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Abstract: Gait recognition is a behavioral biometric technique that identifies individuals based on
their unique walking patterns, enabling long-distance identification. Traditional gait recognition
methods rely on appearance-based approaches that utilize background-subtracted silhouette se-
quences to extract gait features. While effective and easy to compute, these methods are susceptible
to variations in clothing, carried objects, and illumination changes, compromising the extraction of
discriminative features in real-world applications. In contrast, model-based approaches using skeletal
key points offer robustness against these covariates. Advances in human pose estimation (HPE)
algorithms using convolutional neural networks (CNNs) have facilitated the extraction of skeletal
key points, addressing some challenges of model-based approaches. However, the performance of
skeleton-based methods still lags behind that of appearance-based approaches. This paper aims to
bridge this performance gap by introducing a multi-biometric framework that extracts features from
multiple HPE algorithms for gait recognition, employing feature-level fusion (FLF) and decision-level
fusion (DLF) by leveraging a single-source multi-sample technique. We utilized state-of-the-art HPE
algorithms, OpenPose, AlphaPose, and HRNet, to generate diverse skeleton data samples from a
single source video. Subsequently, we employed a residual graph convolutional network (ResGCN)
to extract features from the generated skeleton data. In the FLF approach, the features extracted from
ResGCN and applied to the skeleton data samples generated by multiple HPE algorithms are aggre-
gated point-wise for gait recognition, while in the DLF approach, the decisions of ResGCN applied to
each skeleton data sample are integrated using majority voting for the final recognition. Our proposed
method demonstrated state-of-the-art skeleton-based cross-view gait recognition performance on a
popular dataset, CASIA-B.

Keywords: gait recognition; skeleton-based gait recognition; human pose estimation algorithm;
feature-level fusion; decision-level fusion; residual graph convolutional network

1. Introduction

Gait recognition is a popular behavioral biometric task that identifies individuals based
on their unique walking patterns. Compared to physiological biometrics such as face, iris,
DNA, and fingerprint recognition, gait recognition offers the advantage of long-distance
identification and is difficult to disguise. Therefore, gait recognition holds significant poten-
tial for real-world applications, including forensic analysis, visual surveillance, and criminal
investigation, particularly through security camera footage [1].

Existing gait recognition approaches [2–8] fall into two groups: appearance-based
approaches, and model-based approaches. The appearance-based gait recognition ap-
proaches [2,3] use background-subtracted silhouette sequences to extract the gait features.
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Examples of the widely used template-based approach include gait energy image (GEI) [7],
which is the average of a silhouette sequence over a gait cycle, gait flow image (GFI) [9],
and chrono gait image (CGI) [10] techniques. Recently, silhouette sequences have also
been directly employed to extract gait features: GaitSet [2], GaitPart [3], and GaitGL [4].
The appearance-based approaches have been more popular than model-based methods in
the gait recognition community, due to their simplicity, easy-to-compute features, and high
recognition accuracy. However, the limitations of the appearance-based approaches include
drastic appearance changes in real-world applications due to variations in clothing, carried
objects, camera view angle, imperfect background subtraction, sources of illumination, and
cluttered backgrounds.

By contrast, model-based approaches [11–16] are less sensitive to variations in shape
and appearance, focusing on analyzing gait by reconstructing a human kinematic model.
This involves extracting features such as joint positions and angles, limb lengths, and the rel-
ative arrangement of body parts [17]. However, fitting an appropriate model is challenging,
requiring high-resolution image sequences, and computationally expensive. Consequently,
model-based approaches have been less explored in the literature. Several deep learn-
ing (DL)-based methods have recently been developed for human pose estimation (HPE)
algorithms to extract human poses (i.e., skeletal key points) and can be categorized into top-
down and bottom-up approaches. A top-down approach first detects the individual human
bodies within an image and then estimates the pose for each detected individual; examples
of top-down approaches include AlphaPose [15] and HRNet [16]. In contrast, a bottom-up
approach starts by detecting body parts across the entire image, without initially separating
individuals. The detected body parts are then grouped to form complete poses for each
individual in the image; OpenPose [14] is a widely used method in this category.

