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Abstract: Single-molecule fluorescence spectroscopy offers unique capabilities for the low-concentration
sensing and probing of molecular dynmics. However, employing such a methodology for versatile
sensing and diagnostics under point-of-care demands device miniaturization to lab-on-a-chip size. In
this study, we numerically design metalenses with high numerical aperture (NA = 1.1), which are
composed of silicon nitride nanostructures deposited on a waveguide and can selectively focus guided
light into an aqueous solution at two wavelengths of interest in the spectral range of 500–780 nm.
Despite the severe chromatic focal shift in the lateral directions owing to the wavelength-dependent
propagation constant in a waveguide, segmented on-chip metalenses provide perfectly overlapping
focal volumes that meet the requirements for epi-fluorescence light collection. We demonstrate that
the molecule detection efficiencies of metalenses designed for the excitation and emission wavelengths
of ATTO 490LS, Alexa 555, and APC-Cy7 tandem fluorophores are sufficient to collect several
thousand photons per second per molecule at modest excitation rate constants. Such sensitivity
provides reliable diffusion fluorescence correlation spectroscopy analysis of single molecules on a
chip to extract their concentration and diffusion properties in the nanomolar range. Achromatic on-
chip metalenses open new avenues for developing ultra-compact and sensitive devices for precision
medicine and environmental monitoring.

Keywords: achromatic metalens; biosensors; photonic integrated circuits; waveguide; fluorescence
correlation spectroscopy; single-molecule sensing

1. Introduction

Single-molecule fluorescence is paramount for investigating molecular biophysical
processes hidden from ensemble measurements [1]. Its extreme sensitivity and access to
temporal dynamic monitoring make it an appealing methodology for sensing biomolecules
and diagnostics [2–4]. However, optical single-molecule sensing platforms require bulky
and expensive elements, which hinder sensing and diagnostics outside the laboratory.
Several miniaturized single-molecule platforms have been developed based on 3D-printed
microscopes or nanoantenna systems with smartphones [5,6]. Integrating single-molecule
sensing units with photonic integrated circuits ultimately results in sensor miniaturization
and portability [7]. The development of optical components has undergone a transformative
shift with the advent of metasurfaces [8–10], leading to the rise of metalenses, that is, flat,
ultrathin lenses that manipulate light through engineered nanostructures. Unlike refractive
lenses, which rely on curved surfaces to refract light, metalenses modulate the phase
in a designated manner, resulting in the desired output field. Metasurfaces modulating

Sensors 2024, 24, 7781. https://doi.org/10.3390/s24237781 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24237781
https://doi.org/10.3390/s24237781
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7087-0552
https://orcid.org/0000-0003-0240-0035
https://orcid.org/0000-0001-7105-5322
https://orcid.org/0000-0001-8686-6670
https://orcid.org/0000-0002-1048-8308
https://doi.org/10.3390/s24237781
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24237781?type=check_update&version=1


Sensors 2024, 24, 7781 2 of 11

the output light phase represent compact optical devices used in imaging, holography,
and spectrometry [11–13]. Owing to the abundance of low-loss, high-refractive-index
materials, metalenses can be designed for a broad range of wavelengths, from ultraviolet
and visible [14–16] to infrared and terahertz frequencies [17,18]. This versatility presents
new possibilities for miniaturized optical systems for various applications ranging from
telecommunications to biomedical imaging and sensing [19–21]. Their low footprint and
complementary metal-oxide semiconductor compatibility make them appealing for creating
on-chip optical devices by integrating them into photonic circuits to manipulate light
propagation in free space. To control the scattering of light off-chip, meta-atom modes
can be coupled to a guided photonic waveguide, inducing modulation of the phase and
intensity [22,23]. This enables controlled light emission into free space, such as out-of-
plane beam deflection, focusing, and holographic projection [24–28]. This optical device
integration unlocks diverse practical applications for data storage, 3D display, and quantum
computing [28–30].

