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Abstract

The obligate intracellular bacterial genus Chlamydia harbours species with zoonotic potential, particularly C. psittaci, causative agent of
psittacosis, and C. abortus, which may lead to miscarriage in pregnant women. The impact of other bird chlamydiae such as C. avium, C.
gallinaceae, and C. buteonis, or reptilian species such as C. crocodili, amongst others, on human health is unclear. The chlamydial native
plasmid, a suspected virulence factor, is present in all currently described 14 Chlamydia species except for some plasmid-free strains.
The plasmid is also the primary tool to study chlamydial genetics, a still developing field that has mostly focused on C. trachomatis.
Only recently, genetic transformation of C. felis, C. pecorum, C. pneumoniae, C. psittaci, and C. suis has succeeded, but existing methods
have yet to be refined. In this review article, we will provide an update on the recent developments concerning the zoonotic potential of
chlamydiae. Furthermore, we present an overview about the current state of knowledge regarding the chlamydial plasmid in terms of
prevalence and significance as a virulence factor. Finally, we give insights into the progress of developing genetic tools for chlamydial
species other than C. trachomatis with a special focus on zoonotic and veterinary chlamydiae.
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Update on zoonotic and nonzoonotic
veterinary chlamydiae

The bacterial family Chlamydiaceae currently comprises the genus
Chlamydia with 14 officially accepted species (Table 1) and a
very recently added genus Chlamydiifrater with two new species,
Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris
sp. nov., both isolated from wild flamingos (Phoenicopterus roseus)
(Vorimore et al. 2021). Of all the currently accepted Chlamydi-
aceae species (Luu et al. 2023), the most studied species is C. tra-
chomatis, restricted to human hosts and responsible for a chronic
eye infection, termed trachoma, as well as the most common
cause of bacterial sexually transmitted infections (STI) world-
wide (Jordan et al. 2020). Of the remaining species, four nonhu-
man chlamydiae possess a confirmed zoonotic potential, namely
C. psittaci, C. abortus, C. caviae, and C. felis, which have been ex-
tensively reviewed (Cheong et al. 2019, Sachse and Borel 2020,
Borel and Sachse 2022). The focus of this chapter is to provide a
brief update on well-known zoonotic chlamydial species and to
further explore animal-to-human transmission of newly discov-
ered chlamydial species in birds, livestock, pets, and exotic an-
imals, as well as to look into uncommon reservoirs of zoonotic
infection.

Chlamydia sp. in birds

Domestic and wild birds are among the most common sources for
zoonotic chlamydial infections, for which, until recently, C. psittaci
was considered to be the primary infecting chlamydial species (re-
cently reviewed in Ravichandran et al. 2021). Historical epidemics
of psittacosis were documented from the late nineteenth cen-
tury to the 1930s, often associated with the trade of exotic birds.
Since then, C. psittaci has been detected in many different avian
hosts, including pigeons, poultry, and wild birds, often following
human cases. However, recent research has identified new species
of Chlamydia in birds, with or without clinical signs in their hosts.
These discoveries have broadened the definition of ‘avian chlamy-
diosis’ to include C. gallinacea, C. avium, C. buteonis, and Candidatus
C. ibidis.