Recently, several studies have leveraged the abovementioned HPE algorithms to ob-
tain skeleton data points for gait recognition. For example, the studies in [11] employed a
pre-trained model of OpenPose [14] to acquire human skeleton data points and to introduce
a pose-based temporal-spatial network (PTSN) that takes a sequence of extracted skele-
ton data points to obtain features, demonstrating its performance on a publicly available
gait dataset, CASIA-B [18]. Similarly, Teepe et al. [19,20] generated skeleton data points
using HRNet [16] and proposed an approach called GaitGraph for gait recognition, which
combines skeleton data points with graph convolutional networks (GCNs) [21], showing
its effectiveness for cross-view gait recognition. Other recent studies [22–24] have utilized
skeleton data to capture dynamic dependencies for improved gait recognition. These
approaches used fixed single-pose estimation algorithms to generate skeleton pose data,
which are then fed into DL models for feature extraction. However, each HPE algorithm
presents unique strengths and weaknesses that impact the performance of DL-based ap-
proaches. For example, OpenPose detects body parts first and then assembles them into
full poses, making it particularly efficient in multi-person scenarios but potentially less
precise in complex occlusions. Conversely, AlphaPose detects individuals first, providing
high accuracy and robustness against occlusions, clothing variations, and carried objects,
though it can be slower in multi-person detection. HRNet maintains high-resolution rep-
resentations throughout its network, leading to exceptionally precise keypoint detection
and robustness across diverse conditions, but often at the cost of increased computational
demands. Figure 1 illustrates skeleton data points generated by OpenPose, AlphaPose,
and HRNet, highlighting their distinct characteristics in pose estimation.

To address the limitations of using a single biometric trait, researchers have explored
multi-biometric techniques [25–27] based on fusion strategies to enhance identification
accuracy and robustness. For example, the approach in [26] extracted multiple modality
samples from a single source video, such as the face, gait, and height features, and employed
score-level fusion for identification, while the approaches in [27,28] utilized multiple face
samples. Additionally, several studies have investigated multi-algorithm systems [25]
using a single biometric modality, where features are extracted using various algorithms
and the final decision is made by combining these at the feature, score, or decision level.
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For example, Mehraj et al. [29] used AlexNet and VGG16 to extract features from face
images, combining them at the feature level and feeding them into support vector machines
(SVM) for final identification, while principal component analysis (PCA) and modular
kernel PCA were employed in [30].

(a) RGB image sequence

(c) Pose sequence with AlphaPose

(b) Pose sequence with OpenPose

(d) Pose sequence with HRNet

Figure 1. Example of a gait sequence for a subject (every fifth frame of a sequence): (a) RGB image
sequence, (b) pose sequence with OpenPose, (c) pose sequence with AlphaPose, (d) pose sequence
with HRNet. HRNet consistently generates accurate skeletons, while AlphaPose and OpenPose
struggle with keypoint detection during self-occlusions, especially at the right shoulder in side views,
with OpenPose occasionally losing body segments during leg swings.

Inspired by the aforementioned multi-biometric techniques, this study proposes a
robust framework that integrates multiple HPE algorithms, OpenPose, AlphaPose, and HR-
Net, to capture diverse and complementary skeleton data points, thereby enhancing gait
recognition accuracy. By combining these state-of-the-art algorithms, our framework maxi-
mizes data diversity, a critical factor for reliable gait recognition across varying conditions.
Specifically, we employ the ResGCN model [31] to extract comprehensive spatiotempo-
ral features from skeleton data and apply both feature-level fusion (FLF) and decision-
level fusion (DLF) techniques. These fusion approaches enhance the system’s robustness
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against common covariates such as clothing variations, carried objects, and varying cam-
era angles. Our objective was to achieve state-of-the-art accuracy in skeleton-based gait
recognition, which was validated through testing on the CASIA-B dataset, to demonstrate
the framework’s efficacy. Finally, this study emphasizes the real-world potential of this
multi-biometric approach for practical applications, particularly in forensic analysis and
surveillance, demonstrating its ability to provide robust identification under diverse and
challenging conditions. The primary contributions of this study are summarized as follows:

• We introduce a multi-biometric framework for gait recognition that leverages multiple
human HPE algorithms, incorporating both top-down and bottom-up approaches.
Specifically, we utilize state-of-the-art HPE algorithms: OpenPose, AlphaPose, and HR-
Net to generate comprehensive and diverse skeleton data points from a single video
source. Following this, we employ ResGCN to extract rich spatiotemporal features
from the generated skeleton data points.

• To enhance the robustness and accuracy of gait recognition, we apply both FLF and
DLF in an ensemble manner. This approach effectively integrates the strengths of
the features and decisions derived from ResGCN for each HPE-derived skeleton
data point.

• We evaluated the proposed framework on a publicly available CASIA-B dataset.
The results showed that it achieved state-of-the-art accuracy for skeleton-based cross-
view gait recognition.

