
Citation: Nguyen, C.L.; Nguyen, A.;

Brown, J.; Byrne, T.; Ngo, B.T.; Luong,

C.X. Optimising Concrete Crack

Detection: A Study of Transfer

Learning with Application on Nvidia

Jetson Nano. Sensors 2024, 24, 7818.

https://doi.org/10.3390/s24237818

Academic Editors: Ya Wei and

Zhoujing Ye

Received: 31 October 2024

Revised: 28 November 2024

Accepted: 4 December 2024

Published: 6 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Optimising Concrete Crack Detection: A Study of Transfer
Learning with Application on Nvidia Jetson Nano
C. Long Nguyen 1, Andy Nguyen 1,* , Jason Brown 1, Terry Byrne 2, Binh Thanh Ngo 3 and Chieu Xuan Luong 3

1 School of Engineering, University of Southern Queensland, Springfield, QLD 4300, Australia;
long.nguyen@unisq.edu.au (C.L.N.); jason.brown2@unisq.edu.au (J.B.)

2 Academic Affairs Administration, University of Southern Queensland, Toowoomba, QLD 4350, Australia;
terry.byrne@unisq.edu.au

3 Faculty of Electrical and Electronic Engineering, University of Transport and Communications, Hanoi 100000,
Vietnam; ngobinh74@utc.edu.vn (B.T.N.); chieu1256@utc.edu.vn (C.X.L.)

* Correspondence: andy.nguyen@unisq.edu.au

Abstract: The use of Artificial Intelligence (AI) to detect defects such as concrete cracks in civil and
transport infrastructure has the potential to make inspections less expensive, quicker, safer and more
objective by reducing the need for on-site human labour. One deployment scenario involves using
a drone to carry an embedded device and camera, with the device making localised predictions
at the edge about the existence of defects using a trained convolutional neural network (CNN) for
image classification. In this paper, we trained six CNNs, namely Resnet18, Resnet50, GoogLeNet,
MobileNetV2, MobileNetV3-Small and MobileNetV3-Large, using transfer learning technology to
classify images of concrete structures as containing a crack or not. To enhance the model’s robustness,
the original dataset, comprising 3000 images of concrete structures, was augmented using salt and
pepper noise, as well as motion blur, separately. The results show that Resnet50 generally provides
the highest validation accuracy (96% with the original dataset and a batch size of 16) and the highest
validation F1-score (95% with the original dataset and a batch size of 16). The trained model was
then deployed on an Nvidia Jetson Nano device for real-time inference, demonstrating its capability
to accurately detect cracks in both laboratory and field settings. This study highlights the potential of
using transfer learning on Edge AI devices for Structural Health Monitoring, providing a cost-effective
and efficient solution for automated crack detection in concrete structures.

Keywords: Structural Health Monitoring; Artificial Intelligence; crack detection; concrete structures;
transfer learning; Jetson Nano; digital image

1. Introduction

Since the last century, many sophisticated civil and transport structures have been
built due to the rapid development of efficient design and construction methodologies.
Examples include high-rise buildings, dams, bridges, tunnels and public/utility infrastruc-
ture. However, the performance and functionality of these important structures can be
weakened because of subsidence, improper usage, ageing components and materials. As a
result, servicing and maintaining the function and integrity of these structures is important,
which has led to the creation of a new consideration in the civil and construction field
called Structural Health Monitoring (SHM). Inspection and monitoring can help owners
and engineers classify the abnormal behaviour of structures under specified conditions
based on several assessments and standards.

Infrastructure inspection is usually performed by certified specialists using equipment
and best practise assessment techniques. In the early 1980s, building condition assessments
were conducted just by visual inspection and simple tools such as hammers and hearing
equipment. Over time, this task has been improved with the support of not only various
electronic devices but also assessment standards and guidelines. A simple example of the

Sensors 2024, 24, 7818. https://doi.org/10.3390/s24237818 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24237818
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8739-8207
https://orcid.org/0000-0002-7863-1609
https://doi.org/10.3390/s24237818
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24237818?type=check_update&version=2

Sensors 2024, 24, 7818 2 of 22

latter is the Australian standard for the inspection of buildings, AS 4349.1-1995, which
focuses on residential buildings [1]. Alternatively, the inspection is commonly performed
using Non-Destructive Testing (NDT) techniques, including ground-penetrating radar,
laser scanning, thermography, ultrasound and close-range photogrammetry [2]. Once the
field tests are completed, the test data are reviewed and combined with the inspector’s
opinion to make maintenance decisions.

Despite the popularity of human-based inspection, the application of this approach
has several significant limitations when applied to large civil structures, such as bridges,
high-rise buildings or dams. The first limitation is the labour cost and time this approach
requires qualified inspectors to spend in order to inspect large structures [3]. In recent
years, and certainly during the COVID-19 pandemic, the skilled labour shortage has been
one of the most problematic issues for most industries, and their heavy reliance on human
specialists can result in overdue infrastructural inspections and the costly maintenance
that follows them. Furthermore, for many large-scale structures, the inspectors are often
left to deal with difficult locations requiring expensive scaffoldings or special equipment
like scissor lifts to gain access [4]. Finally, one of the most important limitations of human
inspection is making incorrect decisions depending upon the opinion of a human assessor,
who may make errors or be subjected to peer pressure. As a result, human-based inspection
can result in elevated risk and inefficiency.

Since the late 20th century, applications of modern SHM techniques have become
popular in civil engineering and construction. A modern SHM system provides efficient
methods to evaluate and monitor the health and performance of the structures without
the need for human intervention during the monitoring or inspection process. This kind
of system can help engineers automate the process of damage identification, including
diagnosis and prognosis of the changes in a structure under specified conditions. Among
various modern SHM techniques, the most popular and effective ones are response-based
and computer vision-based [5]. The response-based method monitors the behaviours
of structures based on their dynamic properties and physical characteristics, which are
measured by temporary or permanent contact sensors in real time [6]. To monitor large
structures at a sufficient resolution, the response-based method might require a considerable
number of contact sensors embedded throughout the structure. The main limitation of this
approach is it often increases capital, installation and operating costs.

The computer vision-based method, on the other hand, utilises vision sensors to collect
responses and other information about the structure in a remote manner, meaning they
can be easily reused with minimum increases in costs. Vision sensors are inexpensive and
available in many forms, such as digital cameras, laser scanners and optical lenses [5]. In
this way, inspection data such as images or videos can be acquired from a distance, which
greatly minimises the risks for human inspectors in dealing with difficult locations. In
recent years, with the efforts from both academia and industry, unmanned aerial vehicles
(UAVs or drones) have begun to be utilised widely for complicated assessment tasks such
as bridge inspection. Whilst the initial purpose of this application was to ease the image
data acquisition process, this vision-based technology offers real potential for the rapid
monitoring and automated inspection of civil and transport infrastructure.

There are several studies and real-life projects that have been using the vision-based
method to assess the structural conditions in dams [7], tunnels [8], highways [9], pave-
ments [10], railways [11], concrete buildings [12], steel buildings [13], pipelines [14] and so
forth. These projects have utilised vision sensors to capture digital image information and
post-process them for condition assessment with the support of Artificial Intelligence (AI).
A further review of these applications shows that convolutional neural networks (CNNs),
a kind of modern AI algorithm for image classification, have been commonly used in the
context of centralised or cloud-based systems where computations are executed in the
direct support of a powerful graphical processing unit (GPU). However, there is no similar
research or studies on the assessment performance of CNNs, which automatically identify
structural defects when installed in Edge computing embedded devices. The research in

Sensors 2024, 24, 7818 3 of 22

this paper focuses on evaluating the performance of several common CNNs using transfer
learning to find the best-performing network for integration with Edge AI devices, such
as the NVIDIA Jetson Nano, for the autonomous detection of multiple cracks on concrete
surfaces in real time. The term “Edge AI device” refers to a device that is both sourcing data
(i.e., images in this case) and performing AI predictions to determine what is represented
in the data without necessarily transferring the raw data to another location for analysis.

We discuss the Edge AI devices and CNN models in more detail in Section 2. However,
at this point, it is worth noting that there are various computer vision techniques that can
be employed depending on the objective, as illustrated in Table 1. Image classification
is the most basic technique, in which the objective is to predict the class(es) or type(s)
of object(s) in an image without understanding the exact location, size and shape of the
object(s). For example, in the context of our research, we would use image classification
to determine whether or not a crack exists in a concrete structure depicted in an image.
Object detection and semantic segmentation can be viewed as more complex refinements
of image classification, in which we are interested in predicting not just the class of an
object in an image but also the location of the object in the image (object detection) and
its pixel boundaries (semantic segmentation). For this initial investigation into employing
computer vision techniques on Edge AI devices for crack detection, we therefore focus on
image classification in the remainder of this paper.

Table 1. Computer vision techniques.

Objective Computer Vision Technique

Determining the class(es) of object(s) in an image Image Classification

Placing a bounding box around each detected object in an image Object Detection

Determining the exact pixel boundaries of each detected object in an image Semantic Segmentation

To evaluate the deployment of transfer learning algorithms on Edge AI devices, this
paper examines the performance of six CNNs for crack detection on concrete surfaces,
namely Resnet18, Resnet50, GoogLeNet, MobileNetV2 and MobileNetV3 (small and large).
To enhance the robustness of the training model, as well as to simulate the actual envi-
ronmental conditions, three different noise patterns, salt and pepper, motion blur and a
combination of salt and pepper and motion blur, are applied onto an original concrete
dataset to generate three additional datasets for training purposes. Furthermore, the CNN
model with the best classification performance is employed in the Jetson Nano for inference
testing in the field.

2. Background and Related Work
2.1. Artificial Intelligence and Its Subfields

Artificial Intelligence (AI) first began in the 1950s for solving complex mathematical
problems and developed significantly in the early 2000s. Machine Learning (ML), a subfield
of AI, has played a vital role in the process of collecting and analysing a great quantity of
data when engineers and researchers monitor structural health. ML extracts the features
and patterns of the images or videos and then enters them into Artificial Neural Network
(ANN) algorithms to classify these features. However, ML and ANN algorithms often
require experts to monitor and extract the features manually, which can be a limitation for
engineers when dealing with huge data loads and complicated features [15,16]. Thus, deep
learning (DL) was developed to solve this problem. In contrast to basic ML techniques,
DL has multiple hidden layers and can extract numerous complex patterns from data
automatically. Accordingly, the accuracy of DL is always higher than ML when dealing
with complex and substantial amounts of data [6,17]. Figure 1 shows the subfields of
Artificial Intelligence.

Sensors 2024, 24, 7818 4 of 22

Sensors 2024, 24, 7818 4 of 23

dealing with complex and substantial amounts of data [6,17]. Figure 1 shows the subfields
of Artificial Intelligence.

Figure 1. The subfields of Artificial Intelligence.