Despite the increasing interest in integrated metasurface photonics, studies on on-
chip metasurfaces for fluorescence-sensing applications remain scarce. To achieve single-
molecule sensitivity under epi-fluorescence conditions with state-of-the-art detectors, a
high numerical aperture lens with well-overlapped excitation and detection volumes for
the wavelengths of interest is required [31]. Free-space metalenses can focus light without
chromatic aberrations through phase profile compensation at multiple wavelengths [32,33].
Multilayer-stacked transmissive metalenses unlock additional degrees of freedom to con-
trol the phase and amplitude and produce multiwavelength focusing [16,34]. However,
multilayer structures on chips require extremely delicate nanofabrication processes. Seg-
mentation of metalens zones represents an efficient way of making multifocal or achro-
matic transmissive metalenses by modulating the focusing properties of each selected
zone [35–37]. Recently, single-molecule fluorescence detection was experimentally demon-
strated using a free-space transmissive metalens [38]. Unlike transmissive lens optics, the
chromatic focal shift produced by an integrated metalens occurs in both the axial and lateral
dimensions, making focal volume overlap challenging to achieve. In this study, we demon-
strate, to the best of our knowledge, the numerical designs of dual-wavelength metalenses
on a planar waveguide with a high numerical aperture (NA = 1.1) that provides perfect
focal volume overlap for sets of two separate wavelengths in a large spectral range in the
visible and IR regions. The metalenses comprise cylindrical silicon nitride nanoposts on top
of a silicon nitride planar waveguide. Furthermore, they are segmented into even rectangu-
lar zones designated to vertically focus one of the two wavelengths at a defined focal length.
High-NA metalenses provide sufficiently tight focusing to efficiently excite single-point
emitters and collect light from them at the design wavelengths. By selecting the metalens
design wavelengths according to the favorable excitation and emission wavelengths of
the three model fluorophores, ATTO 490LS, Alexa555, and APC-Cy7, we determine the
molecule detection efficiencies around the focal volume under epi-fluorescence excitation.
Given sufficient collected photons, we simulate fluorescence correlation spectroscopy (FCS)
data for molecules diffusing through the metalens detection volume. The possibility of
running an FCS represents a unique platform for the single-molecule fluorescence monitor-
ing of chips. Altogether, the epi-fluorescence achromatic metalenses on waveguides pave
the way for devices with ultimate miniaturization and sensitivity for portable diagnostic
settings and precision medicine.

2. Materials and Methods

Numerical simulations of the optical performance of the metalens on the waveguide
are performed using the finite-difference time-domain (FDTD) method. The planar waveg-
uide and meta-atoms are composed of silicon nitride [39]. We select silicon nitride as a
material for the waveguide and meta-atoms because it exhibits low losses compatible with
visible photonic integrated circuitry and an elevated refractive index for effective light cou-
pling. The metalens of size 20 µm is placed on a tapered waveguide. Point spread functions
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(PSFs) are acquired for three metalens designs that provide achromatic focusing at NA = 1.1
at the excitation and emission wavelengths of the selected model molecules. The fundamen-
tal mode TE is injected into the waveguide. The simulation region boundary conditions
are perfectly matched layers (PMLs). The maximum collection efficiency of the metalens
is estimated by placing an isotropic source in its focal volume and monitoring the power
fraction collected inside the single-mode waveguide. The model fluorescent molecules
are ATTO 490LS, Alexa Fluor 555, and APC-Cy7, which absorb visible and infrared light.
Molecular property data are adopted from the open-source repository [40]. The fluorescent
label ATTO 490LS exhibits a large Stokes shift of 165 nm with a maximum absorption peak
at 496 nm and a maximum fluorescence peak at 661 nm. APC (Allophycocyanin)-Cy7 is a
fluorescent compound with an excitation peak at 651 nm and an emission peak at 779 nm.
Alexa Fluor 555 is a fluorescent compound with excitation peaks at 520 and 553 nm and an
emission peak at 568 nm. FCS data are simulated via Monte Carlo simulations (SimFCS3
https://www.lfd.uci.edu/globals/ (accessed on 1 September 2024) with 300 molecules
diffusing inside a box of 2.4 × 2.4 × 2.4 µm3 that is a constituent of cubic unit cells of 50 nm.
The molecules move stochastically from one unit cell to another, resembling isotropic 3D
diffusion. Autocorrelation functions are reconstructed based on single-molecule brightness
and diffusion time.