2. Related Work
2.1. Appearance-Based Approaches

Appearance-based gait recognition approaches analyze human walking patterns from
RGB video sequences or background-subtracted silhouettes to identify an individual.
These approaches can be categorized into template-based and sequence-based methods.
In template-based approaches, a single gait template image is generated by aggregating
spatiotemporal information of a person’s gait. For instance, Bhanu et al. [7] introduced a
gait energy image (GEI) generated by averaging height-normalized silhouette sequences
over a gait cycle. Various variations of GEI have since been proposed, including the gait
entropy image (GEnI) [32], chrono gait image (CGI) [10], and gait flow image (GFI) [9]
methods. The GEnI method uses computational entropy to encode dynamic features
of a gait cycle into a single image, capturing robust temporal features under different
covariate conditions. The GFI approach overlays an optical flow field onto a sequence of
silhouettes, encoding the motion of a gait cycle into a single image. These template-based
methods are easy to implement due to their model-free nature and simplicity. However,
in real-world scenarios, various covariates, such as clothing variations, carried objects,
and illumination changes, hinder the generation of an accurate template image, resulting
in a lower recognition accuracy, as they fail to capture temporal motion information.

Recently, researchers have explored sequence-based approaches [2–4,33], where the en-
tire gait silhouette sequence is used as input to extract spatiotemporal features. For example,
Chao et al. [2] proposed a simple and effective model called Gaitset, which considered the
silhouette sequence as a set. Initially, a sequence of 2D convolution neural networks (CNNs)
and 2D max-pooling were used to obtain an intermediate feature map. Later, they used
set pooling (SP) in the temporal direction to extract spatiotemporal features and employed
horizontal pyramid mapping (HPM) to obtain stripe-based features. In addition, Fan et al.
introduced GaitPart [3], where they used a frame-level part feature extractor (FPFE) to
obtain part-based features, and employed a micromotion capture module (MCM) to capture
motion features. Similarly, GaitGL [4] obtained part-based global and local features from
a global and local feature extraction (GLFE) module using 3D CNNs. Later, generalized
mean pooling (GeM) was employed to obtain the final feature representation. In addition,
Chai et al. [33] introduced Lagrange gait, a method that utilizes the Lagrange equation to
analyze the human walking process and determines that second-order information in the
temporal dimension, which is crucial for gait recognition.
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2.2. Model-Based Approaches

In the early era of model-based gait recognition, several methods were developed
using manually modeled human body shape and motion during walking. In particular,
features were extracted from key joints and various body parts, such as the position of
the hips, knees, ankles, and feet. Recently, the model-based approach has used skeleton
data points extracted using a Kinect sensor or HPE algorithms from RGB images. Recently,
CNN-based HPE algorithms have been developed, such as OpenPose [14], AlphaPose [15],
and HRNet [16], and these algorithms have brought a great change for studies on skeleton-
based gait recognition. In contrast to silhouettes, skeleton motion proves to be more robust
against external covariates [23], such as occlusions, variations in clothing, and objects being
carried, due to its focus solely on the subject’s movements.

Several studies have explored DL-based methods for skeleton-based gait recognition.
For example, the studies in [11] introduced a pose-based temporal-spatial network (PTSN)
that takes a sequence of extracted skeleton data points to obtain features and demonstrated
its performance on a publicly available gait dataset, CASIA-B [18]. Similarly, Liao et al. [12]
proposed PoseGait, a method that employs 3D pose estimation coupled with handcrafted
features. Utilizing 3D key points in Euclidean space, PoseGait calculates joint angles,
joint motions, and bone lengths. These handcrafted features are then utilized by a CNN
to extract high-level spatio-temporal features, while the approach in [34] extracts both
dynamic and static features from human skeletons by employing techniques of disentangled
learning. Moreover, Zhang et al. [35] introduced Gait-TR, a skeleton-based gait recognition
framework, to integrate spatial transformer mechanisms with temporal convolutional
networks for improved performance.

Graph convolutional networks (GCNs) have emerged as powerful tools in skeleton-
based gait recognition, leveraging the relational structure of skeletal data to capture spa-
tiotemporal dependencies between key joints. Teepe et al. [19] introduced GaitGraph,
a model that integrates a GCN architecture for enhanced gait feature extraction through
combined spatial and temporal modeling. They later developed GaitGraph2 [20], featur-
ing a multi-branch ResGCN [31] with branches for joints, bones, and motion. Similarly,
Gao et al. [22] utilized GCNs to extract spatiotemporal dynamics from skeleton data se-
quences, addressing noise-related redundant information. Moreover, the studies in [23]
explored the symmetry of human walking, such as the relationship between the left and
right legs and hands, to capture dependencies in dynamic motion from skeleton data.
However, these methods rely on a single biometric trait (i.e., skeleton data from one HPE
algorithm), limiting their recognition accuracy, due to insufficient robustness in diverse
real-world scenarios. This paper proposes a multi-biometric framework to improve the
accuracy of skeleton-based gait recognition by utilizing multiple HPE algorithms.