The DL model would appear to be the most suitable solution for defect detection in
the SHM system. However, training a DL network from scratch can take significant time,
require a massive dataset of images and require a powerful computational device. As a
result, transfer learning (TL) with convolutional neural networks (CNNs) has been de-
ployed for training defect detection to reduce training time and enhance accuracy. The
weights and layers from the pre-trained models are transferred to another untrained net-
work with the new dataset and re-trained as a new model. The benefits of utilising TL
include reducing the number of datasets, both labelled and unlabelled, and improving
efficiency when training a new model. For instance, the TL technique has been utilised in
various CNN models to classify and segment cracks on masonry surfaces [18]. As a result,
the performance of crack inspection tasks is leveraged significantly on both patch and
pixel levels. On the other hand, another study proposed Step Transfer Learning with an
Extreme Learning Machine (STELM) for automated concrete crack detection [19]. This ap-
proach incorporates double-step transfer learning, where two separate Resnet models are
re-trained and fine-tuned on different datasets. The features extracted from these models
are concatenated and subsequently used to classify concrete cracks.

AI and its subfield models are often operated and trained on servers or workstation
systems, which consist of multiple powerful computers, with connections via the Internet
and cloud systems. This has brought many benefits in the processing and characterisation
of large volumes of data. However, concerns about the latency and security of AI based
on the cloud have been raised [20,21]. As a result, Edge computing has been introduced
with a distributed computing paradigm, which can help the AI models to operate on a
local device with a processor unit. The combination of AI and Edge computing has gener-
ated Edge AI, which can reallocate computations and processes on the cloud to the local
hardware. Therefore, the amount of data transmission can be reduced as well as the data
latency. Recently, with the ongoing development of computing hardware, embedded de-
vices have been introduced with powerful functionality to support AI training and Edge
computing.

2.2. Embedded Device
Embedded devices are compact computers with microprocessor-based hardware and

possibly Edge AI hardware accelerators. Hardware acceleration boosts the speed and per-
formance of deep learning tasks, offering greater scalability, reliability and security for the
information. Major tech companies, such as Google and Nvidia, have brought to the mar-
ket popular products such as Coral USB Accelerator and Jetson Nano (shown in Figure 2),

Figure 1. The subfields of Artificial Intelligence.

The DL model would appear to be the most suitable solution for defect detection
in the SHM system. However, training a DL network from scratch can take significant
time, require a massive dataset of images and require a powerful computational device.
As a result, transfer learning (TL) with convolutional neural networks (CNNs) has been
deployed for training defect detection to reduce training time and enhance accuracy. The
weights and layers from the pre-trained models are transferred to another untrained
network with the new dataset and re-trained as a new model. The benefits of utilising TL
include reducing the number of datasets, both labelled and unlabelled, and improving
efficiency when training a new model. For instance, the TL technique has been utilised
in various CNN models to classify and segment cracks on masonry surfaces [18]. As a
result, the performance of crack inspection tasks is leveraged significantly on both patch
and pixel levels. On the other hand, another study proposed Step Transfer Learning with
an Extreme Learning Machine (STELM) for automated concrete crack detection [19]. This
approach incorporates double-step transfer learning, where two separate Resnet models are
re-trained and fine-tuned on different datasets. The features extracted from these models
are concatenated and subsequently used to classify concrete cracks.

AI and its subfield models are often operated and trained on servers or workstation
systems, which consist of multiple powerful computers, with connections via the Internet
and cloud systems. This has brought many benefits in the processing and characterisation
of large volumes of data. However, concerns about the latency and security of AI based on
the cloud have been raised [20,21]. As a result, Edge computing has been introduced with a
distributed computing paradigm, which can help the AI models to operate on a local device
with a processor unit. The combination of AI and Edge computing has generated Edge
AI, which can reallocate computations and processes on the cloud to the local hardware.
Therefore, the amount of data transmission can be reduced as well as the data latency.
Recently, with the ongoing development of computing hardware, embedded devices have
been introduced with powerful functionality to support AI training and Edge computing.

2.2. Embedded Device

Embedded devices are compact computers with microprocessor-based hardware and
possibly Edge AI hardware accelerators. Hardware acceleration boosts the speed and
performance of deep learning tasks, offering greater scalability, reliability and security
for the information. Major tech companies, such as Google and Nvidia, have brought to
the market popular products such as Coral USB Accelerator and Jetson Nano (shown in
Figure 2), which both have the same Edge AI focus. Google Coral is a USB stick with an
Edge TPU, optimised for running models with ultra-low power consumption and high
efficiency. However, the Coral USB Accelerator is just a USB booster and might require
additional computers for training and testing. On the other hand, the Jetson Nano has a

Sensors 2024, 24, 7818 5 of 22

standalone single-board computer with a special CPU and GPU for supporting Edge AI.
What is obvious is that the application of Edge AI and embedded systems has recently
become widespread across various industries, including that of autonomous vehicles,
industrial IoT, innovative healthcare, agriculture and intelligent factory [22]. More detailed
information about Nvidia Jetson Nano and Google Coral USB Accelerator and a comparison
between both devices can be found in Section 4 before the embedded device selection for
this study.

Sensors 2024, 24, 7818 5 of 23

which both have the same Edge AI focus. Google Coral is a USB stick with an Edge TPU,
optimised for running models with ultra-low power consumption and high efficiency.
However, the Coral USB Accelerator is just a USB booster and might require additional
computers for training and testing. On the other hand, the Jetson Nano has a standalone
single-board computer with a special CPU and GPU for supporting Edge AI. What is ob-
vious is that the application of Edge AI and embedded systems has recently become wide-
spread across various industries, including that of autonomous vehicles, industrial IoT,
innovative healthcare, agriculture and intelligent factory [22]. More detailed information
about Nvidia Jetson Nano and Google Coral USB Accelerator and a comparison between
both devices can be found in Section 4 before the embedded device selection for this study.

Figure 2. Two popular embedded devices, including Nvidia Jetson Nano (left) and Google Coral
USB accelerator (right), with Edge AI capacity [23,24].

2.3. Convolutional Neural Networks
A convolutional neural network (ConvNet or CNN) is a subclass of the ANNs and

an algorithm of deep learning. It was developed to read digital information directly and
derive meaningful information to solve problems of computer vision including image
classification. With the popularity of computer vision and the success of CNNs, civil en-
gineers and researchers have been attracted to this technology for the monitoring and con-
dition assessment of structures. The CNN was inspired and generated based on the bio-
logical nervous system of humans, which contains neurons and connections. Similarly,
each neuron in a CNN represents a processing unit, which is responsible for mathemati-
cally transforming input data to output values.

The structure of a typical CNN contains three main types of layers, including convo-
lutional layers, pooling layers and fully connected layers (Figure 3). The convolutional
layers extract numerous features from an input image using ordered categories. For ex-
ample, the first convolutional layer extracts basic data such as text, numbers, lines and
edges, while the second layer extracts higher-level data such as objects or boundary re-
gions. These extracted features are then inserted into feature maps and operated with
weight matrices to perform the convolutional operation and return output values. Subse-
quently, the pooling layer is used to reduce the dimension of the processing unit and
downsample the connections of the convolutional layer. As a result, the number of net-
work parameters is reduced with an activation function. The pooling layer benefits the
network by reducing the complexity of the feature maps and enhancing efficiency. The
fully connected layer connects a single neuron from the previous layer to all the neurons

Figure 2. Two popular embedded devices, including Nvidia Jetson Nano (left) and Google Coral
USB accelerator (right), with Edge AI capacity [23,24].

2.3. Convolutional Neural Networks

A convolutional neural network (ConvNet or CNN) is a subclass of the ANNs and
an algorithm of deep learning. It was developed to read digital information directly and
derive meaningful information to solve problems of computer vision including image
classification. With the popularity of computer vision and the success of CNNs, civil
engineers and researchers have been attracted to this technology for the monitoring and
condition assessment of structures. The CNN was inspired and generated based on the
biological nervous system of humans, which contains neurons and connections. Similarly,
each neuron in a CNN represents a processing unit, which is responsible for mathematically
transforming input data to output values.

The structure of a typical CNN contains three main types of layers, including convolu-
tional layers, pooling layers and fully connected layers (Figure 3). The convolutional layers
extract numerous features from an input image using ordered categories. For example, the
first convolutional layer extracts basic data such as text, numbers, lines and edges, while the
second layer extracts higher-level data such as objects or boundary regions. These extracted
features are then inserted into feature maps and operated with weight matrices to perform
the convolutional operation and return output values. Subsequently, the pooling layer is
used to reduce the dimension of the processing unit and downsample the connections of
the convolutional layer. As a result, the number of network parameters is reduced with
an activation function. The pooling layer benefits the network by reducing the complexity
of the feature maps and enhancing efficiency. The fully connected layer connects a single
neuron from the previous layer to all the neurons in another layer. This layer plays a
vital role in the classification task by comparing the extracted feature with the filter and
returning the result.

Sensors 2024, 24, 7818 6 of 22

Sensors 2024, 24, 7818 6 of 23

in another layer. This layer plays a vital role in the classification task by comparing the
extracted feature with the filter and returning the result.

Figure 3. The basic architecture of a CNN.

LeNet-5 and AlexNet were the first two popular and successful networks for image
classification [25]. LeNet-5 was built for the recognition of number images, with five layers
and 60 thousand parameters [26]. It created a basic framework for researchers to enhance
and generate AlexNet in 2012 with eight layers and 60 million parameters [27]. However,
these networks have a limited number of layers; therefore, it takes them a long time to
extract multiple features from large datasets. To deal with that problem, in 2014, Goog-
LeNet, also known as Inception V1, was developed with a larger number of layers and
deeper architectures, consisting of nine inception modules placed sequentially with a max
pooling layer in the middle [28]. This network consisted of 22 layers with four different
types, namely convolutional, pooling, fully connected and softmax layers [29]. In compar-
ison with AlexNet, its number of parameters is much lower (approximately twelve times
lower) whereas the accuracy is slightly higher when training with the ImageNet database
to classify 1000 object categories.

The appearance of GoogLeNet has proven that increasing the depth and width of the
architecture enhances the performance of the network. However, employing deeper net-
works also has drawbacks such as the loss of the feature or data when the information is
transferred through each layer. Consequently, the network’s performance is degraded
when the network starts converging. A deep residual network (Resnet) has been intro-
duced with batch normalisation and skip connections technologies which can be a solu-
tion for the degradation problem of deeper networks [30]. There are two types of skip
connections, commonly used in Resnet18 and Resnet50 networks. For example, the Res-
net18 network contains eight residual blocks and 18 deep layers. Each residual block of
Resnet18 skips two blocks at once. On the other hand, the Resnet50 network employs the
residual block to skip three layers, reducing the number of layers to 50 deep layers. Resnet
models have been trained and tested on the ImageNet dataset for their new architecture
and have returned an improvement in accuracy instead of degradation.

