis of Server-Based Computing

We used 5-fold cross-validation to evaluate the PCCs of XGBoost with the different
numbers of trees for SBP and DBP estimations, as shown in Table 1. Then, the t-test was
used to analyze the differences in models between 100 trees and the other trees. We did
not find any differences (all p-values > 0.05). Because the memory size of XGBoost with
100 trees was 1.6 Mbytes, this model could not be imbedded in STM32F756ZG-NUCLEO
development board. For SBP and DBP estimation, XGBoost with 60 trees had the best PCCs,
0.79307 ± 0.015 and 0.78251 ± 0.015. Thus, we analyzed the performances of XGBoost
with the smaller sizes. Table 2 shows the MAEs of SBP and DBP estimations with the
different numbers of trees, excluding 100 trees. We found that the model’s larger size (more
trees), estimated BP less than MAE. The smallest MAEs of SBP and DBP estimations are
7.52 ± 0.18 mmHg and 4.88 ± 0.11 mmHg at XGBoost using 90 trees.

Table 1. The metrics of five-fold crossing-validation for PCCs of SBP and DBP estimations with
different numbers of trees, 100, 90, 80, 70, 60, and 50.

Numbers of Trees SBP DBP

100 0.78727 ± 0.013 0.77318 ± 0.021
90 0.78843 ± 0.013 0.77609 ± 0.019
80 0.79089 ± 0.012 0.77926 ± 0.018
70 0.79293 ± 0.016 0.78116 ± 0.016
60 0.79307 ± 0.015 0.78251 ± 0.015
50 0.79118 ± 0.013 0.78046 ± 0.014

Table 2. The metrics of five-fold crossing-validation for MAEs of SBP and DBP estimations with
different numbers of trees, 90, 80, 70, 60, and 50.

Numbers of Trees SBP (mmHg) DBP (mmHg)

90 7.52 ± 0.18 4.88 ± 0.11
80 7.63 ± 0.20 5.01 ± 0.11
70 7.99 ± 0.25 5.35 ± 0.09
60 8.96 ± 0.46 6.16 ± 0.13
50 11.31 ± 0.22 7.82 ± 0.16

3.2. Analysis of Edge Computing

The STM32F756ZG microcontroller only has 1 Mbytes of flash memory. We chose
models with 80 and 70 trees to convert as C-code models and imbedded them in this
microcontroller. Figure 6 shows the sizes of models in the flash memory. When models are
80 trees, the size of models for estimating SBP and DBP are 339.77 Kbytes and 350.3 Kbytes,
respectively, as shown in Figure 6a. When models are 70 trees, the size of models for estimat-
ing SBP and DBP are 240.36 Kbytes and 276.68 Kbytes, respectively, as shown in Figure 6b.
The testing signals, BCG and IPG, were inputted to the STM32F756ZG NUCLEO devel-
opment board by UART (Universal Asynchronous Receiver/Transmitter) of a personal
computer (PC). The resolution of analog-to-digital conversion (ADC) was 12 bits. Thus, the
transmission rate of data was 2k bytes/second to simulate the 500 Hz sampling rate. Table 3
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shows the metrics of server-based computing and edge computing when the trees of models
were 80. In edge computing, PCCs of SBP and DBP estimations are only 0.73 and 0.78, which
are lower than PCCs in server-based computing, 0.80 and 0.81. ME and MAE for SBP esti-
mation in edge computing increase to 2.2 ± 10.9 mmHg and 8.58 ± 7.2 mmHg, compared
to server-based computing, 2.64 ± 9.71 mmHg and 7.63 ± 0.20 mmHg. ME and MAE for
DBP estimation in edge computing increase to 1.87 ± 6.79 mmHg and 5.27 ± 4.66 mmHg,
compared to server-based computing, 1.52 ± 6.32 mmHg and 5.01 ± 0.11 mmHg.
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Table 3. The metrics of BP estimation under server-based computing and edge computing.

Server-Based Computing Edge Computing

SBP DBP SBP DBP

PCC 0.80 0.81 0.73 0.78
ME (mmHg) 2.64 ± 9.71 1.52 ± 6.32 2.2 ± 10.9 1.87 ± 6.79

MAE (mmHg) 7.63 ± 0.20 5.01 ± 0.11 8.58 ± 7.2 5.27 ± 4.66

4. Discussions

Because the amount of data measured from wearable, portable, or mobile devices
requires a fast, real-time, and secure process, edge computing emerged at this historic
moment [28]. Zha et al. [29] described the concept of edge computing, “Edge computing is
a new computing model that unifies resources that are close to the user in geographical
distance or network distance to provide computing, storage, and network for applications
service”. Cao et al. [30] proposed the shortcomings of cloud-based big data processing,
including real-time requirements, data privacy and security, and energy consumption.
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Thus, they thought that edge computing technology provides artificial intelligence services
for rapidly growing terminal devices and data and makes services more stable. Therefore,
edge computing has proximity and location awareness, and provides users with near-end
services. In this study, we utilized an STM32F756ZG NUCLEO development board for BP
measurement based on the bodily weight-fat scale. When users are standing on a weight-fat
scale, they not only measure bodily weight and fat percentage, but also measure the BP. The
advantage of this study is using an STM32F756ZG microcontroller to realize the cuffless
BP measurement, which does not need the operating system and has a low power model.
Thus, this system can work with a carbon zinc battery. However, this microcontroller has
little memory, only 1Mbytes. Thus, the more complex model cannot be executed in it.