3. Results

Figure 1 shows the design concept, dimensions, and operation of the dual-wavelength
metalenses on planar waveguides for single-molecule sensing. The narrow section width
(w1) amounts to 600 nm, and the thickness of the silicon nitride layer is 100 nm. A V param-

eter of a narrow rectangular waveguide can be expressed as V = 2π
λ ·w·

√
n2

wg − n2
clad with

w =
√

w1wh, wh denoting the waveguide layer thickness, nwg being the refractive index of
the waveguide material, and nclad being the refractive index of the silica-on-glass (SOG)
cladding layer. The V parameter values are below 2.4 at 500 nm or higher wavelengths,
which meets the condition of a single-mode waveguide. The excitation wavelength is fo-
cused by the metalens inside a water medium with a high NA to provide efficient excitation
of freely diffusing molecules and a large collection efficiency (Figure 1a). However, to
support substantial fluorescence collection, the emission light around the maximum of
fluorophores has to be collected exactly from the excitation focal volume [31,38]. To provide
detection only from the focal volume, we add a cladding layer of silica-on-glass (SOG) a
few micrometers thick to prevent evanescent waves of the guided mode from reaching the
water medium. We segment a metalens into equal alternating rectangular zones of two
types, where one type is designed to produce a focal volume at the excitation wavelength
(λ1), and the other type generates a focal volume at the same place at a substantially differ-
ent emission wavelength (λ2). To mimic the phase pattern of the outcoupled light in free
space, we assess the phase accumulation inside the waveguide. We numerically simulate a
periodic diffraction grating of cylindrical nanoposts on top of a waveguide. By monitoring
the diffraction angle in the far field, we can deduce the propagation constant (β) according
to the following relation: β(λ) = 2πn

λ sinθ + 2π
Λ , with n denoting the refractive index of the

top cladding, θ the angle of the outcoupled radiation, and Λ the grating period. By setting
Λ at 365 nm, the grating supports close-to-vertical light propagation at a large frequency
band in the visible spectrum. Then, we set the meta-atoms in the intersection positions of
the waveguide-accumulating phase (φwg) and the lens phase equation (φlens). Moreover,
to correct the curved wavefront after light propagation through the taper, we compensate
for the input phase φinput(λ) passing by the first meta-atoms. Thus, the meta-atom posi-
tions (x,y) satisfy the condition φwg(x, y) ≈]φlens(x, y) (Figure 1b). These two functions are
expressed as follows:

φwg(x, y) =
2

∑
i=1

[β(λi)·x + φinput(y, λi)]Loci(y), (1)

https://www.lfd.uci.edu/globals/
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φlens(x, y, λ) =
2

∑
i=1

2πn
λi

(
F −

√
F2 + x2 + y2

)
Loci(y). (2)
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Figure 1. Single-molecule epi-fluorescence sensing by metalens on the chip. (a) Scheme of the epi-
fluorescence sensing of diffusing single molecules. The metalens dimensions are designated as fol-
lows: metalens size (Dmetalens), taper length (Ltaper), narrow single-mode waveguide width (w1), wide 
waveguide width (w2), waveguide height (wh), thickness of the upper cladding layer of SOG (hSOG). 
The metalens focal length is approximately 7 µm, while the height and diameter of the cylindrical 
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range from −Ltaper/2 to Ltaper/2. (b) The meta-atom position produces a phase map focusing on two 
wavelengths. The phase profiles of the metalenses are represented along the propagation direction 
of light in the waveguide. (c) Segmentation of the metalens into two zones to generate foci at two 
wavelengths. (d) Coupling strength of modes of meta-atom and waveguide in a broad wavelength 
range. (e) Near-field transmission of the meta-atoms. The white line corresponds to the meta-atom 
height selected for designing integrated metalenses. 

Here, 𝐿𝑜𝑐௜(𝑦) equals zero for y values outside the ith segment and one for y values 
inside the ith segment (Figure 1c), and F is the focal distance of the metalens on the wave-
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Figure 1. Single-molecule epi-fluorescence sensing by metalens on the chip. (a) Scheme of the
epi-fluorescence sensing of diffusing single molecules. The metalens dimensions are designated
as follows: metalens size (Dmetalens), taper length (Ltaper), narrow single-mode waveguide width
(w1), wide waveguide width (w2), waveguide height (wh), thickness of the upper cladding layer
of SOG (hSOG). The metalens focal length is approximately 7 µm, while the height and diameter of
the cylindrical meta-atoms amount to 500 nm and 200 nm, respectively. The taper shape follows