MobileNet is a lightweight deep neural network with a lower number of parameters
and smaller model sizes compared with other convolutional neural networks. It was de-
veloped to meet the demand for application computer vision and object detection on ro-
botic, unmanned aerial vehicles or self-drive vehicles. MobileNet V2 consists of 53 deep
layers, 32 convolutional layers and 19 inverted residual bottleneck layers [31]. The state of
the art in deep learning networks is MobileNet V3, with a small and a large version which
represent the targeting of low and high resources, respectively. MobileNet V3 has been
generated with the combination of a platform-aware neural network architecture search
(NAS) and the NetAdapt algorithm [32].

Figure 3. The basic architecture of a CNN.

LeNet-5 and AlexNet were the first two popular and successful networks for image
classification [25]. LeNet-5 was built for the recognition of number images, with five
layers and 60 thousand parameters [26]. It created a basic framework for researchers to
enhance and generate AlexNet in 2012 with eight layers and 60 million parameters [27].
However, these networks have a limited number of layers; therefore, it takes them a long
time to extract multiple features from large datasets. To deal with that problem, in 2014,
GoogLeNet, also known as Inception V1, was developed with a larger number of layers
and deeper architectures, consisting of nine inception modules placed sequentially with
a max pooling layer in the middle [28]. This network consisted of 22 layers with four
different types, namely convolutional, pooling, fully connected and softmax layers [29]. In
comparison with AlexNet, its number of parameters is much lower (approximately twelve
times lower) whereas the accuracy is slightly higher when training with the ImageNet
database to classify 1000 object categories.

The appearance of GoogLeNet has proven that increasing the depth and width of
the architecture enhances the performance of the network. However, employing deeper
networks also has drawbacks such as the loss of the feature or data when the information
is transferred through each layer. Consequently, the network’s performance is degraded
when the network starts converging. A deep residual network (Resnet) has been introduced
with batch normalisation and skip connections technologies which can be a solution for
the degradation problem of deeper networks [30]. There are two types of skip connections,
commonly used in Resnet18 and Resnet50 networks. For example, the Resnet18 network
contains eight residual blocks and 18 deep layers. Each residual block of Resnet18 skips
two blocks at once. On the other hand, the Resnet50 network employs the residual block to
skip three layers, reducing the number of layers to 50 deep layers. Resnet models have been
trained and tested on the ImageNet dataset for their new architecture and have returned
an improvement in accuracy instead of degradation.

MobileNet is a lightweight deep neural network with a lower number of parameters
and smaller model sizes compared with other convolutional neural networks. It was
developed to meet the demand for application computer vision and object detection on
robotic, unmanned aerial vehicles or self-drive vehicles. MobileNet V2 consists of 53 deep
layers, 32 convolutional layers and 19 inverted residual bottleneck layers [31]. The state of
the art in deep learning networks is MobileNet V3, with a small and a large version which
represent the targeting of low and high resources, respectively. MobileNet V3 has been
generated with the combination of a platform-aware neural network architecture search
(NAS) and the NetAdapt algorithm [32].

As confirmed by various sources, including a recent book chapter [33], the six afore-
mentioned convolutional networks are selected for this study due to their small and
lightweight architectures as well as to provide a good balance between performance and
efficiency. However, Resnet50 is an exception due to its slightly deeper and heavier archi-

Sensors 2024, 24, 7818 7 of 22

tecture, and it is thus categorised between small and large models. Table 2 summarises all
primary information of the networks used in this research. Another reason for choosing
these small models is because of the relatively small number of parameters, which can be
more easily accommodated into embedded systems. In addition, larger models typically
require a larger dataset for training purposes in order to avoid overfitting.

Table 2. Summary information of the six CNNs.

Network No. of Layers Parameters
(Millions)

Size of Model
(MB)

Image Size
(Pixels)

Resnet18 18 1.6 44.8 224 × 224

Resnet50 50 25.6 94.4 224 × 224

GoogLeNet 22 7 26.7 224 × 224

MobileNetV2 53 3.5 9.1 224 × 224

MobileNetV3 Small 16 2.9 6.2 224 × 224

MobileNetV3 Large 20 5.4 17 224 × 224

3. Image Data Preparation

For this research, public datasets have been utilised for concrete crack detection [34].
The datasets contain four subsets, including Original (Orig), Salt and Pepper (SP), Motion
Blur (MB) and Combination (Comb). In a realistic scenario, capturing images often encoun-
ters difficulties such as an out-of-focus condition or a dirty lens which can negatively affect
the quality of image. To simulate these various aberrations, the original image dataset
was augmented with three noise patterns: SP, MB and a combination of SP and MB. SP
noise introduces random pixel disturbances, simulating scenarios where images might be
affected by sensor noise, an incorrect digital ISO setting or transmission errors. On the
other hand, MB noise mimics conditions where the camera or object is in motion during
image capture, reflecting challenges in real-time inspection.

The Orig dataset contains 3000 images of concrete surfaces with a size of 256 by
256 pixels. From this, the SP dataset was generated with a noise density of 6% to simulate
the difficult conditions of environmental effects on the image. On the other hand, the MB
dataset was developed with the motion’s length and angle of 20 pixels and 11 degrees,
respectively. These parameters for the creation of the SP and MB datasets were chosen for
consistency with other studies the authors are working on, but there is nothing particularly
special about them and alternative values can be used. The Comb dataset is the combination
of the two effects, SP and MB. Example images from the four datasets are illustrated in
Figure 4 below. For the training and validation, all datasets were split into two subfolders,
including training and validation, with an 80:20 ratio.

Sensors 2024, 24, 7818 7 of 23

As confirmed by various sources, including a recent book chapter [33], the six afore-
mentioned convolutional networks are selected for this study due to their small and light-
weight architectures as well as to provide a good balance between performance and effi-
ciency. However, Resnet50 is an exception due to its slightly deeper and heavier architec-
ture, and it is thus categorised between small and large models. Table 2 summarises all
primary information of the networks used in this research. Another reason for choosing
these small models is because of the relatively small number of parameters, which can be
more easily accommodated into embedded systems. In addition, larger models typically
require a larger dataset for training purposes in order to avoid overfitting.

Table 2. Summary information of the six CNNs.

Network No. of Layers Parameters
(Millions)

Size of Model
(MB)

Image Size
(Pixels)

Resnet18 18 1.6 44.8 224 × 224
Resnet50 50 25.6 94.4 224 × 224
GoogLeNet 22 7 26.7 224 × 224
MobileNetV2 53 3.5 9.1 224 × 224
MobileNetV3 Small 16 2.9 6.2 224 × 224
MobileNetV3 Large 20 5.4 17 224 × 224

3. Image Data Preparation
For this research, public datasets have been utilised for concrete crack detection [34].

The datasets contain four subsets, including Original (Orig), Salt and Pepper (SP), Motion
Blur (MB) and Combination (Comb). In a realistic scenario, capturing images often en-
counters difficulties such as an out-of-focus condition or a dirty lens which can negatively
affect the quality of image. To simulate these various aberrations, the original image da-
taset was augmented with three noise patterns: SP, MB and a combination of SP and MB.
SP noise introduces random pixel disturbances, simulating scenarios where images might
be affected by sensor noise, an incorrect digital ISO setting or transmission errors. On the
other hand, MB noise mimics conditions where the camera or object is in motion during
image capture, reflecting challenges in real-time inspection.

The Orig dataset contains 3000 images of concrete surfaces with a size of 256 by 256
pixels. From this, the SP dataset was generated with a noise density of 6% to simulate the
difficult conditions of environmental effects on the image. On the other hand, the MB da-
taset was developed with the motion’s length and angle of 20 pixels and 11 degrees, re-
spectively. These parameters for the creation of the SP and MB datasets were chosen for
consistency with other studies the authors are working on, but there is nothing particu-
larly special about them and alternative values can be used. The Comb dataset is the com-
bination of the two effects, SP and MB. Example images from the four datasets are illus-
trated in Figure 4 below. For the training and validation, all datasets were split into two
subfolders, including training and validation, with an 80:20 ratio.

Figure 4. Image data sources. Figure 4. Image data sources.

Before the training process, each dataset was augmented with transformations, in-
cluding random crop, colour jitter and random flip. The purpose of this random image
augmentation was to generalise the existing dataset without having to collect more data. As

Sensors 2024, 24, 7818 8 of 22

a result, the generated model was more generally applicable to field inference/prediction.
The original size of the images was 256 by 256 pixels, which is a de facto standard initial
resolution to facilitate the comparison of several different image classification models
that potentially use different image resolutions, e.g., Resnet uses 224 × 224 image res-
olution, while AlexNet uses 227 × 227 image resolution. As a result, when training or
validating against a specific image classification model, each original 256 × 256 image
was randomly cropped to the specific size required by the model of interest. To make
the dataset more generic, the image was randomly flipped vertically and/or horizontally.
Additionally, the characteristics of the image, including brightness, contrast and saturation,
were adjusted with a coefficient of 0.2. Figure 5 below shows the demonstration of the
image augmentation.

Sensors 2024, 24, 7818 8 of 23

Before the training process, each dataset was augmented with transformations, in-
cluding random crop, colour jitter and random flip. The purpose of this random image
augmentation was to generalise the existing dataset without having to collect more data.
As a result, the generated model was more generally applicable to field inference/predic-
tion. The original size of the images was 256 by 256 pixels, which is a de facto standard
initial resolution to facilitate the comparison of several different image classification mod-
els that potentially use different image resolutions, e.g., Resnet uses 224 × 224 image reso-
lution, while AlexNet uses 227 × 227 image resolution. As a result, when training or vali-
dating against a specific image classification model, each original 256 × 256 image was
randomly cropped to the specific size required by the model of interest. To make the da-
taset more generic, the image was randomly flipped vertically and/or horizontally. Addi-
tionally, the characteristics of the image, including brightness, contrast and saturation,
were adjusted with a coefficient of 0.2. Figure 5 below shows the demonstration of the
image augmentation.

Figure 5. Image augmentation examples.

The utilisation of a diverse concrete crack dataset with various noise patterns and
augmentation algorithms significantly enhanced the generalisation of the models by ex-
posing them to a broader range of variations and distortions that mimic real-world con-
ditions. As a result, the training model was able to develop more invariant and robust
features, enabling it to classify previously unseen image data more effectively.

4. Research Methodology
This research employs the following six transfer learning image classification models

to detect cracks in concrete surfaces: Resnet18, Resnet50, GoogLeNet, MobileNetV2 and
MobileNetV3-Small/Large. The justification for employing these specific models was dis-
cussed in Section 2, i.e., being small models, they are more appropriate for implementa-
tion in resource-constrained embedded devices and are less likely to overfit to the data
during training. These models have been pre-trained with ImageNet using more than
1,200,000 images and 1000 object classes [28,30–32,35]. When using transfer learning to
customise these models to the crack datasets, we use two mini-batch sizes of 16 and 32
images and repeat the training ten times to determine the stability and robustness of the
model. There are two main stages: choosing a suitable type of transfer learning and train-
ing each network with the various datasets (Orig, SP, MB and Comb—see Section 3 for
details of the datasets).