Now, many traditional medical apparatuses have been developed as mobile or wear-
able devices, such as ECG patches [31], ECG and SpO2 watches [32,33], noninvasive blood-
glucose measurement [34], and electromyogram (EMG) patches [35]. In these devices, a few
devices have received approval for the product. Many devices are only a prototype because
their accuracy and precision do not arrive at the level of standard. How to utilize machine
learning and deep learning algorithms to improve the performance of wearable devices
has been a popular search project now. The cuffless BP measurement has been studied
for decades, and which major challenge also is its accuracy. Pandit et al. reviewed the
promises and challenges of cuffless BP monitors [36]. In this literature, there were 31 papers
using machine learning and deep learning algorithms for BP measurement. However, these
studies all were on the server-based computing environment. In this study, we proposed
edge computing technology to realize the cuffless BP measurement, and also compared the
performance between server-based computing and edge computing as shown in Table 3.
The metrics of edge computing all are lower than server-based computing. The major
reason is the resolution. STM32F756ZG is a 32-bit microcontroller. The digital filters were
designed by MATLAB®. The coefficients of filters in edge computing were not the same
values designed by MATLAB®. Thus, the determined PTT also has some errors. Liu et al.
also discussed this problem of the digital signal process in EMG patches [35]. Moreover,
XGBoost is an ensemble machine learning algorithm, which has the accumulated error in
the last leaves.

Tan et al. evaluated the ability of a commercially available cuffless wearable device,
Aktiia, to track 24 h blood pressure with a conventional ambulatory blood pressure moni-
tor [37]. The mean bias and limits of agreement for 24 h SBP and DBP were 5.3 [−14.4; 25.0]
mmHg and 4.7 [−7.2; 16.6] mmHg. Liu et al. used the smartwatch to perform a large-scale
validation study in cuffless BP measurement [38]. They measured ECG and PPG signals
and used a machine learning algorithm. The best-performing calibration-based model
yielded estimation errors of 2.31 ± 9.57 mmHg for SBP and 1.33 ± 6.43 mmHg for DBP.
In this study, although MEs of estimated BP in edge computing (SBP: 2.2 ± 10.9 mmHg,
DBP: 1.87 ± 6.79 mmHg) were lower than the results of Liu et al., the errors in server-based
computing (SBP: 2.64 ± 9.71 mmHg, DBP: 1.52 ± 6.32 mmHg) were very close to their
results. According to the British Hypertension Society (BHS) standard, SBP is C grade and
DBP is A grade [27]. Moreover, previous studies used the statistic BP measurement and
used the cuff BP monitor to measure the reference BP at the same time. In our study, we
measured the dynamic BP, and only measured reference BP every minute.

Table 4 presents a comparative analysis of our method with other studies that utilized
either ECG or BCG as the proximal reference, and IPG or PPG as the distal reference for
cuffless blood pressure measurement. RMSE, ME, and PCC are the metrics. Notably,
our proposed method exclusively relied on BCG and IPG data obtained from the weight-
fat scale and demonstrated superior performance compared to previous studies. Our
proposed method has the best PCCs of 0.80 and 0.81, and better MEs of 2.64 ± 9.71 mmHg
and 1.52 ± 6.32 mmHg of ME for SBP and DBP estimations.
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Table 4. Comparative result of various methods using the ECG or BCG as the proximal reference,
and IPG or PPG as the distal reference for the cuffless blood pressure measurement.

Reference PTT Signals (Sensor
Placement) PCC

[39] BCG (foot) and BPW (finger) SBP: 0.70
DBP: 0.66 NA

[40] BCG (chair) SBP: 0.755
DBP: 0.532

ME
SBP: 0.93 ± 6.24 mmHg
DBP: 0.21 ± 5.42 mmHg

[41] BCG (foot) and PPG (foot) NA
RMSE

SBP: 11.8 ± −1.6 mmHg
DBP: 7.6 ± −0.5 mmHg,

[42] ECG and IPG (arm) SBP: 0.700
DBP: 0.450 NA

[15] BCG (foot) and PPG (foot) SBP: 0.775
DBP: 0.532

RMSE
SBP: 6.7 ± 1.6 mmHg

DBP: 4.8 ± 1.47 mmHg

[16] BCG (foot) and IPG (foot) SBP: 0.754
DBP: 0.533

RMSE
SBP: 7.3 ± 2.1 mmHg
DBP: 4.5 ± 1.8 mmHg

Proposed method:
Server-based Computing BCG (foot) and IPG (foot) SBP: 0.80

DBP: 0.81

ME
SBP: 2.64 ± 9.71 mmHg
DBP: 1.52 ± 6.32 mmHg

Proposed method:
Edge Computing BCG (foot) and IPG (foot) SBP: 0.73

DBP: 0.78

ME
SBP: 2.2 ± 10.9 mmHg

DBP: 1.87 ± 6.79 mmHg

5. Conclusions

In this study, the innovation of the proposed approach is to use the bodily weight-fat
scale for the real-time cuffless BP measurement based on the STM32F756ZG NUCLEO
development board. The edge computing has only an 8% loss in performances of server-
based computing. In order to address the real-time measurement, the self-made circuits
were used to measure BCG and IPG signals from the bodily weight-fat scale. These signals
were filtered and segmented. We proposed a method to extract PTT from BCG and IPG
signals in real time. Then, we limited the hyperparameters of XGBoost to reduce the
memory size of models for SBP and DBP estimations which could be executed on an
STM32F756ZG NUCLEO development board. In the future, if the calibration-based or
calibration-free parameters of PTT can be improved, the accuracy of real-time cuffless BP
measurement will arrive at the A grade for the IEEE Standard for Wearable, Cuffless Blood
Pressure Measuring Devices. This advancement would support convenient BP monitoring
in daily life and facilitate the progress of mobile health.
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