3. Method
3.1. Overview

This paper introduces a multi-biometric technique for person identification using gait
features extracted from a single source video. We employed multiple HPE algorithms,
OpenPose [15], AlphaPose [14], and HRNet [16], to obtain diverse skeleton key points. Sub-
sequently, we utilized ResGCN [31] to extract spatiotemporal features from these skeleton
samples. For the final prediction, we implemented both FLF and DLF. In FLF, the ResGCN
model extracts features separately from each set of skeleton data points generated by the
different HPE algorithms, and these features are then merged via pointwise addition for
gait recognition. Conversely, DLF involves making individual predictions for each set of
skeleton data points, and a final decision is reached using majority voting. An overview of
the proposed framework is illustrated in Figure 2.
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Figure 2. Overview of the proposed gait recognition framework. Given a raw RGB video sequence,
the skeleton key points are extracted using a state-of-the-art pose estimation algorithm, and skeleton
key points are preprocessed to generate input features. FC and ⊕ indicate the fully connected layer
and element-wise addition, respectively.

3.2. Human Pose Estimation

We employed three different HPE algorithms to extract skeleton data points from
a single video source in our proposed multi-biometric person identification framework
using gait features. We considered the state-of-the-art AlphaPose [15] and HRNet [16] as
top-down algorithms, while OpenPose [14] was used as a bottom-up HPE algorithm.

Data preprocessing is a crucial step for skeleton-based gait recognition; following
the preprocessing of the baseline model GaitGraph [19,20,31], we considered different
data preprocessing techniques for the raw skeleton data points, for example, relative joint
position (RJP), motion velocity (MV), and bone structure (BS) features. The RJP describes
the positions of joints relative to a reference joint or relative to each other, which helps to
capture the geometric structure of the human body. By contrast, BS provides the relative
lengths and orientations of the bones formed by pairs of joints, providing a structural
representation of the human body. At the same time, MV accounts for the speed and
direction of joint movements over time, which is crucial for understanding the dynamic
aspects of the gait. Please see the paper in [31] for more information.

3.3. Notation

The human skeleton can be represented as a graph G = (V, E), where (V = v1, . . . , vN)
denotes a set of N nodes, each representing a joint in the skeleton, while E is a set of
edges representing the connection among these joints. The connections are defined by
an adjacency matrix A ∈ RN×N , where Ai,j = 1 if there is an edge from node vi to node
vj, otherwise Ai,j = 0. Here, the graph G is undirected, and the matrix A is symmetric.
Each node vn in the graph contains three channels vn = (xn, yn, cn), where x and y are the
estimated coordinates of the joints and c is the confidence of the keypoint for that joint.

3.4. Graph Convolutions

In our network architecture, we employed graph convolutions. Given a skeleton
data sequence X as input and graph structure A, the layer-wise update rule for graph
convolutions applied to the features at time t can be expressed as

X(l+1)
t = σ(D̃− 1

2 ÃD̃− 1
2 X(l)

t W(t)) (1)

where Ã = A + I represents the adjacency matrix of the skeleton graph with added self-
loops, ensuring that each node retains its own feature as an identity feature. D̃ is a diagonal
degree matrix corresponding to Ã, while σ(·) serves as an activation function, introducing
non-linearity into the model. D̃− 1

2 ÃD̃− 1
2 X(l)

t are the aggregating spatial mean features
from the messages passed from the immediate neighbors.



Sensors 2024, 24, 7669 7 of 15

3.5. Feature Extraction and Fusion

We employed the ResGCN [31] architecture, initially developed for action recognition.
This architecture, derived from the ST-GCN [36] block, sequentially executes spatial graph
convolutions and temporal 2D convolutions, followed by batch normalization and ReLU
activation. ResGCN [31] introduced a bottleneck structure inspired by ResNet [37], which
adds two 1 × 1 convolutional layers before and after a convolution layer to reduce the
number of feature channels and parameters.

Feature-level fusion (FLF) in multi-biometric techniques enhances the robustness and
improves recognition accuracy by combining features through element-wise addition or
concatenation. In our framework, we performed point-wise addition of features extracted
from ResGCN applied to multiple skeleton data points generated using different HPE algo-
rithms: OpenPose [14], AlphaPose [15], and HRNet [16]. Denoting the features extracted
using ResGCN as Fop, Fal , and Fhr for OpenPose, AlphaPose, and HRNet, respectively, FLF
for gait recognition can be expressed as follows:

Fcom = Padd([Fhr, Fal , Fop])

YFLF
f inal = GR(Fcom)

(2)

where Padd(.) denotes the point-wise addition of the features Fhr, Fal , and Fop. And GR(.)
performs gait recognition from the combined features (i.e., Ycom), and the final output from
this method is YFLF

f inal ; here, we considered a fully connected layer, followed by the Euclidean
distance between the probe and gallery sample for final recognition.