Figure 5. Image augmentation examples.

The utilisation of a diverse concrete crack dataset with various noise patterns and aug-
mentation algorithms significantly enhanced the generalisation of the models by exposing
them to a broader range of variations and distortions that mimic real-world conditions.
As a result, the training model was able to develop more invariant and robust features,
enabling it to classify previously unseen image data more effectively.

4. Research Methodology

This research employs the following six transfer learning image classification models
to detect cracks in concrete surfaces: Resnet18, Resnet50, GoogLeNet, MobileNetV2 and
MobileNetV3-Small/Large. The justification for employing these specific models was dis-
cussed in Section 2, i.e., being small models, they are more appropriate for implementation
in resource-constrained embedded devices and are less likely to overfit to the data during
training. These models have been pre-trained with ImageNet using more than 1,200,000 im-
ages and 1000 object classes [28,30–32,35]. When using transfer learning to customise these
models to the crack datasets, we use two mini-batch sizes of 16 and 32 images and repeat
the training ten times to determine the stability and robustness of the model. There are two
main stages: choosing a suitable type of transfer learning and training each network with
the various datasets (Orig, SP, MB and Comb—see Section 3 for details of the datasets).

Figure 6 shows the methodology of the paper. In the first stage, two types of transfer
learning are considered in this paper. The first method is the fixed feature extraction
method. In the fixed feature approach, the original fully connected final layer of the pre-
trained networks with an ImageNet dataset containing 1000 object classes is replaced by a
new fully connected layer with only two categories, crack and non-crack/base. The rest of
the layers remain the same. On the other hand, fine-tuning, the second transfer learning
method, also utilises the pre-trained model, but the weights of all layers in the pre-trained
model are optimised and updated during training. Additionally, a new fully connected
final layer is added to the model to align with the target of the two categories (crack and
non-crack/base). This approach enables the model to adapt its learned features to better
suit the specific dataset.

Sensors 2024, 24, 7818 9 of 22
Sensors 2024, 24, 7818 9 of 23

Figure 6. Methodology of the paper.

Figure 6 shows the methodology of the paper. In the first stage, two types of transfer
learning are considered in this paper. The first method is the fixed feature extraction
method. In the fixed feature approach, the original fully connected final layer of the pre-
trained networks with an ImageNet dataset containing 1000 object classes is replaced by
a new fully connected layer with only two categories, crack and non-crack/base. The rest
of the layers remain the same. On the other hand, fine-tuning, the second transfer learning
method, also utilises the pre-trained model, but the weights of all layers in the pre-trained
model are optimised and updated during training. Additionally, a new fully connected
final layer is added to the model to align with the target of the two categories (crack and
non-crack/base). This approach enables the model to adapt its learned features to better
suit the specific dataset.

The default hyperparameters for the training are shown in Table 3 below. Using a
single set of hyperparameters was intentional to maintain a controlled test setup and to
isolate the impact of dataset variations and augmentations on classification performance.
Choosing the most suitable type of transfer learning network for the concrete crack dataset
is carried out on two networks, Resnet18 and Resnet50, using the Orig dataset. The second
stage of this paper involves training the rest of the networks with each of the datasets.
Running various networks with a high number of epochs requires a powerful computing
machine. Therefore, the NVIDIA DGX Station A100 was employed for training because it
contains multiple GPUs (GPU: Graphical Processing Unit), which can accelerate training.

Table 3. Hyperparameters for transfer learning.

Parameter Value
Initial learning rate 1 × 10−4
L2 regularisation 0.005
Momentum 0.9
Optimisation algorithm SGDM
Epochs 100
Learning rate scheduler step 5
Gamma for learning rate scheduler 0.001

The process of evaluating the efficiency of a network requires four common metrics,
which can measure the performance of image classification, including accuracy, precision,
recall and F1-scores. These metrics are calculated based on the retrieved and relevant ele-
ments from the predictions of the networks. Precision is the proportion of crack

Figure 6. Methodology of the paper.

The default hyperparameters for the training are shown in Table 3 below. Using a
single set of hyperparameters was intentional to maintain a controlled test setup and to
isolate the impact of dataset variations and augmentations on classification performance.
Choosing the most suitable type of transfer learning network for the concrete crack dataset
is carried out on two networks, Resnet18 and Resnet50, using the Orig dataset. The second
stage of this paper involves training the rest of the networks with each of the datasets.
Running various networks with a high number of epochs requires a powerful computing
machine. Therefore, the NVIDIA DGX Station A100 was employed for training because it
contains multiple GPUs (GPU: Graphical Processing Unit), which can accelerate training.

Table 3. Hyperparameters for transfer learning.

Parameter Value

Initial learning rate 1 × 10−4

L2 regularisation 0.005

Momentum 0.9

Optimisation algorithm SGDM

Epochs 100

Learning rate scheduler step 5

Gamma for learning rate scheduler 0.001

The process of evaluating the efficiency of a network requires four common metrics,
which can measure the performance of image classification, including accuracy, precision,
recall and F1-scores. These metrics are calculated based on the retrieved and relevant ele-
ments from the predictions of the networks. Precision is the proportion of crack predictions
made by the model that were actually cracks. On the other hand, recall is the proportion
of actual cracks that were correctly predicted by the model. F1-scores are the combina-
tion between precision and recall and are usually used for comparing the performance of
two classifiers.

Accuracy =
True Positive + True Negative

True Positive + True Negative + False Positive + False Negative
(1)

Precision =
True Positive

True Positive + False Positive
(2)

Sensors 2024, 24, 7818 10 of 22

Recall =
True Positive

True Positive + False Negative
(3)

F1 − score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Figure 7 demonstrates the confusion matrix, which is used for determining the above
performance parameters. True Positive (TP) indicates that both the predicted and actual
results are crack images, while True Negative (TN) indicates that both the predicted and
actual results are non-crack images. On the other hand, False Positive (FP) and False
Negative (TN) represent a difference between the predicted and actual results. In particular,
FP represents the prediction that the image is a crack when the image actually does not
contain a crack, and False Negative (FN) represents the prediction that an image is not a
crack when the image actually does contain a crack.

Sensors 2024, 24, 7818 10 of 23

predictions made by the model that were actually cracks. On the other hand, recall is the
proportion of actual cracks that were correctly predicted by the model. F1-scores are the
combination between precision and recall and are usually used for comparing the perfor-
mance of two classifiers. Accuracy = True Positive + True NegativeTrue Positive + True Negative + False Positive + False Negative (1)

Precision = True PositiveTrue Positive + False Positive (2)

Recall = True PositiveTrue Positive + False Negative (3)

F1-score = 2 ∗ ୰ୣୡ୧ୱ୧୭୬∗ୖୣୡୟ୪୪୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪ (4)

Figure 7 demonstrates the confusion matrix, which is used for determining the above
performance parameters. True Positive (TP) indicates that both the predicted and actual
results are crack images, while True Negative (TN) indicates that both the predicted and
actual results are non-crack images. On the other hand, False Positive (FP) and False Neg-
ative (TN) represent a difference between the predicted and actual results. In particular,
FP represents the prediction that the image is a crack when the image actually does not
contain a crack, and False Negative (FN) represents the prediction that an image is not a
crack when the image actually does contain a crack.

 Predicted Results
 Crack Non-crack

A
ct

ua
l R

es
ul

ts

C
ra

ck

True Positive False Negative

N
on

-c
ra

ck

False Positive True Negative

Figure 7. Confusion matrix for evaluating the performance of networks.

Several aspects, including performance, model compatibility, power consumption
and storage, were evaluated in the comparison between the Nvidia Jetson Nano and the
Google Coral USB Accelerator to select a suitable embedded device. The Jetson Nano is
an individual device equipped with a 128-core Maxwell GPU and a quad-core ARM Cor-
tex-A57 CPU, offering 472 GFLOPS (GFLOPS: Giga Floating Point Operations Per Second)
of computational power for running diverse neural networks, including floating-point
models of FP32, FP16 and int8. In contrast, the Coral USB Accelerator is a dependent de-
vice with Google’s Edge TPU with a high efficiency of 4 TOPS (TOPS: Tera Operations Per
Second), optimising only int8 quantised models. As a result, the Jetson Nano is more suit-
able for complex tasks, model development, multi-tasking and inference compared to the
Coral USB Accelerator. Additionally, the Nano supports a 64-bit LPDDR4 RAM memory
card and external storage capabilities via microSD slot, features that are not available on
the Coral USB device.

Figure 7. Confusion matrix for evaluating the performance of networks.

Several aspects, including performance, model compatibility, power consumption
and storage, were evaluated in the comparison between the Nvidia Jetson Nano and the
Google Coral USB Accelerator to select a suitable embedded device. The Jetson Nano is an
individual device equipped with a 128-core Maxwell GPU and a quad-core ARM Cortex-
A57 CPU, offering 472 GFLOPS (GFLOPS: Giga Floating Point Operations Per Second) of
computational power for running diverse neural networks, including floating-point models
of FP32, FP16 and int8. In contrast, the Coral USB Accelerator is a dependent device with
Google’s Edge TPU with a high efficiency of 4 TOPS (TOPS: Tera Operations Per Second),
optimising only int8 quantised models. As a result, the Jetson Nano is more suitable for
complex tasks, model development, multi-tasking and inference compared to the Coral
USB Accelerator. Additionally, the Nano supports a 64-bit LPDDR4 RAM memory card
and external storage capabilities via microSD slot, features that are not available on the
Coral USB device.

The Nvidia Jetson Nano was finally selected as the embedded Edge AI device to test
the network because the device efficiently supports popular AI frameworks and models
and is inexpensive. It is also more beneficial than other embedded devices, such as the
Coral USB Accelerator from Google, which is not as powerful. The Jetson Nano is attached
with a Camera Serial Interface (CSI) camera and a 64 GB external SD card. Since there
is typically no main power available during field inspections, the device is powered by
an external power bank via a micro-USB connector at 5 V/2 A maximum. Additionally,
the device is also designed to adopt a power source via barrel jack at 5 V/4 A using an
adapter if main power is available. To connect the Jetson Nano to a management computer,
a Wi-Fi module was installed with two antennas for transferring and receiving signals.
After identifying the best CNN for each dataset, the associated weights were loaded into
the Jetson Nano to perform real-time detection with real crack images taken with the CSI
camera. After attaching all necessary accessories, the Jetson Nano was mounted on a

Sensors 2024, 24, 7818 11 of 22

3D-printed holder and connected to an extension pole, which helped assessors draw closer
to a concrete surface of interest (Figure 8).