C. psittaci is probably the most important species of the vet-
erinary chlamydiae from a One Health perspective. It has been
described in over 460 species of wild and captive birds worldwide
(Kaleta and Taday 2003), although nonspecific serological testing
in the past may have overestimated its presence while missing
the more recently described species. Based on genomic analyses,
C. psittaci is divided into two genotypes (WC and M56) isolated
from mammals and six avian genotypes identified in psittacines,
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ducks, pigeons, and other birds (Sachse et al. 2023). All avian geno-
types of C. psittaci have a zoonotic potential, with the psittacine
strains most commonly implicated in human infections, particu-
larly. Community-acquired pneumonia (CAP), to which C. psittaci
contributes 1% of all cases (Hogerwerf et al. 2017). Human psit-
tacosis/ornithosis presents with mild to severe respiratory symp-
toms, including fever, pneumonia, myocarditis, encephalitis, and
splenomegaly, and may require hospitalization (Dembek et al.
2023). Zoonotic infection usually occurs through inhalation of
feather dust or dried faeces after contact with an infected ani-
mal. High-risk groups include breeders, veterinarians, pet shop,
or bird care centre staff as well as slaughterhouse workers. Veteri-
nary laboratory personnel handlinginfectious material are also at
risk of infection. Acute clinical signs predominate in young birds,
while infections often remain mild or asymptomatic in older birds.
Clinical signs in birds include coughing, respiratory distress, con-
junctivitis, nasal and ocular discharge, and sometimes greenish
diarrhoea (Hogerwerf et al. 2020). Disease outbreaks in certain ge-
ographical regions can cause significant economic losses to the
poultry industry due to carcass condemnation, reduced egg pro-
duction, mortality, and antibiotic treatment costs, as well as pos-
ing an ongoing zoonotic risk. Interestingly, the host specificity of C.
psittaci is not strict, and strains have been isolated from nonavian
species such as dogs (Sprague et al. 2009) and, more recently, from
horses in Australia (Anstey et al. 2021). Zoonotic transmission to
human from equine abortion cases caused by C. psittaci has been
described (Chan et al. 2017).

Over the last 20 years, several strains have been isolated from
birds that were initially described as ‘similar to C. psittaci’ or
‘atypical’, before they were revisited and better characterized.
This has led to the description of new species. C. gallinacea and
C. avium were among the first new species described, marking
the expansion of the Chlamydiaceae family in birds (Sachse et
al. 2014). In 2009, an investigation in a poultry slaughterhouse
in France revealed atypical chlamydiae isolated from chickens,
which were distinct from C. psittaci (Laroucau et al. 2009). Phy-
logenetic analysis and whole genome sequencing later led to the
description of C. gallinacea in 2014 (Sachse et al. 2014). Although
these strains were initially suspected of causing human pneumo-
nia cases, this has never been confirmed. C. gallinacea is primar-
ily found in chickens, although its presence has anecdotally been
demonstrated in other birds such as pigeons, woodcock, and par-
rots, as well as in ruminants (Guo et al. 2016, Li et al. 2016, Stokes
et al. 2019). Globally distributed, genome analysis of C. gallinacea
reveals significant heterogeneity within the species, although it
is not yet known whether these genetic differences have func-
tional implications for host adaptation or strain virulence (Hei-
jne et al. 2021). Additionally, a retrospective study of chlamydial
strains isolated from pigeons in Italy and France, and from tis-
sues collected from psittacines with clinical signs in Germany,
led to the description of C. avium in 2014 (Sachse et al. 2014). C.
avium is primarily detected in pigeons and psittaciform birds, al-
though its presence in other birds is suspected and anecdotally
demonstrated.

C. buteonis, a chlamydial species closely related to C. psittaci
and C. abortus, and so far exclusively isolated from birds of
prey, can cause clinical signs such as conjunctivitis and may
be fatal in extreme cases, although an asymptomatic carrier
status appears to predominate. C. buteonis has been identified
in birds of prey both in the USA (Mirandé et al. 1992, Larou-
cau et al. 2019) and more recently in the United Arab Emirates
(UAE) (Stalder et al. 2021), with different genotypes for which
it is not known whether they are related to geographical re-
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gions (USA versus UAE) or hosts (falcon versus hawk) (Vorimore
et al. 2021).

Finally, during sampling of wild ibises in France to assess their
potential role in transmission of C. psittaci to ducks, atypical
chlamydial strains were isolated, which were then identified as
Candidatus C. ibidis (Vorimore et al. 2013). This Candidatus species
hasbeen isolated from healthy African sacred ibises in France and
more recently from crested ibises in China (Li et al. 2020) and wild
birds in Australia (Kasimov et al. 2022), indicating worldwide dis-
tribution.