The decision-level fusion (DLF) in multi-biometric techniques aggregates the outputs
of multiple classifiers or models, combining their individual decisions to make a final
prediction using methods such as majority voting or weighted voting. In our proposed
framework, we utilize the output of the ResGCN classifier applied to features extracted
from multiple HPE algorithms: OpenPose [14], AlphaPose [15], and HRNet [16]. The DLF
can be expressed as follows:

Yhr = GR(Fhr)

Yal = GR(Fal)

Yop = GR(Fop)

YDLF
f inal = MV(Yhr, Yal , Yop)

(3)

where GR(.) performs gait recognition using a fully connected layer, followed by the
Euclidean distance between the probe and gallery sample for final recognition. Here, Yhr,
Yal , and Yop denote the recognition outputs from using the skeleton data points generated
by HRNet [16], AlphaPose [15], and OpenPose [14], respectively. The function MV(.)
represents majority voting, which takes Yhr, Yal , and Yop as inputs and provides the final
decision as YDLF

f inal .

3.6. Loss Function

We used supervised contrastive loss (SCL) [38] as the loss function. Unlike traditional
contrastive losses like triplet or N-pairs loss, which typically consider a limited number of
positive and negative samples, SCL takes into account all positive and negative samples
within the batch. The compact nature of the skeleton data allows for the use of large batch
sizes, ensuring each batch includes a positive pair. Elements with only negative pairs or no
pairs are excluded from consideration. During training, the final feature Fcom is fed to the loss
function (i.e., SCL) for feature-level fusion (FLF), while Fop, Fal, and Fhr are fed separately for
decision-level fusion (DLF).
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4. Experiments
4.1. Dataset

The CASIA-B dataset [18] is one of the largest public gait datasets available for gait
recognition. Unlike other datasets that provide silhouette images for public use, such
as OU-MVLP [39] and OU-ISIR-bag [40], the CASIA-B dataset offers RGB color video
sequence. This dataset includes 124 subjects (31 females and 93 males), each with ten
distinct walking variations: six for normal walking (NM#01-06), two for walking while
carrying bags (BG#01-02), and two for walking while wearing coats (CL#01-02). Each
walking variation is captured from 11 distinct camera angles (0°, 18°, 36°, 54°, 72°, 90°, 108°,
126°, 144°, 162°, and 180°), resulting in 110 videos per subject. Specifically, each subject has
11 × (6 + 2 + 2) = 110 gait sequences, leading to a total of 110 × 124 = 13,640 gait sequences
in the CASIA-B dataset. For our study, we used three different pre-trained pose estimation
algorithms: HRNet [16], OpenPose [14], and AlphaPose [15] to extract skeleton data points.

4.2. Evaluation Settings

Following the experimental settings used in most research on gait recognition [20,23],
we utilized widely used training and test split protocols on the CASIA-B [18] dataset for
a fair comparison, as illustrated in Table 1. We segmented the dataset into training and
test sets, where the training set comprised the first 74 subjects, and the test set included
the remaining 50 subjects. The test set was further categorized into gallery and probe sets.
The gallery set contained the initial four sequences (i.e., NM#01-04) of normal walking con-
ditions. The probe set consisted of the final two sequences of normal walking (NM#01-02),
two sequences of walking with a coat (CL#01-02), and two sequences of walking while
carrying a bag (BG#01-02). The results were obtained across all viewing angles.

Table 1. Experimental setting using the CASIA-B dataset.

Training
Test

Gallery Set Probe Set

ID: 001-074 ID: 075-124 ID: 075-124
Seqs.: NM#1-6, BG#1-2, CL#1-2 Seqs.: NM#1-4 Seqs.: NM#5-6, BG#1-2, CL#1-2

4.3. Implementation Details

We conducted all experiments on a single NVIDIA 3090 GPU running the Linux
operating system. The experiments were implemented using Python 3.9.2 and PyTorch
1.10.0. We utilized the Adam optimizer [41] with a 1-cycle learning rate policy and a weight
decay penalty of 1 × 10−5. To generate the skeleton input, we maintained a consistent
sequence length of T = 60 frames across all three pose estimators for the CASIA-B dataset.
Both the batch size and the embedding layer size were configured to 128. During the initial
phase of training, the maximum learning rate was set to 1 × 10−2 for 300 epochs. In the
subsequent phase, the maximum learning rate was adjusted to 1 × 10−5 for an additional
100 epochs.