a relation: y = α ·
(

Ltaper
/

2 − x
)m

+ w2
/

2, where α = w1 − w2
/

2Lm
taper

, with m being 1.15 and x

belonging to the range from −Ltaper/2 to Ltaper/2. (b) The meta-atom position produces a phase
map focusing on two wavelengths. The phase profiles of the metalenses are represented along the
propagation direction of light in the waveguide. (c) Segmentation of the metalens into two zones to
generate foci at two wavelengths. (d) Coupling strength of modes of meta-atom and waveguide in a
broad wavelength range. (e) Near-field transmission of the meta-atoms. The white line corresponds
to the meta-atom height selected for designing integrated metalenses.

Here, Loci(y) equals zero for y values outside the ith segment and one for y values
inside the ith segment (Figure 1c), and F is the focal distance of the metalens on the
waveguide in the cladding medium.

We select F according to the design numerical aperture as: NA = n·sin
(

arctan
(

D/
2F

))
.

The focal distance for such a metalens size exceeds ten wavelengths for the selected excita-
tion wavelengths, making it a purely far-field-based detection system. Equation (1) for φwg
is valid as long as the coupling strength between a meta-atom and waveguide remains weak
to ensure that the coupling strength κ is significantly lower than the imaginary part Γ of the
eigenfrequency Ω− iΓ of the hybrid cylinder-waveguide mode. The coupling strength is de-
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fined via the coupled modes theory with the integral κ ∝
∫

Σ dΣ
(

E∗
wg × Hcyl + Ecyl × H∗

wg

)
over the base of the cylinder Σ (being the scattering port) of the fields Ecyl and Hcyl of
the quasi-normal mode of the cylinder and fields Ewg and Hwg of the guided wave [41].
Note that this approach would work for TE polarization better since the scattering for this
polarization is simpler and waveguide-cylinder scattering is weaker, which is one of the
main reasons we consider a fundamental TE mode. To avoid normalization difficulties of ra-
diative quasi-normal modes, one can consider the ratio of coupling strength to Γ (Figure 1d).
Our calculations show that this ratio does not exceed 10−9, proving that the waveguide
and cylinder modes are weakly coupled. The coupling strength rises with the fill factor of
the junction area of the meta-atom and the waveguide. The meta-atom diameter is fixed
at 200 nm to provide a sufficiently high coupling strength without perturbing the phase
accumulation process in the waveguide. An increase in the diameter leads to perturbed
focusing in free space and a low inter-cylinder distance, complicating the device fabrication
process. By propagating a plane wave from the waveguide through the meta-atoms we
evaluate the near-field transmission. The transmission is reduced at low meta-atom heights
(Figure 1e); therefore, the selected height of 500 nm yields a transmission of approximately
90% over a broad wavelength range. The high transmission values are within the reach for
numerically optimized heights thanks to the nearly lossless nature of silicon nitride in the
visible spectrum.

To confirm the potential of this methodology for single-molecule sensing on a chip,
we select three fluorophores with large and modest Stokes shifts as model analytes: ATTO
490 LS, Alexa Fluor 555, and APC-Cy7 tandem molecules. These models rely on molecular
spectrum, quantum yield, and fluorescence lifetime datasets. Thus, three dual-wavelength
metalens designs are modeled to efficiently excite the molecules and collect fluorescence
around the emission maximum as follows: 500 and 660 nm for ATTO 490LS, 520 and 570 nm
for Alexa 555, and 650 and 780 nm for APC-Cy7. Light propagation from the single-mode
waveguide toward the metalens on top of the taper and coupling to free-space radiation
is simulated using FDTD. We retrieve the PSFs for the three designs at the wavelengths
of interest. The dual-wavelength metalenses on the chip produce well-defined focal spots
in a water medium with well-overlapping contours along the axial and lateral directions
(Figure 2a,c,e). For comparison, we also simulate a one-segment metalens on the chip for the
excitation wavelength only (Figure 2b,d,f). The focal spots at the emission wavelengths are
formed at highly deviated positions in both the axial and lateral directions. Although the
axial position shift arises from the wavelength-dependent lens phase profile, the difference
in the propagation constant produces a change in the propagation angle, which leads to
a drastic lateral focal position shift and focal volume distortion. This significant focal
volume mismatch makes epi-fluorescence sensing with chromatic integrated metalenses
elusive. In the case of dual-wavelength metalenses, the large wavelength separation
almost completely prevents the second-focus residual intensity in the PSF (Figure 2a,e).
However, the residual intensity from the second focus remains minor even for Stokes
shifts of 50 nm (Figure 2c) because light propagation along the vertical direction from the
metalens remains more favorable. The focusing efficiency of the metalens varies from
8% to 10% for each wavelength, which competes well with the independent designs of
single-wavelength integrated metalenses [42]. Owing to the symmetry of the scattering
matrix of the metalens–waveguide–environment system, the dynamics of such a system
is reciprocal [43]. Therefore, the problem of light outcoupling from the waveguide and
incident light collection by the waveguide from free space can be considered equivalent.