It is likely that other avian species will continue to enrich this
expanding family. As C. psittaci is the only species with confirmed
zoonotic potential, the terms ‘psittacosis’ or ‘ornithosis’ are still
used to describe C. psittaci infections in humans (Borel and Greub
2021).

Chlamydia sp. in livestock

Chlamydia abortus is the most common infectious abortigenic
agentin sheep and goats in Europe and, to a lesser extent, in other
wild and domestic ruminants, pigs, and horses (Buxton 1986, Hyde
and Benirschke 1997, Longbottom and Coulter 2003, Borel et al.
2018). This pathogen is well known to pose a significant risk to
pregnant women leading to miscarriage (Pospischil et al. 2002, Es-
sigand Longbottom 2015, Burgener et al. 2022). Recent uncommon
clinical presentations in pregnant women included the develop-
ment of acute respiratory distress syndrome (Pichon et al. 2020)
and severe atypical pneumonia (Imkamp et al. 2022). All histor-
ical and recent cases have been linked to direct or indirect con-
tact to aborting or lambing sheep and goats but not to other live-
stock. A 65-year-old male patient suffering of septic shock due to
C. abortus denied any animal contact (Liu et al. 2022), highlight-
ing the need to explore sources of environmental exposure to this
and other chlamydial species (Turin et al. 2022). Novel C. abortus
strains have recently been found in birds, initially interpreted as
intermediates of C. abortus and C. psittaci (Szymanska-Czerwinska
etal. 2017, 2023, Origlia et al. 2019, Zareba-Marchewka et al. 2020,
2021, Longbottom et al. 2021, Stokes et al. 2021, Aaziz et al. 2023,
Kasimov et al. 2023). These novel C. abortus strains harbour a plas-
mid (Zareba-Marchewka et al. 2021) and may cause pneumonia in
humans (Raven et al. 2024).

Another common livestock pathogen, C. pecorum, known to
cause abortion, encephalomyelitis, and polyarthritis in rumi-
nants, has so far not been considered a zoonotic pathogen (Sachse
and Borel 2020). There is one single case report of a sheep farmer
suffering from severe CAP. C. pecorum was detected in the broncho-
alveolar lavage of this patient, indicating some level of zoonotic
transmission (Cao et al. 2022). Although no causative relationship
between CAP and C. pecorum infection could be demonstrated, the
assumption that C. pecorum is not zoonotic should undergo some
reassessment.

C. suis, highly adapted to and endemic in pigs, mostly colonizes
the intestinal tract asymptomatically resulting in faecal shed-
ding (Schautteet and Vanrompay 2011, Hoffmann et al. 2015). This
chlamydial species is of particular concern since many strains
harbour a tetracycline resistance gene, which is likely transmitted
within C. suis, and potentially to other chlamydial species, through
homologous recombination (Lenart et al. 2001, Dugan et al. 2004,
2007, Suchland et al. 2009, Joseph et al. 2016, Seth-Smith et al.
2017b). C. suis has been isolated from farmers and slaughterhouse
workers but no disease resulted from these zoonotic infections
and none of the isolates were resistant to tetracycline (De Puys-
seleyr et al. 2014a,b, 2017, Kieckens et al. 2018). There is a single



4 | Pathogens and Disease, 2024, Vol. 82

report of C. suis being detected in the eyes of trachoma patients
from Nepal (Dean et al. 2013).

Chlamydia sp. in pets

Apart from pet birds, guinea pigs and cats are known carriers
of chlamydial species. C. caviae is present in the eyes and rec-
tum of clinically healthy guinea pigs with prevalences <10% (2.7%
in Switzerland and 8.9% in the Netherlands), but may induce
conjunctivitis, pneumonia, and abortion in these hosts (Ciuria et
al. 2021). This pathogen recently received attention as a cause
of severe atypical pneumonia cases in humans (Ramakers et al.
2017). Before the emergence of these severe pneumonia cases
in the Netherlands, C. caviae was known to cause conjunctivi-
tis in guinea pig owners after close contact (Lutz-Wohlgroth
et al. 2006).