Sensors 2024, 24, 7818 11 of 23

The Nvidia Jetson Nano was finally selected as the embedded Edge AI device to test
the network because the device efficiently supports popular AI frameworks and models
and is inexpensive. It is also more beneficial than other embedded devices, such as the
Coral USB Accelerator from Google, which is not as powerful. The Jetson Nano is attached
with a Camera Serial Interface (CSI) camera and a 64 GB external SD card. Since there is
typically no main power available during field inspections, the device is powered by an
external power bank via a micro-USB connector at 5 V/2 A maximum. Additionally, the
device is also designed to adopt a power source via barrel jack at 5 V/4 A using an adapter
if main power is available. To connect the Jetson Nano to a management computer, a Wi-
Fi module was installed with two antennas for transferring and receiving signals. After
identifying the best CNN for each dataset, the associated weights were loaded into the
Jetson Nano to perform real-time detection with real crack images taken with the CSI cam-
era. After attaching all necessary accessories, the Jetson Nano was mounted on a 3D-
printed holder and connected to an extension pole, which helped assessors draw closer to
a concrete surface of interest (Figure 8).

Figure 8. Nvidia Jetson Nano crack detector plan view (left) and on extension pole (right).

5. Results and Analysis
This section describes the performance of each transfer learning model. Firstly, the

comparison of two transfer learning networks, fixed feature extraction and fine-tuning,
and the choice of the most suitable one are undertaken using the Orig dataset. Following
that, the training process for all CNNs is conducted with four types of datasets (Orig, SP,
MB, Comb) and two different batch sizes.

5.1. Comparison Between Fine-Tuning and Fixed Feature Extraction Networks
Figure 9 demonstrates the training process of two transfer learning methods, fine-

tuning and fixed feature extraction. Both methods were tested with two neural network
models (Resnet18 and Resnet50). The training process was conducted with the Original
dataset (Orig) and two different batch sizes, 16 and 32 units. The hyperparameters for both
methods were set with a learning rate of 0.001, momentum of 0.9, step size of 7 and gamma
of learning rate scheduler of 0.1; these parameters are different to the real training models.
It is shown in the plot that both models of CNNs are stable and start convergence after the
first 10 epochs. The accuracy of the fine-tuning models is always higher than the fixed
feature extraction models by approximately 7–8%. This is expected because the weights

Figure 8. Nvidia Jetson Nano crack detector plan view (left) and on extension pole (right).

5. Results and Analysis

This section describes the performance of each transfer learning model. Firstly, the
comparison of two transfer learning networks, fixed feature extraction and fine-tuning, and
the choice of the most suitable one are undertaken using the Orig dataset. Following that,
the training process for all CNNs is conducted with four types of datasets (Orig, SP, MB,
Comb) and two different batch sizes.

5.1. Comparison Between Fine-Tuning and Fixed Feature Extraction Networks

Figure 9 demonstrates the training process of two transfer learning methods, fine-
tuning and fixed feature extraction. Both methods were tested with two neural network
models (Resnet18 and Resnet50). The training process was conducted with the Original
dataset (Orig) and two different batch sizes, 16 and 32 units. The hyperparameters for both
methods were set with a learning rate of 0.001, momentum of 0.9, step size of 7 and gamma
of learning rate scheduler of 0.1; these parameters are different to the real training models.
It is shown in the plot that both models of CNNs are stable and start convergence after
the first 10 epochs. The accuracy of the fine-tuning models is always higher than the fixed
feature extraction models by approximately 7–8%. This is expected because the weights of
all the layers can be optimised with fine-tuning, compared to just the weights of the final
fully connected layer with fixed feature extraction.

Table 4 and Figure 10 illustrate the performance of each transfer learning model. The
performance of the fine-tuning models for all CNNs achieved greater than 85% accuracy,
with a lower accuracy of approximately 78% for the fixed featured extraction models.
Furthermore, the training times of all the cases were quite similar, approximately 12–13 min,
except for those of the Resnet50 networks with the fine-tuning method. These networks
took around 17.2 min for training, which is significantly higher compared to the other
networks. The Time Index (EI) value shows the relationship between the performance and
computing time of each model. The model with a higher EI coefficient might have improved
performance with less training time. It is shown in Figure 10 that the EI values of all the
fine-tuning models are higher than the other models in Resnet18 networks. However, with
the Resnet50 networks, these values are quite similar for both transfer learning methods.
As a result, transfer learning with the fine-tuning model has shown the benefits of the
training process with higher performance than the fixed feature extraction method.

Sensors 2024, 24, 7818 12 of 22

Sensors 2024, 24, x FOR PEER REVIEW 12 of 24

of all the layers can be optimised with fine-tuning, compared to just the weights of the
final fully connected layer with fixed feature extraction.

Figure 9. Training results of two transfer learning models.

Table 4 and Figure 10 illustrate the performance of each transfer learning model. The
performance of the fine-tuning models for all CNNs achieved greater than 85% accuracy,
with a lower accuracy of approximately 78% for the fixed featured extraction models. Fur-
thermore, the training times of all the cases were quite similar, approximately 12–13 min,
except for those of the Resnet50 networks with the fine-tuning method. These networks
took around 17.2 min for training, which is significantly higher compared to the other
networks. The Time Index (EI) value shows the relationship between the performance and
computing time of each model. The model with a higher EI coefficient might have im-
proved performance with less training time. It is shown in Figure 10 that the EI values of
all the fine-tuning models are higher than the other models in Resnet18 networks. How-
ever, with the Resnet50 networks, these values are quite similar for both transfer learning
methods. As a result, transfer learning with the fine-tuning model has shown the benefits
of the training process with higher performance than the fixed feature extraction method.

Table 4. Summary performance index of transfer learning networks.

Transfer Learning Type CNN Batch Size Accuracy Precision Recall F1-Score Time (Minutes)

Fine-Tuning
Resnet18

16 0.8517 0.98 0.60 0.75 12.7
32 0.8467 0.96 0.59 0.73 12.7

Resnet50
16 0.8628 0.99 0.63 0.77 17.2
32 0.8576 0.99 0.61 0.75 17.2

Fixed Feature Extraction
Resnet18

16 0.7849 0.84 0.48 0.61 12.5
32 0.7849 0.86 0.44 0.58 12.7

Resnet50
16 0.7878 0.88 0.45 0.59 12.7
32 0.7878 0.90 0.43 0.58 12.7

Figure 9. Training results of two transfer learning models.

Table 4. Summary performance index of transfer learning networks.

Transfer Learning Type CNN Batch Size Accuracy Precision Recall F1-Score Time (Min)

Fine-Tuning

Resnet18
16 0.8517 0.98 0.60 0.75 12.7

32 0.8467 0.96 0.59 0.73 12.7

Resnet50
16 0.8628 0.99 0.63 0.77 17.2

32 0.8576 0.99 0.61 0.75 17.2

Fixed Feature Extraction

Resnet18
16 0.7849 0.84 0.48 0.61 12.5

32 0.7849 0.86 0.44 0.58 12.7

Resnet50
16 0.7878 0.88 0.45 0.59 12.7

32 0.7878 0.90 0.43 0.58 12.7
Sensors 2024, 24, 7818 13 of 23

Figure 10. Comparison of performance and time of each transfer learning network.

5.2. Training with Different Datasets
5.2.1. Original Dataset

In this section, six CNNs were trained with the fine-tuning method of transfer learn-
ing. The training was repeated ten times with the Orig dataset. Figure 11 illustrates the
mean training accuracy of all networks, which are similar between each run time. Further-
more, the training shows that the Resnet50 model with a batch size of 16 reaches a maxi-
mum training accuracy of approximately 85% before the first ten epochs and the accuracy
then remains stable until the end. On the other hand, the MobileNetV3-Small network
reaches its peak of training accuracy at 80%, which is lower than the other networks.

Figure 12 demonstrates the mean accuracy of all models during the validation pro-
cess. For all other models except the MobileNetV3-Small, the validation accuracy reaches
a peak of more than 90%, which is higher than the training accuracy by 5%, and almost
remains at that value until the end. A possible reason for this is that the training was con-
ducted using data augmentation to generalise/regularise the model and prevent overfit-
ting, whereas no data augmentation was performed on the validation images. Resnet50
with a batch size of 16 provides the highest validation accuracy of 96%, while the lowest
accuracy of 83% belongs to MobileNetV3_Small with a batch size of 32.

The performance indices and computational times of the CNNs can be found in Fig-
ure 13. For a batch size of 16, Resnet50 provided the highest F1-score of 95%, followed by
Resnet18, GoogLeNet and MobileNetV2. MobileNetV3-Small and large networks yield
the lowest F1-scores with a similar computational time compared to other networks. For
a batch size of 32, Resnet50 achieves similar F1-scores to Resnet18 and GoogLeNet. On the
other hand, Resnet50 took 5 more minutes for training time than the other CNNs.

Figure 10. Comparison of performance and time of each transfer learning network.

Sensors 2024, 24, 7818 13 of 22

5.2. Training with Different Datasets
5.2.1. Original Dataset

In this section, six CNNs were trained with the fine-tuning method of transfer learning.
The training was repeated ten times with the Orig dataset. Figure 11 illustrates the mean
training accuracy of all networks, which are similar between each run time. Furthermore,
the training shows that the Resnet50 model with a batch size of 16 reaches a maximum
training accuracy of approximately 85% before the first ten epochs and the accuracy then
remains stable until the end. On the other hand, the MobileNetV3-Small network reaches
its peak of training accuracy at 80%, which is lower than the other networks.

Sensors 2024, 24, 7818 14 of 23

Figure 11. Training accuracy of CNNs with Orig dataset.

Figure 12. Mean validation accuracy of CNNs with Orig dataset.

Figure 11. Training accuracy of CNNs with Orig dataset.

Figure 12 demonstrates the mean accuracy of all models during the validation process.
For all other models except the MobileNetV3-Small, the validation accuracy reaches a peak
of more than 90%, which is higher than the training accuracy by 5%, and almost remains at
that value until the end. A possible reason for this is that the training was conducted using
data augmentation to generalise/regularise the model and prevent overfitting, whereas no
data augmentation was performed on the validation images. Resnet50 with a batch size
of 16 provides the highest validation accuracy of 96%, while the lowest accuracy of 83%
belongs to MobileNetV3_Small with a batch size of 32.

The performance indices and computational times of the CNNs can be found in
Figure 13. For a batch size of 16, Resnet50 provided the highest F1-score of 95%, followed
by Resnet18, GoogLeNet and MobileNetV2. MobileNetV3-Small and large networks yield
the lowest F1-scores with a similar computational time compared to other networks. For a
batch size of 32, Resnet50 achieves similar F1-scores to Resnet18 and GoogLeNet. On the
other hand, Resnet50 took 5 more minutes for training time than the other CNNs.

Sensors 2024, 24, 7818 14 of 22

Sensors 2024, 24, x FOR PEER REVIEW 14 of 24

Figure 11. Training accuracy of CNNs with Orig dataset.

Figure 12. Mean validation accuracy of CNNs with Orig dataset. Figure 12. Mean validation accuracy of CNNs with Orig dataset.