4.4. Comparison with State-of-the-Art Methods

Evaluation on the CASIA-B Dataset. We evaluated our proposed multi-biometric frame-
work on the CASIA-B dataset [18] and compared its performance against several state-of-
the-art model-based approaches. The Rank-1 accuracy results on CASIA-B are presented in
Table 2. Compared to PTSN [12], PoseGait [12], Siamese [42], GaitGraph [19], GaitGraph2 [20],
ResGait [22], SDHF-GCN [23], and LuGAN-HGC [24], our proposed multi-biometric method
achieved superior accuracies. Specifically, our framework a demonstrated state-of-the-art
rank-1 accuracy across 11 probe views (excluding identical-view cases) for normal walking
(NM), walking with a carried object (BG), and walking with clothing variation (CL) conditions.
In particular, the DLF method achieved rank-1 accuracies of 91.8%, 79.0%, and 68.9% for
NM, BG, and CL conditions, respectively, while the FLF method achieved 93.3%, 81.3%,
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and 72.4% for the same conditions. These results indicate that our DLF method outperformed
the PTSN [12] by substantial margins of 44.4%, 50.7%, and 51.3% for the NM, BG, and CL
conditions, respectively, while FLF surpassed the PTSN by margins of 45.9%, 53.0%, and 54.8%.

Table 2. Rank-1 accuracy (%) on the CASIA-B dataset for 11 probe views, excluding identical-view
cases, compared with other skeleton-based methods. Here, FLF and DLF denote feature-level fusion
and decision-level fusion, respectively. Values in bold and italic indicate the best and second-best
benchmarks, respectively.