C. felis is widespread and endemic in both, household cats
and stray cats, causing conjunctivitis (Bressan et al. 2021). Its
zoonotic potential is considered low with six cases of follicu-
lar conjunctivitis in human patients reported between 1969 and
2017 (Ostler et al. 1969, Darougar et al. 1978, Lietman et al. 1998,
Hartley et al. 2001, Bomhard et al. 2003, Sykes 2005, Wons et
al. 2017). A less common clinical picture of chronic follicular
conjunctivitis with three cases, all related to cat contact, were
recorded in the Netherlands between 2017 and 2022 (Hughes
et al. 2024).

Chlamydia sp. in exotic animals

The human respiratory pathogen C. pneumoniae, responsible for
7% of human CAP cases (Merida Vieyra et al. 2023), possesses one
of the broadest host ranges of all known Chlamydia species, which
includes mammals such as horses, marsupials (e.g. koalas) but
also reptiles and amphibians (Sachse and Borel 2020). Evolution-
ary data indicate that human strains were zoonotically acquired
(Roulis et al. 2013), however, no current zoonotic infections are
published.

In recent years, reptile-specific chlamydial species have been
identified, namely C. poikilotherma, Candidatus C. serpentis, and
Candidatus C. corallus in snakes (Taylor-Brown et al. 2017, Staub
et al. 2018), and C. crocodili as well as new Candidatus species in
crocodiles (Chaiwattanarungruengpaisan et al. 2021, 2024). Their
host spectrum as well as zoonotic potential is currently unknown
and should be investigated further.

Potential sources of zoonotic transmission

Zoonotic transmission has not only been associated with direct or
indirect contact to farm animals and pets (e.g. contaminated bed-
ding, pastures, instruments, and handling contaminated clothes).
Wild animals and the environment are gaining importance as
reservoirs for zoonotic chlamydial infections (Burnard and Polk-
inghorne 2016). In Sweden, psittacosis cases have recently been
associated with wild birds and bird feeders in winter but without
direct contact to domestic birds (Herrmann et al. 2024). Similarly,
avian C. abortus cases involving 10 human infections and one mor-
tality case also reported no animal contact, and remained without
obvious source of infection (Raven et al. 2024). Moreover, there are
human pneumonia cases of C. caviae that could not be linked to
direct guinea pig contact (van Grootveld et al. 2018). These cases
indicate a survival of chlamydiae in the environment. Chlamydia
psittaci is well-known for its aerosolization capabilities as well as
survival in dust, but more recently, other chlamydial species such
as C. suis could be detected from dust in pig farm environments
(Unterweger et al. 2024).

The role of the plasmid in chlamydiae

Occurrence and basic structure of the native
chlamydial plasmid

In the early 1980s, researchers identified plasmid-like DNA in C.
trachomatis. This double stranded circular DNA plasmid, ~7.5 kb
in size, was subsequently found to be highly conserved across dif-
ferent Chlamydia species and strains, suggesting a pivotal role for
both survival and virulence (Szabo et al. 2020).

In detail, the chlamydial plasmid exhibits several distinct prop-
erties: it possesses eight genes or coding sequences (CDS) with a
copy number 4-10 times that of the chromosome (Thomas et al.
1997, Pickett et al. 2005). A detailed map of the plasmid from C.
trachomatis and its coevolution with the chromosome has been
described (Seth-Smith et al. 2009). A recent study further com-
pared the plasmids of 10 recognized chlamydial species and iden-
tified three distinct plasmid lineages of which the first comprised
C. pecorum and C. pneumoniae, the second C. trachomatis, C. suis, and
C. muridarum, and the third all remaining species (C. psittaci, C. fe-
lis, C. caviae, C. avium, and C. gallinaceae) (Szabo et al. 2020). These
plasmid lineages coincided with the corresponding genotypes that
were based on the ompA gene that encodes for the major outer
membrane protein (Szabo et al. 2020). Here, we included the re-
maining four recognised species (C. abortus, C. buteonis, C. crocodili,
and C. poikilotherma) and observed a similar but not identical strat-
ification of the whole chromosome into four major clusters (Fig. 1).
Specifically, the four additional species fell into the largest clade,
which shares a significant core-genome [average nucleotide iden-
tity (ANI) >77.8%)]. C. trachomatis, C. suis, and C. muridarum belong
to a distinct second clade (ANI > 80.8%), followed by two mono-
specific clades for C. pneumoniae and C. pecorum (Fig. 1). The plas-
mid sequences were conserved and only CDS3 showed significant
variation within the clades with C. trachomatis, C. muridarum, and
C. suis diverging from the other clades (Fig. 1).