In the context of FCS produced with an epi-fluorescence configuration, diffusing
molecule emissions can be detected only if the excitation and detection focal volumes
overlap. The metalens focal spots at molecule excitation and emission wavelengths exhibit
a perfect spatial match in the lateral dimensions, proving that the difference of φwg at
two wavelengths is compensated for producing focusing with high NA (Figure 3a,d,g).
The beam diameter full width at half maximum (FWHMx/y) approaches the diffraction
limit of conventional high-NA objective lenses. The metalenses designed for the Alexa
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490 LS, Alexa 555, and APC-Cy7 tandem molecules have beam diameters of 220, 250, and
276 nm, respectively, at the corresponding excitation wavelengths (Figure 3b,e,h). The
beam diameters approach the diffraction-limited performance of analog free-space lenses.
Similarly, the axial chromatic shift is corrected for all three designs, and the focal distance
mismatch is <50 nm (Figure 3c,f,i).
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detection at 650 and 780 nm. (f) PSF of single-wavelength metalens at 650 and 780 nm. The color bars
depict optical field intensity.

In this case, the molecular detection efficiency (MDE) in the epi-fluorescence configu-
ration is represented as follows [44,45]:

MDE(x, y, z) = Iexc(x, y, z)·CEF(x, y, z), (3)

where Iexc is the excitation intensity profile, and CEF is the emission collection efficiency
within a detection frequency band. The molecular dipole rotation processes occur several
orders of magnitude faster than the diffusion through a microscopic focal spot; therefore,
diffusing molecules are typically considered isotropic point sources in the context of 3D
diffusion FCS. The collection efficiency of the isotropic diffusion source in the focal volume
is expressed as follows:

CEF(x, y, z) = Pmax

∫
F(λ)·Idet(x, y, z, λ)dλ∫

F(λ)dλ
, (4)
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with Pmax denoting the fraction of coupled emitted photons into the waveguide from an
isotropic light source located in the focal volume at the emission maximum Idet PSFs at the
detection band around the emission wavelength. F(λ) denotes the fluorescence intensity
spectra of the molecules of interest (Figure 4a–c). Because the metalens design operates in
the TE0 mode, only one-third of the photons emitted by the isotropic source can be collected.
The proposed metalens designs yield MDE values of 0.015–0.05% for ATTO 490LS, Alexa
555, and APC-Cy7 (Figure 4d–f). Regardless of this low value, even objective lenses of high
transmission and aberration correction quality notably often yield MDE values between
0.1% and 1% [46]. In contrast, the miniaturized on-chip metalens exhibits an extremely
small thickness of 500 nm and a lateral size of 20 µm. They can be produced in a scalable
manner within photonic integrated circuits.
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Figure 3. Lateral PSF and linear intensity profiles of dual-wavelength metalenses on the chip.
(a) Lateral PSF of metalens for ATTO 490LS fluorescence detection at 500 and 660 nm. (b) Horizontal
cut of the images in (a). (c) Axial intensity profiles of the metalens for ATTO 490LS fluorescence
detection at 500 and 660 nm. (d) Lateral PSF of metalens for Alexa 555 fluorescence detection at
520 and 570 nm. (e) Horizontal cut of the images in (d). (f) Axial intensity profiles of the metalens
for Alexa 555 fluorescence detection at 520 and 570 nm. (g) Lateral PSF of metalens for APC-Cy7
fluorescence detection at 650 and 780 nm. (h) Horizontal cutoff of the images in (g). (i) Axial intensity
profiles of the metalens for APC-Cy7 fluorescence detection at 650 and 780 nm.