Sensors 2024, 24, 7818 15 of 23

Figure 13. F1-scores vs. computational time of CNNs with Orig dataset.

5.2.2. Salt and Pepper and Motion Blur Datasets
In this section, the CNNs were trained with augmented SP and MB datasets ten times

each. The training accuracy lines of each network are divided into two parts. The training
accuracy trajectories of all the networks are similar, increasing up to their maximum ac-
curacies during the first ten epochs. Then, their accuracies remained around their respec-
tive stable values without any significant fluctuations until the training process ended.

The mean validation accuracies of the CNNs with the SP dataset are shown in Figure
14. Similar to the Orig dataset, the Resnet50 and Resnet18 networks have the highest val-
idation accuracies of 88% and 84%, respectively. The MobilenetV3-Small network has the
lowest accuracy.

Similarly, with the MB dataset, as illustrated in Figure 15, the Resnet networks with
a batch size of 16 yield the highest accuracy of around 87%, followed by MobineNetV2
with a batch size of 16, yielding 85% accuracy. The network with the lowest validation
accuracy is MobileNetV3-Small, with their percentage just above 77%.

Figure 16 illustrates the F1-scores and training times of the CNNs for the SP and MB
datasets. The CNNs work better with the MB dataset, as illustrated by their higher F1-
scores compared to the SP dataset. As a result, the fine-tuning method of transfer learning
with these CNNs is more compatible with the MB dataset than with the SP dataset. In
detail, for the MB dataset, Resnet50 is the best model and has the highest F1-score of about
82% with a computational time of 21 min, followed by Resnet18 with an F1-score of 80%
and training time of 5 min. GoogLenet, MobileNetV3 and MobileNetV2 achieved almost
the same value of approximately 70% for their F1-score. With the SP dataset, Resnet50 is
also the best network with the highest F1-score, but it also has the highest training time.
Furthermore, the MobileNet network achieved the weakest performance, but its training
times are quite similar to GoogLeNet and Resnet18. The results from both datasets showed
that Resnet50 with a batch size of 16 always achieved the highest performances. Further-
more, CNN models with a batch size of 16 always achieved higher F1-scores than the same
models with a batch size of 32.

Figure 13. F1-scores vs. computational time of CNNs with Orig dataset.

5.2.2. Salt and Pepper and Motion Blur Datasets

In this section, the CNNs were trained with augmented SP and MB datasets ten times
each. The training accuracy lines of each network are divided into two parts. The training
accuracy trajectories of all the networks are similar, increasing up to their maximum accu-

Sensors 2024, 24, 7818 15 of 22

racies during the first ten epochs. Then, their accuracies remained around their respective
stable values without any significant fluctuations until the training process ended.

The mean validation accuracies of the CNNs with the SP dataset are shown in
Figure 14. Similar to the Orig dataset, the Resnet50 and Resnet18 networks have the highest
validation accuracies of 88% and 84%, respectively. The MobilenetV3-Small network has
the lowest accuracy.

Sensors 2024, 24, 7818 16 of 23

Figure 14. Mean validation accuracy of CNNs with SP dataset.

Figure 15. Mean validation accuracy of CNNs with MB dataset.

Figure 14. Mean validation accuracy of CNNs with SP dataset.

Similarly, with the MB dataset, as illustrated in Figure 15, the Resnet networks with a
batch size of 16 yield the highest accuracy of around 87%, followed by MobineNetV2 with
a batch size of 16, yielding 85% accuracy. The network with the lowest validation accuracy
is MobileNetV3-Small, with their percentage just above 77%.

Figure 16 illustrates the F1-scores and training times of the CNNs for the SP and MB
datasets. The CNNs work better with the MB dataset, as illustrated by their higher F1-scores
compared to the SP dataset. As a result, the fine-tuning method of transfer learning with
these CNNs is more compatible with the MB dataset than with the SP dataset. In detail, for
the MB dataset, Resnet50 is the best model and has the highest F1-score of about 82% with
a computational time of 21 min, followed by Resnet18 with an F1-score of 80% and training
time of 5 min. GoogLenet, MobileNetV3 and MobileNetV2 achieved almost the same value
of approximately 70% for their F1-score. With the SP dataset, Resnet50 is also the best
network with the highest F1-score, but it also has the highest training time. Furthermore,
the MobileNet network achieved the weakest performance, but its training times are quite
similar to GoogLeNet and Resnet18. The results from both datasets showed that Resnet50
with a batch size of 16 always achieved the highest performances. Furthermore, CNN
models with a batch size of 16 always achieved higher F1-scores than the same models
with a batch size of 32.

Sensors 2024, 24, 7818 16 of 22Sensors 2024, 24, x FOR PEER REVIEW 17 of 24

Figure 15. Mean validation accuracy of CNNs with MB dataset.

Figure 16 illustrates the F1-scores and training times of the CNNs for the SP and MB
datasets. The CNNs work better with the MB dataset, as illustrated by their higher F1-
scores compared to the SP dataset. As a result, the fine-tuning method of transfer learning
with these CNNs is more compatible with the MB dataset than with the SP dataset. In
detail, for the MB dataset, Resnet50 is the best model and has the highest F1-score of about
82% with a computational time of 21 min, followed by Resnet18 with an F1-score of 80%
and training time of 5 min. GoogLenet, MobileNetV3 and MobileNetV2 achieved almost
the same value of approximately 70% for their F1-score. With the SP dataset, Resnet50 is
also the best network with the highest F1-score, but it also has the highest training time.
Furthermore, the MobileNet network achieved the weakest performance, but its training
times are quite similar to GoogLeNet and Resnet18. The results from both datasets showed
that Resnet50 with a batch size of 16 always achieved the highest performances. Further-
more, CNN models with a batch size of 16 always achieved higher F1-scores than the same
models with a batch size of 32.

Figure 15. Mean validation accuracy of CNNs with MB dataset.

Sensors 2024, 24, 7818 17 of 23

(a) Salt and Pepper dataset

(b) Motion Blur dataset

Figure 16. Performance indices of CNNs with different datasets: SP (top) and MB (bottom).

5.2.3. Combination Dataset
Figures 17 and 18 illustrate the mean validation accuracy and F1-score/time perfor-

mance of the CNNs, respectively, with Comb dataset. It can be seen that the computational
time of each network in this dataset is no longer than that of the three other datasets,
whereas the diversity of the dataset is increased by adding the SP noise and blur images
into it, as well as the augmentations for the images. It is shown that the network with
highest accuracy for this dataset is Resnet18 with batch sizes of both 16 and 32. Then, it is
followed by the Resnet50 and GoogLeNet models. On the other hand, the MobileNet net-
works show a significantly poorer performance than the other networks, but their perfor-
mances are stable and mostly flat without any significant fluctuations with an increasing
number of epochs. However, when considering F1-scores, Resnet50 is the model with
highest F1-score, followed by Resnet18 and GoogLeNet. Furthermore, the mean training
time of Resnet50 was higher than all other networks.

Figure 16. Cont.

Sensors 2024, 24, 7818 17 of 22

Sensors 2024, 24, 7818 17 of 23

(a) Salt and Pepper dataset

(b) Motion Blur dataset

Figure 16. Performance indices of CNNs with different datasets: SP (top) and MB (bottom).

5.2.3. Combination Dataset
Figures 17 and 18 illustrate the mean validation accuracy and F1-score/time perfor-

mance of the CNNs, respectively, with Comb dataset. It can be seen that the computational
time of each network in this dataset is no longer than that of the three other datasets,
whereas the diversity of the dataset is increased by adding the SP noise and blur images
into it, as well as the augmentations for the images. It is shown that the network with
highest accuracy for this dataset is Resnet18 with batch sizes of both 16 and 32. Then, it is
followed by the Resnet50 and GoogLeNet models. On the other hand, the MobileNet net-
works show a significantly poorer performance than the other networks, but their perfor-
mances are stable and mostly flat without any significant fluctuations with an increasing
number of epochs. However, when considering F1-scores, Resnet50 is the model with
highest F1-score, followed by Resnet18 and GoogLeNet. Furthermore, the mean training
time of Resnet50 was higher than all other networks.

Figure 16. Performance indices of CNNs with different datasets: SP (top) and MB (bottom).

5.2.3. Combination Dataset

Figures 17 and 18 illustrate the mean validation accuracy and F1-score/time perfor-
mance of the CNNs, respectively, with Comb dataset. It can be seen that the computational
time of each network in this dataset is no longer than that of the three other datasets,
whereas the diversity of the dataset is increased by adding the SP noise and blur images
into it, as well as the augmentations for the images. It is shown that the network with
highest accuracy for this dataset is Resnet18 with batch sizes of both 16 and 32. Then, it
is followed by the Resnet50 and GoogLeNet models. On the other hand, the MobileNet
networks show a significantly poorer performance than the other networks, but their per-
formances are stable and mostly flat without any significant fluctuations with an increasing
number of epochs. However, when considering F1-scores, Resnet50 is the model with
highest F1-score, followed by Resnet18 and GoogLeNet. Furthermore, the mean training
time of Resnet50 was higher than all other networks.

5.3. Performance on Jetson Nano Crack Detector

After determining that the best model for the Orig dataset was Resnet50, the weights
for this model were loaded into the Jetson Nano for inference testing with images of
concrete surfaces captured in real time using a Raspberry Pi v2 8MP CSI camera attached
to the Nano. The test was performed in the field to detect cracks on the concrete walls of
an underpass structure (culvert). Additionally, in the laboratory, the Jetson Nano-based
inference engine was also assessed with cracked concrete cylinders using different viewing
angles. The test returned the prediction for the image from two candidate labels: “crack”
and “base”. “Crack” means that the image was detected with one or more cracks, while
“base” indicates that the image does not contain a crack.

In the test, the Jetson Nano was linked to the inspectors’ laptop via Wi-Fi, which re-
quired both devices to be connected to the same network. As a result, the assessor was able
to control and visualise the real-time predictions of the Jetson Nano. Figures 19 and 20 show
the Jetson Nano-based inference engine in action in the field and in the laboratory, respec-
tively. The Jetson Nano-based inference engine predicted cracks in images with high
accuracy. However, for some difficult concrete cracks or spalling, the device was unable
to detect the aberration and gave the wrong decision. This problem might be solved by
training against a much larger dataset and using more advanced models in future works.

Sensors 2024, 24, 7818 18 of 22Sensors 2024, 24, 7818 18 of 23

Figure 17. Mean validation accuracy of CNNs with Comb dataset.

Figure 18. Performance indices of CNNs with Comb dataset.

5.3. Performance on Jetson Nano Crack Detector
After determining that the best model for the Orig dataset was Resnet50, the weights

for this model were loaded into the Jetson Nano for inference testing with images of con-
crete surfaces captured in real time using a Raspberry Pi v2 8MP CSI camera attached to
the Nano. The test was performed in the field to detect cracks on the concrete walls of an
underpass structure (culvert). Additionally, in the laboratory, the Jetson Nano-based in-
ference engine was also assessed with cracked concrete cylinders using different viewing
angles. The test returned the prediction for the image from two candidate labels: “crack”

Figure 17. Mean validation accuracy of CNNs with Comb dataset.