The individual properties of the chlamydial plasmid encoded
proteins have also been studied and they are involved in DNA
replication, plasmid maintenance, and modulation of host cell
functions (Zhong 2017). The plasmid encodes a strong promoter
driving the transcription of short antisense RNAs. There are addi-
tional promoters and a complex transcription profile with tempo-
ral controls as well as some CDS with transcriptional start points
(Ricci et al. 1993, 1995).

The plasmid enhances pathogenicity and infection efficiency.
For example, the plasmid-protein Pgp3, encoded by CDS 5, is
known to be involved in immune modulation and enhancing abil-
ity of the bacterium to invade specific host cells (Huo et al. 2020).
These properties underscore the role of the plasmid in fine-tuning
the adaptability and pathogenicity of Chlamydia.

Plasmid-free Chlamydia strains

Notably, the plasmid is not essential for the existence of the bac-
terium, as plasmid-free Chlamydia strains occur naturally. How-
ever, only three such ‘live’ clinical isolates of C. trachomatis have
been described (Peterson et al. 1990). In C. trachomatis, the loss of
the plasmid in vivo is likely associated with a loss of virulence,
which amounts to a loss of fitness and ultimately an extinction
event for that specific plasmid. This is because such strains fail
to propagate in the human population, consistent with the no-
tion of loss of virulence. However, plasmid loss can occur sponta-
neously in vitro (Matsumoto et al. 1998). Furthermore, the plasmid
can be ‘cured’ chemically (O’Connell and Nicks 2006, Skilton et al.
2018). In both C. trachomatis and C muridarum, loss of the plasmid
results in a change of inclusion phenotype and loss of the ability
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Figure 1. Pangenome analysis of 109 Chlamydia spp. genomes. All complete genomes from GenBank carrying a plasmid were included. Separate
analysis was done for the chromosomal genes and the plasmid genes. The pangenomic analysis was done following the workflow pangenomic of
Anvi'o 8 using Diamond and the default parameters for clustering the genes. The gene clusters are organized according to their distribution across the
genome, with co-occurring genes shown closer together. The layers are colour coded per species and represent individual genomes organized by their

phylogenomic relationships based on ANI.

to synthesize glycogen within the inclusion. There is phylogenetic
evidence, based on SNP analyses, that the plasmid can be trans-
ferred naturally between chlamydiae from the rare detection of
recombination between plasmids in C. trachomatis isolates (Har-
ris et al. 2012). In a comprehensive follow-up study of chlamydial
genomes, plasmid replacement between lineages confirmed the
natural transfer of the plasmid (Hadfield et al. 2017). This can only
have occurred through mixed infection and plasmid exchange.
By contrast, there are entire clusters within other chlamydial
species that are stably plasmid-free such as the human C. pneu-
moniae isolates (Table 1) and all known ruminant C. abortus strains
as opposed to the avian strains that all carry a plasmid (Seth-
Smith et al. 2017a, Longbottom et al. 2021, Zareba-Marchewka
et al. 2021).

In C. pecorum, while the plasmid is frequently found in strains
originating from different hosts, plasmid-free strains have been
characterized and may be common among bovine strains (Is-
lam et al. 2019, Jelocnik et al. 2023, Hagenbuch et al. 2024).
It has been speculated that the plasmid plays a role as a
virulence factor in koala strains, but this could not be con-
firmed in a study comparing different strains (Fernandez et
al. 2023). Interestingly, a study of abortigenic ovine C. peco-
rum strains found a distinct link between virulence and a 34-
bp deletion in the nonessential CDS 1 of the plasmid (Jelocnik
etal. 2023).