To numerically assess the possibility of collecting a sufficient number of photons from
single diffusing molecules, we utilize the formalism of molecular emission based on a
two-level system with a low excitation intensity. The number of collected photons from the
molecules in the absence of photobleaching is determined as NF = MDE·ψ·S1·k f l [47,48],
where ψ denotes the quantum yield of the molecule. S1 denotes the time-independent
average population of the singlet excited state. In addition, it amounts to kex/

(
k f l + kex

)
,

with k f l being the fluorescence rate constant and kex being the excitation rate constant. By
exploiting available datasets of quantum yields, fluorescence spectra, and fluorescence
lifetimes (τf l = 1/k f l) for the molecules of interest, we compute the number of collected
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photons per molecule under the condition of kex = 0.1k f l , which would support a negligible
photobleaching probability condition in real experimental applications. We estimate that
our metalens designs enable single-molecule count rates of 1.6, 5.4, and 5.3 kcounts/s
for ATTO 490LS, Alexa 555, and APC-Cy7 molecules, respectively. These single-molecule
brightness levels exceed the requirements for diffusion FCS, which allows direct probing
of the number of molecules and their size based on fluorescence intensity fluctuations
(Figure 5a–c). The possibility of observing autocorrelation functions within a reasonable
acquisition time would serve as robust proof of single-molecule sensitivity [49] and a read-
out of the biomolecule size and concentration. The acquisition time set in the simulations is
30 s, which complies with the standard FCS sensing measurement settings. The fluorescence
correlation functions are reconstructed with a high signal-to-noise ratio (SNR), whereas
the latter increases with higher NF and MDE, as expected from theory. The autocorrelation
function noise decreases linearly with an increase in NF. Although other loss channels may
lead to reduced NF, they can be partly compensated by kex or accumulation time increase.
The detection volume of the metalens in the far field is approximately 0.17 fl, which can be
applied to studies on molecular dynamics at nanomolar concentrations.
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4. Discussion

To the best of our knowledge, this is the first numerical demonstration of a dual-
wavelength metalens on a planar waveguide with a high numerical aperture. Photonic
integrated circuits represent the ultimate miniaturization scheme for optical sensing de-
vices [7], making this methodology valuable for truly portable sensors. The proposed
metalens design relies on the spatial segmentation of meta-atom regions, where each seg-
ment produces vertical focusing of light at one or the other wavelength. The design can be
easily tuned by choosing the two wavelengths over a broad spectral range. By selecting
wavelengths for favorable molecule fluorescence excitation and collection, we model the
epi-fluorescence sensing of diffusing single molecules of ATTO 490 LS, Alexa 555, and
APC-Cy7. Owing to the extreme focal shift in the lateral and axial directions for substantial
wavelength separation, the proposed method excites and collects single-molecule fluores-
cence on a chip for molecules with large Stokes shifts. Owing to the perfect overlap of
the focal volumes and the high NA of the metalens, the count rate per single molecule
reaches a few thousand photons per second. This sensitivity level is sufficient for FCS
to probe the concentration, size, and molecular interactions, or the binding of a labeled
biomarker at nanomolar concentrations on a chip. The proposed methodology can be
extended to multi-wavelength spectroscopy; however, the drawbacks of reducing focusing
efficiency and complication of the multifocal pattern may yield to the performance of
dual-wavelength operation for epi-fluorescence single-molecule sensing. Although the
proposed methodology requires state-of-the-art fabrication facilities and complex opti-
cal setups for experimental concept demonstration, the geometries of the silicon nitride
nanoposts and tapered waveguides can be treated with state-of-the-art nanofabrication
technologies. Similar to near-field metasurfaces that allow sensitive biomarker detection,
far-field on-chip metalenses can sense low analyte concentrations [50–52] while probing the
exact concentration, molecular size, and possible intermolecular interactions. We believe
that this platform will open prospective routes toward broad applications of miniatur-
ized integrated metalenses as portable single-molecule sensors for diagnostics, precision
medicine, and environmental monitoring.
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