Sensors 2024, 24, 7818 18 of 23

Figure 17. Mean validation accuracy of CNNs with Comb dataset.

Figure 18. Performance indices of CNNs with Comb dataset.

5.3. Performance on Jetson Nano Crack Detector
After determining that the best model for the Orig dataset was Resnet50, the weights

for this model were loaded into the Jetson Nano for inference testing with images of con-
crete surfaces captured in real time using a Raspberry Pi v2 8MP CSI camera attached to
the Nano. The test was performed in the field to detect cracks on the concrete walls of an
underpass structure (culvert). Additionally, in the laboratory, the Jetson Nano-based in-
ference engine was also assessed with cracked concrete cylinders using different viewing
angles. The test returned the prediction for the image from two candidate labels: “crack”

Figure 18. Performance indices of CNNs with Comb dataset.

Sensors 2024, 24, 7818 19 of 22

Sensors 2024, 24, 7818 19 of 23

and “base”. “Crack” means that the image was detected with one or more cracks, while
“base” indicates that the image does not contain a crack.

In the test, the Jetson Nano was linked to the inspectors’ laptop via Wi-Fi, which re-
quired both devices to be connected to the same network. As a result, the assessor was
able to control and visualise the real-time predictions of the Jetson Nano. Figures 19 and
20 show the Jetson Nano-based inference engine in action in the field and in the labora-
tory, respectively. The Jetson Nano-based inference engine predicted cracks in images
with high accuracy. However, for some difficult concrete cracks or spalling, the device
was unable to detect the aberration and gave the wrong decision. This problem might be
solved by training against a much larger dataset and using more advanced models in fu-
ture works.

Figure 19. Example of real-time crack detection by Nvidia Jetson Nano in the field.

Figure 20. Example of real-time crack detection by Nvidia Jetson Nano in the laboratory.

6. Discussion and Comparison
6.1. Discussion

With respect to the training and validation of the six sample compact CNN models,
it was found that Resnet50 had a superior performance in the Orig dataset, which is at-
tributed to its deeper architecture and residual learning that enables the model to learn
complex patterns effectively. Similarly, for the SP and MB datasets, the best classification
performance also belonged to the Resnet50 model, which highlights its robustness to noise
and distortion because of its residual connection and depth. Resnet18 demonstrates com-
petitive performance on the Comb dataset with its highest validation accuracy. This sug-
gests that its efficient architecture balances capacity and computational demand well. Mo-
bileNetV3-Small, despite its efficiency, underperforms on the more challenging datasets
(i.e., those with added noise), indicating its limited ability to handle significant distortions.

All six selected CNN models illustrated varied strengths and weaknesses across the
difficult and complex datasets under noisy conditions and augmentations. Resnet50
proved its robustness and accuracy, excelling in all scenarios due to the depth of its archi-
tecture and residual connections, which allow the model to extract crack features

Figure 19. Example of real-time crack detection by Nvidia Jetson Nano in the field.

Sensors 2024, 24, 7818 19 of 23

and “base”. “Crack” means that the image was detected with one or more cracks, while
“base” indicates that the image does not contain a crack.

In the test, the Jetson Nano was linked to the inspectors’ laptop via Wi-Fi, which re-
quired both devices to be connected to the same network. As a result, the assessor was
able to control and visualise the real-time predictions of the Jetson Nano. Figures 19 and
20 show the Jetson Nano-based inference engine in action in the field and in the labora-
tory, respectively. The Jetson Nano-based inference engine predicted cracks in images
with high accuracy. However, for some difficult concrete cracks or spalling, the device
was unable to detect the aberration and gave the wrong decision. This problem might be
solved by training against a much larger dataset and using more advanced models in fu-
ture works.

Figure 19. Example of real-time crack detection by Nvidia Jetson Nano in the field.

Figure 20. Example of real-time crack detection by Nvidia Jetson Nano in the laboratory.

6. Discussion and Comparison
6.1. Discussion

With respect to the training and validation of the six sample compact CNN models,
it was found that Resnet50 had a superior performance in the Orig dataset, which is at-
tributed to its deeper architecture and residual learning that enables the model to learn
complex patterns effectively. Similarly, for the SP and MB datasets, the best classification
performance also belonged to the Resnet50 model, which highlights its robustness to noise
and distortion because of its residual connection and depth. Resnet18 demonstrates com-
petitive performance on the Comb dataset with its highest validation accuracy. This sug-
gests that its efficient architecture balances capacity and computational demand well. Mo-
bileNetV3-Small, despite its efficiency, underperforms on the more challenging datasets
(i.e., those with added noise), indicating its limited ability to handle significant distortions.

All six selected CNN models illustrated varied strengths and weaknesses across the
difficult and complex datasets under noisy conditions and augmentations. Resnet50
proved its robustness and accuracy, excelling in all scenarios due to the depth of its archi-
tecture and residual connections, which allow the model to extract crack features

Figure 20. Example of real-time crack detection by Nvidia Jetson Nano in the laboratory.

6. Discussion and Comparison
6.1. Discussion

With respect to the training and validation of the six sample compact CNN models,
it was found that Resnet50 had a superior performance in the Orig dataset, which is
attributed to its deeper architecture and residual learning that enables the model to learn
complex patterns effectively. Similarly, for the SP and MB datasets, the best classification
performance also belonged to the Resnet50 model, which highlights its robustness to
noise and distortion because of its residual connection and depth. Resnet18 demonstrates
competitive performance on the Comb dataset with its highest validation accuracy. This
suggests that its efficient architecture balances capacity and computational demand well.
MobileNetV3-Small, despite its efficiency, underperforms on the more challenging datasets
(i.e., those with added noise), indicating its limited ability to handle significant distortions.

All six selected CNN models illustrated varied strengths and weaknesses across the
difficult and complex datasets under noisy conditions and augmentations. Resnet50 proved
its robustness and accuracy, excelling in all scenarios due to the depth of its architecture
and residual connections, which allow the model to extract crack features effectively under
challenging simulated environments. Following that, Resnet18, with its shallower architec-
ture and residual connections, provided a good performance on complex datasets while
requiring a slightly lower computational cost, making it an excellent alternative selection.

GoogLeNet showed reliability due to its multi-scale feature extraction through the
inception module, enabling it to handle noise such as SP and MB reasonably well, though
its moderate depth made it less effective than the Resnet models on highly complex datasets.
The MobileNet models offered a balance between efficiency and performance, handling
clean datasets effectively but showing some limitations in robustness under augmented and
noisy conditions. MobileNetV3-Small struggled significantly with the distorted datasets
due to its smaller representational capacity, while it was the most efficient in terms of
computational requirements.

Sensors 2024, 24, 7818 20 of 22

6.2. Comparison with Alternative Studies

A study investigated the assistance of the BRISQUE threshold-based method for en-
hancing classification performance on concrete cracks [36], which shares a similar diversity
dataset with this study. The term BRISIQUE stands for Blind/Referenceless Image Spa-
tial Quality Evaluator, meaning the evaluation can be conducted without the original,
undistorted image. That study generated artificial images based on the original dataset
with the addition of Gaussian noise and Gaussian blur. Then, the BRISQUE algorithm
was applied to the dataset to produce a score which represented the image’s quality. The
low-quality image contained a high proportion of noise and blur, which achieved a high
BRISQUE score. On the other hand, a low BRISQUE score (below 45) represents high-
quality images. The study found that the correlation between the BRISQUE score and
classification performance was inversely proportional, which was also found in this paper
with a low-quality dataset that returned weak classification performance. In both studies,
the best performance of the classification task was found on the model which was trained
on the clean and original dataset.

In the case of the study using STELM reviewed earlier, it was found that their TL
could effectively perform crack classification tasks [19] and have some benefit of using
double-step transfer learning with two different Resnet modes. However, the effects of
the image quality under severe environments and real conditions on the classification
performance were not investigated. In contrast, our TL method was tested against images
affected by noise. This method is also computationally efficient, making it more feasible to
deploy Edge AI devices with limited computational resources. This efficiency is critical
in real-world applications where quick inference and resource constraints are significant
considerations. It can be concluded that our methodology can provide robust performance
in practical conditions, benefiting from the generalisation capabilities of the pre-trained
model while being adaptable to the specific needs of concrete crack detection.

7. Conclusions

This paper presents a methodology and comparison of several transfer learning models
for detecting cracks on concrete surfaces and targeting implementation onto Edge AI
devices such as those in the Nvidia Jetson family. Six convolutional neural networks
were selected for the test, namely Resnet18, Resnet50, GoogLeNet, MobileNetV2 and
two versions of MobileNetV3 (one large and one small). To generalise the applicability
of the models, the Orig dataset and its augmented variations (SP, MB and Comb) were
utilised for the training and validation processes. Firstly, the transfer learning methods
were investigated and a comparison between the fine-tuning and fixed feature extraction
methods was conducted. Then, the best-performing transfer learning method, fine-tuning,
was chosen and applied to all of the CNNs, followed by training on four different datasets
(Orig, SP, MB and Comb).

The primary results of this paper are described by the following points:

• Transfer learning with the fine-tuning method and specific hyperparameters is more
reliable and efficient rather than the fixed feature extraction method.

• In the Orig dataset, the Resnet50 network with a batch size of 16 showed the highest
accuracy and F1-score. Other CNNs, especially MobileNet V3 Small, had a weaker
performance than Resnet50.

• When considering augmentation with the SP and MB datasets, Resnet50 showed
its strength and reliability. The validation accuracy of the Resnet50 model for both
datasets was around 82%.

• Resnet18 returned the highest validation accuracy, whereas the highest F1-score be-
longed to Resnet50 when dealing with the most complicated dataset (Comb) and
augmentation. It can be seen that the time saved was not significant between the large
and small networks, very likely due to the complexity of the dataset.

This paper shows an important comparison between six transfer learning networks
and complicated datasets with augmentations with a focus on small batch sizes that suit

Sensors 2024, 24, 7818 21 of 22

the computation capacity of Edge AI devices. It can be seen that, apart from GoogLeNet in
the MB and Comb datasets, all other networks and datasets training with a batch size of
16 achieved a higher accuracy and performance index than when implementing a batch
size of 32. However, the training time between the two batch sizes in each network were
not much different. The networks were able to run successfully on a Jetson Nano-based
inference engine in terms of detecting cracks in real time on the concrete surfaces in the
field and laboratory environments.

In summary, the results have shown Resnet50 to be the most robust and reliable
transfer learning model among the six networks investigated in this study. Future work
should focus on tuning the hyperparameters for transfer learning and improving the
performance of smaller models such as Resnet18 or MobileNet because they are more
lightweight and might be better suited for inexpensive embedded devices. In the longer
term, we plan to investigate object detection and the semantic segmentation of crack images
using embedded devices to locate cracks using bounding boxes or to characterise the size
and shape of each crack for defect severity assessment.