In contrast, almost all known strains of C. suis are plasmid-
bearing except for one strain. The significance of the C. suis plas-
mid as a virulence factor is currently unclear (Joseph et al. 2016,
Seth-Smith et al. 2017b).

The significance of the chlamydial plasmid in
diagnostics and vaccine development

Because the plasmid is highly conserved in C. trachomatis and
present in nearly all clinical isolates, it serves as an excellent tar-
get for diagnostic tests, helping to identify infections. However, in
2006, a genital tract strain of C. trachomatis emerged in Sweden car-
rying a deletion that escaped detection by two of the main com-
mercial tests (Ripa and Nilsson 2007). This became an exemplifier
of selection by diagnostic failure and subsequent lack of treat-
ment. As a result, dual target testing became the norm in screen-
ings for STI. In veterinary medicine, most tests continue to use
only one target gene, which, for chlamydiae, tend to be located on
the chromosome such as the gene encoding for the major outer
membrane protein (ompA) and the 23S ribosomal RNA sequence
(Pantchev et al. 2009, 2010). One of the reasons why the plasmid
has not been considered as the primary diagnostic target is the
absence of plasmid in many veterinary chlamydiae, especially in
C. abortus. However, the Pgp3 protein of C. trachomatis and C. psittaci
has been used as a target for serological testing of animal and hu-
man infections (Donati et al. 2009).

The plasmid’s nonessential nature also makes it an attractive
candidate for developing plasmid-free C. trachomatis strains for
use in live attenuated vaccines (Kari et al. 2011), but not in veteri-
nary chlamydiae given its uncertain role as a virulence factor. By
understanding the plasmid’s structure and function in each indi-
vidual chlamydial species, scientists are exploring ways to disrupt
its role in infection, paving the way for novel treatment strate-
gies. This research highlights the plasmid’s significance not only
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in basic microbiology but also in advancing clinical interventions
against chlamydial diseases.

The native plasmid as a tool for genetic
modification

The obligate intracellular nature of the Chlamydiaceae family has
impeded efforts to understand the biology of these complex bac-
teria. However, the stable and conserved nature of the chlamydial
plasmid has facilitated the development of tools for genetic ma-
nipulation of the Chlamydiaceae family (Wang et al. 2011). This has
opened new avenues for studying chlamydial genetics including
the molecular mechanisms underlying chlamydial infections for
example virulence, host interactions, and immune evasion strate-
gies (O'Neill et al. 2020, Banerjee and Nelson 2021). In the next
chapter, we will discuss currently available tools for all recognized
Chlamydia species as well as important findings that could be cru-
cial for future gene modification trials.

Transformation of human, zoonotic, and
other veterinary Chlamydia species

Since Wang et al. (2011) demonstrated stable transformation
of C. trachomatis using a species-specific shuttle vector, various
strategies for editing the chlamydial genome or mRNA expres-
sion have been established by different research groups. They in-
clude protein expression systems under promoter control (Bauler
and Hackstadt 2014), TargeTron (Johnson and Fisher 2013, Weber
et al. 2016), fluorescence-reported allelic exchange mutagenesis
(FRAEM) (Mueller et al. 2016), floxed-cassette allelic exchange mu-
tagenesis (FLAEM) (Keb et al. 2018), CRISPRi (Ouellette 2018), sR-
NAs (Wang et al. 2022), and transposon mutagenesis (LaBrie et al.
2019, Wang et al. 2019, O'Neill et al. 2021).