Gallery nm#1-4 0–180°
Mean

Probe Methods 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°

NM#5-6

PTSN [12] 34.5 45.6 49.6 51.3 52.7 52.3 53.0 50.8 52.2 48.3 31.4 47.4

PoseGait [12] 55.3 69.6 73.9 75.0 68.0 68.2 71.1 72.9 76.1 70.4 55.4 68.7

Siamese [42] 72.4 81.2 85.6 80.4 79.4 85.0 81.0 77.6 82.5 79.1 80.2 80.4

GaitGraph [19] 85.3 88.5 91.0 92.5 87.2 86.5 88.4 89.2 87.9 85.9 81.9 87.7

GaitGraph2 [20] 78.5 82.9 85.8 85.6 83.1 81.5 84.3 83.2 84.2 81.6 71.8 82.0

ResGait [22] 85.2 88.4 92.8 90.3 93.2 90.5 91.3 89.6 88.6 89.7 85.8 89.6

SDFH-GCN [23] 77.3 82.8 85.1 86.0 85.5 85.4 83.7 81.5 80.5 83.9 77.6 82.7

LuGAN-HGC [24] 89.3 88.1 89.0 89.9 87.4 88.7 87.4 88.8 88.8 87.0 87.0 88.3

DLF (ours) 91.8 92.7 93.3 94.4 90.0 90.5 91.9 90.5 92.8 92.3 89.5 91.8

FLF (ours) 93.7 93.8 95.8 95.8 91.4 92.3 91.7 93.5 94.3 93.3 91.0 93.3

BG#1-2

PTSN [12] 22.4 29.8 29.6 29.2 32.5 31.5 32.1 31.0 27.3 28.1 18.2 28.3

PoseGait [12] 35.3 47.2 52.4 46.9 45.5 43.9 46.1 48.1 49.4 43.6 31.1 44.5

Siamese [42] 62.5 68.7 69.4 64.8 62.8 67.2 68.3 65.7 60.7 64.1 60.3 65.0

GaitGraph [19] 75.8 76.7 75.9 76.1 71.4 73.9 78.0 74.7 75.4 75.4 69.2 74.8

GaitGraph2 [20] 69.9 75.9 78.1 79.3 71.4 71.7 74.3 76.2 73.2 73.4 61.7 73.2

ResGait [22] 73.5 78.2 79.6 83.3 82.4 78.5 81.7 81.1 78.4 80.3 74.2 79.2

SDFH-GCN [23] 67.5 73.9 73.2 74.3 68.5 68.5 70.5 69.0 62.2 68.7 60.1 68.8

LuGAN-HGC [24] 79.4 79.5 81.6 82.4 78.1 76.2 78.7 82.0 81.6 83.0 73.6 79.7

DLF (ours) 79.4 80.5 81.5 83.9 72.8 79.3 74.6 79.4 80.6 81.1 75.6 79.0

FLF (ours) 81.6 81.1 85.3 85.6 79.4 81.0 77.5 81.3 82.4 82.7 75.9 81.3

CL#1-2

PTSN [12] 14.2 17.1 17.6 19.3 19.5 20.0 20.1 17.3 16.5 18.1 14.0 17.6

PoseGait [12] 24.3 29.7 41.3 38.8 38.2 38.5 41.6 44.9 42.2 33.4 22.5 36.0

Siamese [42] 57.8 63.2 68.3 64.1 66.0 64.8 67.7 60.2 66.0 68.3 60.3 64.2

GaitGraph [19] 69.6 66.1 68.8 67.2 64.5 62.0 69.5 65.6 65.7 66.1 64.3 66.3

GaitGraph2 [20] 57.1 61.1 68.9 66.0 67.8 65.4 68.1 67.2 63.7 63.6 50.4 63.6

resgait [22] 64.2 68.3 74.6 75.8 71.6 72.4 69.1 70.8 67.6 70.5 67.1 70.2

SDHF-GCN [23] 63.4 65.4 66.7 64.8 63.0 66.2 69.1 63.3 61.1 65.9 60.7 64.5

LuGAN-HGC [24] 72.8 72.3 69.4 75.2 77.0 79.6 80.5 78.1 76.3 74.9 72.8 75.4

DLF (ours) 65.9 71.5 72.3 74.9 56.0 61.6 70.5 69.8 74.2 73.2 68.0 68.9

FLF (ours) 72.3 72.0 73.8 77.9 61.3 67.1 73.7 74.5 76.6 75.3 72.1 72.4

We can observe that our proposed multi-biometric techniques, DLF and FLF, surpassed
the accuracies of the baseline model GaitGraph2 [20] by a large margin. Specifically, DLF
achieved improvements of 9.8%, 5.8%, and 5.3% for the NM, BG, and CL walking conditions,
respectively, while FLF achieved improvements of 11.3%, 8.1%, and 8.8%. Furthermore,
our proposed FLF obtained the best or second-best accuracies for each probe viewing angle
for all the gallery view angles, excluding the identical view angles.

4.5. Evaluation of Proposed Multi-Biometric Technique

The proposed multi-biometric framework in this study included several HPE al-
gorithms to extract skeleton data points for gait recognition, including OpenPose [14],
AlphaPose [15], and HRNet [16]. We conducted an experiment using each of the extracted
skeleton data samples separately to highlight the effectiveness of our proposed multi-
biometric technique. Moreover, we compared the accuracy of the proposed framework
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with that of the baseline model, i.e., GaitGraph2 [20], to demonstrate the superiority of our
proposed framework.

Comparison with separate HPE algorithms. Here, we present the overall compar-
ison among the various HPE algorithms used to extract skeleton data points for gait
recognition. The results of the skeleton data points extracted from the CASIA-B dataset
are reported in Table 3 and Figure 3. The multi-biometric techniques, FLF and DLF,
consistently achieved higher accuracy across all covariate conditions, NM, BG, and CL,
compared to the individual HPE algorithms. For example, FLF/DLF obtained the rank-1
accuracy of 93.3%/91.8%, 81.3%/79.0%, and 72.4%/68.9%, respectively, for the NM, BG,
and CL conditions. This result indicated that our FLF/DLF surpassed the 22.0%/20.5%,
20.9%/18.6%, 26.7%/23.2% of the OpenPose algorithm, and the 11.2%/9.7%, 8.1%/5.8%,
and 8.8%/5.3% from HRNet. Our proposed multi-biometric technique incorporated mul-
tiple HPE algorithms to extract diverse skeleton data points and demonstrated superior
performance, due to its ability to integrate diverse information effectively. Regarding
FLF, our proposed multi-biometric framework performs better in gait recognition by
combining features from multiple HPE algorithms, OpenPose [14], AlphaPose [15],
and HRNet [16], at the feature extraction level. This method leverages the strengths and
mitigates the weaknesses of individual feature sets, resulting in a more comprehensive
and discriminative representation.

Table 3. Comparison table of the average rank-1 accuracy (%) with baseline algorithms using
ResGCN [31] on the CASIA-B dataset for normal walking (NM), carrying bags (BG), and wearing
coats (CL) sequences.

Methods
Pose Estimation Algorithms Rank-1 [%]

OpenPose Alphapose HRNet NM BG CL

ResGCN ✓ 71.3 60.4 45.7

ResGCN ✓ 81.5 70.4 56.9

ResGCN ✓ 82.1 73.2 63.6

DLF (ours) ✓ ✓ ✓ 91.8 79.0 68.9

FLF (ours) ✓ ✓ ✓ 93.3 81.3 72.4

30

40

50

60

70

80

90

100

NM BG CL

R
an

k-
1

 [
%

] 

ResGCN(Alphapose) ResGCN(OpenPose) ResGCN(HRNet) DLF(ours) FLF(ours)