Author Contributions: Conceptualization, A.N.; Methodology, C.L.N. and A.N.; Validation, C.L.N.
and J.B.; Investigation, C.L.N., A.N., J.B., T.B., B.T.N. and C.X.L.; Resources, A.N., J.B. and T.B.; Data
curation, C.L.N. and A.N.; Writing—original draft, C.L.N., A.N. and J.B.; Visualization, C.L.N., A.N.,
J.B., B.T.N. and C.X.L.; Supervision, A.N. and J.B.; Project administration, A.N.; Funding acquisition,
A.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by a UniSQ International PhD scholarship (awarded to C.L.N)
and Advance Queensland Industry Research Fellowship grant no. AQIRF101-2022RD5 (awarded to
A.N.). The funding is gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. AS4349.1; 1995 Inspection of Buildings Part 1: Property Inspections—Residential Buildings. Standards Australia: Sydney,

Australia, 1995.
2. El Masri, Y.; Rakha, T. A scoping review of non-destructive testing (NDT) techniques in building performance diagnostic

inspections. Constr. Build. Mater. 2020, 265, 120542. [CrossRef]
3. Kim, H.; Ahn, E.; Shin, M.; Sim, S.-H. Crack and Noncrack Classification from Concrete Surface Images Using Machine Learning.

Struct. Health Monit. 2019, 18, 725–738. [CrossRef]
4. Marin, B.; Brown, K.; Erden, M.S. Automated Masonry crack detection with Faster R-CNN. In Proceedings of the 2021 IEEE 17th

International Conference on Automation Science and Engineering (CASE), Lyon, France, 23–27 August 2021; pp. 333–340.
5. Gharehbaghi, V.R.; Noroozinejad Farsangi, E.; Noori, M.; Yang, T.Y.; Li, S.; Nguyen, A.; Málaga-Chuquitaype, C.; Gardoni, P.;

Mirjalili, S. A Critical Review on Structural Health Monitoring: Definitions, Methods, and Perspectives. Arch. Comput. Methods
Eng. 2021, 29, 2209–2235. [CrossRef]

6. Chan, T.H.T.; Guan, H.; Li, J. Recent Advances in Structural Health Monitoring Research in Australia; Nova Science Publishers Inc.:
New York, NY, USA, 2022.

7. Li, Y.; Bao, T.; Chen, H.; Zhang, K.; Shu, X.; Chen, Z.; Hu, Y. A large-scale sensor missing data imputation framework for dams
using deep learning and transfer learning strategy. Meas. J. Int. Meas. Confed. 2021, 178, 109377. [CrossRef]

8. Tan, X.; Chen, W.; Tan, X.; Zou, T.; Du, B. Prediction for the future mechanical behavior of underwater shield tunnel fusing deep
learning algorithm on SHM data. Tunn. Undergr. Space Technol. 2022, 125, 104504. [CrossRef]

9. Ceylan, H.; Gopalakrishnan, K.; Kim, S.; Taylor, P.C.; Prokudin, M.; Buss, A.F. Highway infrastructure health monitoring using
micro-electromechanical sensors and systems (MEMS). J. Civ. Eng. Manag. 2013, 19, S188–S201. [CrossRef]

10. Yang, S. Health Monitoring of Pavement Systems Using Smart Sensing Technologies; Iowa State University: Ames, IA, USA, 2014.
11. Du, C.; Dutta, S.; Kurup, P.; Yu, T.; Wang, X. A review of railway infrastructure monitoring using fiber optic sensors. Sens.

Actuators A Phys. 2020, 303, 111728. [CrossRef]
12. Sakiyama, F.I.H.; Lehmann, F.; Garrecht, H. Structural health monitoring of concrete structures using fibre-optic-based sensors: A

review. Mag. Concr. Res. 2021, 73, 174–194. [CrossRef]

https://doi.org/10.1016/j.conbuildmat.2020.120542
https://doi.org/10.1177/1475921718768747
https://doi.org/10.1007/s11831-021-09665-9
https://doi.org/10.1016/j.measurement.2021.109377
https://doi.org/10.1016/j.tust.2022.104504
https://doi.org/10.3846/13923730.2013.801894
https://doi.org/10.1016/j.sna.2019.111728
https://doi.org/10.1680/jmacr.19.00185

Sensors 2024, 24, 7818 22 of 22

13. Modares, M.; Waksmanski, N. Overview of structural health monitoring for steel bridges. Pract. Period. Struct. Des. Constr. 2013,
18, 187–191. [CrossRef]

14. Bao, C.; Hao, H.; Li, Z. Vibration-based structural health monitoring of offshore pipelines: Numerical and experimental study.
Struct. Control Health Monit. 2013, 20, 769–788. [CrossRef]

15. Munawar, H.S.; Ullah, F.; Shahzad, D.; Heravi, A.; Qayyum, S.; Akram, J. Civil Infrastructure Damage and Corrosion Detection:
An Application of Machine Learning. Buildings 2022, 12, 156. [CrossRef]

16. Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine learning algorithms in civil structural health monitoring: A
systematic review. Arch. Comput. Methods Eng. 2021, 28, 2621–2643. [CrossRef]

17. Ye, X.; Jin, T.; Yun, C. A review on deep learning-based structural health monitoring of civil infrastructures. Smart Struct. Syst.
2019, 24, 567–585.

18. Dais, D.; Bal, İ.E.; Smyrou, E.; Sarhosis, V. Automatic crack classification and segmentation on masonry surfaces using convolu-
tional neural networks and transfer learning. Autom. Constr. 2021, 125, 103606. [CrossRef]

19. Sohaib, M.; Hasan, M.J.; Chen, J.; Zheng, Z. Generalizing infrastructure inspection: Step transfer learning aided extreme learning
machine for automated crack detection in concrete structures. Meas. Sci. Technol. 2024, 35, 055402. [CrossRef]

20. Bhatt, S.; Lo’ai, A.T.; Chhetri, P.; Bhatt, P. Authorizations in cloud-based internet of things: Current trends and use cases. In
Proceedings of the 2019 4th International Conference on Fog and Mobile Edge Computing (FMEC), Rome, Italy, 10–13 June 2019;
pp. 241–246.

21. Zhang, R.; Zhou, X.; Tonguz, O.K. Using AI for mitigating the impact of network delay in cloud-based intelligent traffic signal
control. arXiv 2020, arXiv:2002.08303.

22. Munirathinam, S. Industry 4.0: Industrial internet of things (IIOT). In Advances in Computers; Elsevier: Amsterdam, The
Netherlands, 2020; Volume 117, pp. 129–164.

23. Jetson Nano Developer Kit. Available online: https://developer.nvidia.com/embedded/jetson-nano-developer-kit (accessed on
30 October 2024).

24. Pizzorno, J.A. Teaching New Tricks to an Old Camera, Part II. Available online: https://towardsdatascience.com/teaching-new-
tricks-to-an-old-camera-part-ii-b2143374ea43 (accessed on 30 October 2024).

25. Weng, S.; Han, K.; Chu, Z.; Zhu, G.; Liu, C.; Zhu, Z.; Zhang, Z.; Zheng, L.; Huang, L. Reflectance images of effective wavelengths
from hyperspectral imaging for identification of Fusarium head blight-infected wheat kernels combined with a residual attention
convolution neural network. Comput. Electron. Agric. 2021, 190, 106483. [CrossRef]

26. Wei, G.; Li, G.; Zhao, J.; He, A. Development of a LeNet-5 gas identification CNN structure for electronic noses. Sensors 2019, 19,
217. [CrossRef]

27. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

28. Szegedy, C.; Wei, L.; Yangqing, J.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN,
USA, 10–17 June 2015; pp. 1–9.

29. Zhong, Z.; Jin, L.; Xie, Z. High performance offline handwritten chinese character recognition using googlenet and directional
feature maps. In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis,
Tunisia, 23–26 August 2015; pp. 846–850.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

31. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 4510–4520.

32. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for
MobileNetV3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea,
27 October–2 November 2019; pp. 1314–1324.

33. Nguyen, A.; Chianese, R.R.; Gharehbaghi, V.R.; Perera, R.; Low, T.; Aravinthan, T.; Yu, Y.; Samali, B.; Guan, H.; Khuc, T. Robustness
of Deep Transfer Learning-Based Crack Detection against Uncertainty in Hyperparameter Tuning and Input Data. 2022. Available
online: https://research-repository.griffith.edu.au/items/99f04191-af31-461b-97d2-b46d1e0fd6f0 (accessed on 30 October 2024).

34. Nguyen, A.; Chianese, R.R.; Gharehbaghi, V.R. 3000 ImageData for Crack Detection. 2021. Available online: https://www.kaggle.
com/datasets/nguyen49/3000-imagedata-for-crack-detection (accessed on 30 October 2024).

35. Andrew, G.H.; Menglong, Z.; Bo, C.; Dmitry, K.; Weijun, W.; Tobias, W.; Marco, A.; Hartwig, A. MobileNets: Efficient Convolu-
tional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

36. Pennada, S.; Perry, M.; McAlorum, J.; Dow, H.; Dobie, G. Threshold-Based BRISQUE-Assisted Deep Learning for Enhancing
Crack Detection in Concrete Structures. J. Imaging 2023, 9, 218. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1061/(ASCE)SC.1943-5576.0000154
https://doi.org/10.1002/stc.1494
https://doi.org/10.3390/buildings12020156
https://doi.org/10.1007/s11831-020-09471-9
https://doi.org/10.1016/j.autcon.2021.103606
https://doi.org/10.1088/1361-6501/ad296c
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://towardsdatascience.com/teaching-new-tricks-to-an-old-camera-part-ii-b2143374ea43
https://towardsdatascience.com/teaching-new-tricks-to-an-old-camera-part-ii-b2143374ea43
https://doi.org/10.1016/j.compag.2021.106483
https://doi.org/10.3390/s19010217
https://research-repository.griffith.edu.au/items/99f04191-af31-461b-97d2-b46d1e0fd6f0
https://www.kaggle.com/datasets/nguyen49/3000-imagedata-for-crack-detection
https://www.kaggle.com/datasets/nguyen49/3000-imagedata-for-crack-detection
https://doi.org/10.3390/jimaging9100218

	Introduction
	Background and Related Work
	Artificial Intelligence and Its Subfields
	Embedded Device
	Convolutional Neural Networks

	Image Data Preparation
	Research Methodology
	Results and Analysis
	Comparison Between Fine-Tuning and Fixed Feature Extraction Networks
	Training with Different Datasets
	Original Dataset
	Salt and Pepper and Motion Blur Datasets
	Combination Dataset

	Performance on Jetson Nano Crack Detector

	Discussion and Comparison
	Discussion
	Comparison with Alternative Studies

	Conclusions
	References