While these novel techniques enable the characterization of
chlamydial virulence factors primarily in C. trachomatis, there are
fewer tools available for other Chlamydia spp. Table 1 lists all cur-
rently known transformation systems developed for all 14 recog-
nised chlamydial species. Specifically, TargeTron was successfully
used for C. caviae (Filcek et al. 2019), allelic exchange vectors for
C. suis and C. psittaci (Binet and Maurelli 2009, Marti et al. 2023),
and a protein expression system under a tetracycline promoter-
control system was developed for C. psittaci (Shima et al. 2020).
However, by far the most commonly used transformation system
for chlamydial species other than C. trachomatis are shuttle vector
systems, which have been developed for C. caviae, C. felis, C. muri-
darum, C. peccorum, C. pneumoniae, C. psittaci, and C. suis (Wang et
al. 2014, Shima et al. 2018, 2020, Marti et al. 2023, Faessler et al.
2024).

The basics of chlamydial transformation using
shuttle vectors

Chlamydial plasmid shuttle vectors typically utilize the complete
native plasmid, which are introduced into the Chlamydia species
of interest by calcium chloride (CaCl,)-mediated transformation
leading to stable transformants both in the presence and absence
of selection. C. trachomatis plasmid shuttle vector pGFP::SW2 was
the first shuttle vector described in literature (Wang et al. 2011).
It contains all eight CDS of the plasmid pSW?2 derived from C. tra-
chomatis strain SW2 as a backbone, of which the first was inter-
rupted by an inserted bla gene, an Escherichia coli origin of repli-
cation (ori) as well as a cat gene fused with red-shifted green flu-
orescent protein gene (RSGFP) placed under a Neisseria meningi-
tidis promoter (nmP). In other plasmid shuttle vectors, the native

plasmid is disrupted between CDS 1 and 2 (Bauler and Hackstadt
2014).

Barriers of transformation

It has been suggested that plasmid shuttle vectors must be con-
structed with the same chlamydial backbone as the plasmids har-
boured by the same chlamydial species. In fact, Song et al. (2014)
demonstrated that successful transformation of C. trachomatis
and C. muridarum was observed only when the plasmid shuttle
vector used for transformation possessed a compatible parental
chlamydial plasmid backbone. In their study, C. trachomatis serovar
A could not be transformed with a shuttle vector comprising an
L2 plasmid backbone.

One of the factors identified as conferring compatibility was
the CDS 2 region of the native plasmid (Song et al. 2013, Wang
et al. 2014). However, the exact dynamics are not entirely clear,
as some chlamydial shuttle vectors have crossed biovar, geno-
type, and even species borders. For example, different C. trachoma-
tis serovar E shuttle vectors were successfully transformed into C.
trachomatis serovars A, D, and L2 (Wang et al. 2011, Ding et al. 2013,
O'Neill et al. 2018). Moreover, C. pneumoniae plasmid shuttle vec-
tor pRSGFPCAT-Cpn, derived from horse C. pneumoniae strain N16,
could not only be transformed into koala strain LPCoLN and nat-
urally plasmid-free human strains CV-6 (cardiovascular isolate)
and IOL-207 (CAP-associated) but was also stably introduced into
three different C. felis strains without recombination of the plas-
mid. Even though the C. pneumoniae genome is genetically closer
to C. pecorum than to C. felis, the C. pneumoniae shuttle vector could
not be introduced into C. pecorum (Fig. 1) (Shima et al. 2018). These
findings indicate that the similarity of genomic and plasmid se-
quences does not entirely explain the barriers of transformation.

One major drawback for all chlamydial species is a very low
transformation efficiency independent of the transformation pro-
tocol (O'Neill et al. 2021, Marti et al. 2023). Factors such as CaCl,
concentration, selection antibiotics, and strains of choice but also
the exact infection protocol play a significant role in increasing
the rate of transformation (Marti et al. 2023). For example, a re-
cent study in C. caviae showed that, while the protocol established
for C. trachomatis, C. psittaci, and C. pneumoniae (Wang et al. 2011,
Shima et al. 2018, 2020) was successful, the protocol optimised
for C. suis (Marti et al. 2023) was not (Faessler et al. 2024). These
protocols comprise different CaCl, concentrations (50 mM ver-
sus 100 mM), vector/Chlamydia coincubation times (30 min versus
1 h), and additional coincubation with trypsinized cells (20 min
versus none). The detailed protocols are published in protocols.io
(https://dx.doi.org/10.17504/protocols.io.kxygxy53wl8j/v1l). Inter-
estingly, transformation attempts with C. abortus remained unsuc-
cessful with either protocol (Faessler et al. 2024). The C. abortus
shuttle vector derived from the avian strain 15-70d24 (Zareba-
Marchewka et al. 2019) and transformation was attempted for
both, a ruminant strain and 15-70d24. These results indicate that,
while there may be true barriers of transformation between the
different species, not all transformation protocols work for all
species, and adaptations may be necessary to improve the trans-
formation efficiency for individual species and strains.