Figure 3. The average recognition rates of DLF and FLF along with the baseline algorithms on the
CASIA-B dataset for normal walking (NM), carrying bags (BG), and wearing coats (CL) sequences.
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By contrast, DLF makes the final decision by aggregating the individual decisions
from the baseline method, ResGCN [31], applied separately to the skeleton data points
extracted using different HPE algorithms. By using majority voting, DLF capitalizes on the
complementary nature of the various algorithms and reduces the impact of inaccuracies or
imperfect skeleton generation by a single HPE algorithm. For example, while HRNet [16]
performs better with low-resolution images, other algorithms may perform better under
different conditions. DLF provides a more reliable final output by aggregating their outputs
as majority voting, leading to an improved overall gait recognition accuracy. Moreover, we
see that among the HPE algorithms, HRNet [16] obtained a comparatively higher accuracy
than OpenPose [14] and AlphaPose [15].

Comparison with baseline model. Here, we present overall comparisons with the
baseline model GaitGraph2 [20], with the skeleton data points and using HRNet [16] ac-
cording to each separate probe angle for all gallery view angles. The results on CASIA-B are
shown in Figures 4–6. We can observe that for most of the viewing angles, the recognition
accuracy was comparatively higher for DLF and FLF for the NM, BG, and CL conditions,
as shown in Figure 4.

Comparison between FLF and DLF. Here, we present a comparison between the
multi-biometric techniques FLF and DLF. The results are shown in Tables 2 and 3 along
with Figures 4–6. We can observe that FLF consistently outperformed DLF. This was likely
due to the lower quality of skeleton data points extracted by OpenPose [14] and Alpha-
Pose [15], as shown in Figure 1, which led to a reduced recognition accuracy compared to
HRNet. Specifically, HRNet produced accurate skeletons, while AlphaPose and OpenPose
exhibited limitations in keypoint detection during self-occlusions, with OpenPose occa-
sionally losing body segments during leg swings and self-occluded poses. Consequently,
when the ResGCN model was applied to the skeleton data from OpenPose and AlphaPose,
these inaccuracies led to incorrect recognitions, resulting in more false recognitions by
DLF due to its majority voting mechanism. In contrast, FLF combined features through
pointwise addition, which preserved their discriminative capability and enhanced the
overall recognition performance.
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Figure 4. Comparison of the proposed DLF and FLF with baseline pose estimator algorithms results
on the CASIA-B dataset. This consists of 11 subgraphs, each denoting a probe view angle against all
gallery view angles for normal walking (NM) sequences. Best viewed in color.
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Figure 5. Comparison of the proposed DLF and FLF with baseline pose estimator algorithms results
on the CASIA-B dataset. This consists of 11 subgraphs, each denoting a probe view angle against all
gallery view angles for carrying bags (BG) sequences. Best viewed in color.
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Figure 6. Comparison of the proposed DLF and FLF with baseline pose estimator algorithms results
on the CASIA-B dataset. This consists of 11 subgraphs, each denoting a probe view angle against all
gallery view angles for wearing coats (CL) sequences. Best viewed in color.

5. Conclusions

In this paper, we introduced a multi-biometric technique for skeleton-based gait recog-
nition. Our approach utilizes multiple top-down and bottom-up human pose estimation
(HPE) algorithms to extract skeleton data points, ensuring a comprehensive capture of gait
features. We proposed using both feature-level fusion (FLF) and decision-level fusion (DLF)
to enhance the recognition accuracy. FLF combines features through pointwise addition,
leveraging the complementary strengths of different HPE algorithms, while DLF aggregates
decisions from individual models using a majority voting mechanism. We validated the
effectiveness of our framework on the widely used CASIA-B gait database. The results
demonstrated that our proposed multi-biometric technique significantly improved the
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recognition performance, achieving state-of-the-art accuracy for model-based gait recog-
nition. This study underscores the potential of integrating multiple HPE algorithms and
fusion techniques to enhance the robustness and accuracy of gait recognition systems.

While this study achieved state-of-the-art accuracy on the small-scale CASIA-B dataset,
it has limitations and opportunities for improvement. The CASIA-B dataset, with 124 sub-
jects across 11 distinct view angles, includes limited covariates, such as controlled condi-
tions for carrying a single small bag and only two clothing variations, which may not fully
capture the diversity needed for real-world applications. Future research would benefit
from large-scale datasets with a broader range of covariates, such as occlusions, diverse
clothing types, and realistic camera view angles, to enhance the robustness and generaliz-
ability. Additionally, incorporating 3D instrumented gait analysis as a gold standard could
improve validation, while testing on real-time samples, such as security camera footage,
would offer insights into practical performance. These steps would support a broader
applicability in real-world scenarios.
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