Skip to main content
. 2024 Nov 30;24(23):7682. doi: 10.3390/s24237682
Algorithm 1 Details of pose-based action recognition framework with PoseTransformer3D
Input: VRGB, VSkeleton
Output: Action recognition classification.
  •   1:

    Stage1: Generated 3D heatmap volumes

  •   2:

    for each RGBandSkeleton do

  •   3:

       for each SegmentS do

  •   4:

         for each SamplingT do

  •   5:

            V2DPose(T)=fDE(VRGB(T),VSkeleton(T)) Detection + Pose estimation

  •   6:

         end for

  •   7:

         V3Dheatmapvolumes=fSP(V2DPose) Stack + Preprocessing

  •   8:

       end for

  •   9:

    end for

  • 10:

    Stage2: Pre-training a 3D-CNN for classifying 3D heatmap volumes

  • 11:

    for each SamplingS do

  • 12:

       p(cV)=logeWcV+bcci=1CewciV+bci Features extraction with 3D-CNN

  • 13:

    end for

  • 14:

    Stage3: PoseTransformer3D classifies 3D heatmap volumes based on 3D-CNN pre-training

  • 15:

    for each SamplingS do

  • 16:

       p(cV)3DCNN=logeWcV+bcci=1CewciV+bci Features extraction with 3D-CNN Backbone

  • 17:

       p(cq)GCB=logeWcq+bcci=1Cewciq+bci Features extraction with GCB

  • 18:

       p(c(V,q))=λ3DCNNp(cV)3DCNN+λGCBm=1Mp(cq)GCB Features extraction with PoseTransformer3D

  • 19:

    end for

  • 20:

    return action classification