Plasmid sequence-independent transformation

Vectors without the plasmid backbone sequence of any Chlamy-
dia species have been transformed into both C. trachomatis and C.
suis (Binet and Maurelli 2009, Garvin et al. 2021, Marti et al. 2023).
All vectors contained sequences that were homologous with
the chromosomal target gene, which enabled allele replacement.


https://dx.doi.org/10.17504/protocols.io.kxygxy53wl8j/v1

Interestingly, an allele replacement vector containing the genomic
C. suis trpBA operon was successfully integrated into C. trachoma-
tis but not C. muridarum, although its phylogenetic relationship to
C. suis is closer (Fig. 1) (Marti et al. 2023). Vectors with only the
chlamydial plasmid origin of replication have also been success-
fully introduced (Fields et al. 2022). These minimal replicon vec-
tors could be applied as gene deletion tools for studies as they do
not replace the native plasmid, as is common for vectors contain-
ing the whole plasmid, and are unstable in the absence of antibi-
otic selection.

Finally, TargeTron shuttle vectors such as pDFTT3, pDFTT3-
CAT, and pACT as well as transposon shuttle vectors such as
PCMA and pCMCSM encode only chlamydial promoter regions but
not chlamydial plasmid backbone sequences (Johnson and Fisher
2013, Weber et al. 2016, Filcek et al. 2019, LaBrie et al. 2019, Wang
et al. 2019, DeBoer et al. 2023, Karanovic et al. 2023). Mostly used
for C. trachomatis and C. muridarum, this has also been successfully
applied for C. caviae (Table 1) and is therefore a feasible alternative
to shuttle vector transformation for other zoonotic and veterinary
chlamydial species.

Outlook/conclusion

Zoonotic infections due to chlamydiae in humans, such as CAP or
miscarriage, often remain undiagnosed and underreported. The
identification of new chlamydial species in various hosts as well
as examples of new disease manifestations and infection sources
demonstrate that diagnostic investigations into CAP or miscar-
riage must expand. Specifically, diagnostic tests should go be-
yond C. psittaci and C. pneumoniae for CAP, or C. abortus for miscar-
riage, either by a broader screening targeting the entire Chlamy-
diaceae family, or by expanded species-specific testing. Moreover,
extended patient histories concerning the direct or indirect con-
tact to wildlife, pets, and livestock, are crucial to discover new
reservoirs and potential sources of transmission. The conserved
plasmid of the chlamydiae could serve as an excellent screening
method, particularly if it is combined as a dual approach with a
chromosomal target to avoid overlooking the presence of plasmid-
free strains, particularly among C. pneumoniae, C. abortus, and C.
pecorum.

The plasmid could further serve as a fascinating area of study
given its unclear status as a virulence factor, which appears
to be species- and possibly even host species-specific. In par-
ticular, C. abortus with the plasmid-free ruminant and plasmid-
carrying avian strains could serve as model organism to investi-
gate whether tissue tropism, host specificity as well as virulence
are tied to the presence of a plasmid. Furthermore, the plasmid
remains an intriguing target for vaccine development and has
been indispensable for the development of gene modification ap-
proaches.

Finally, the variety of available tools for gene modification
among the Chlamydia has considerably increased and could be
successfully applied to 8 of the 14 recognised Chlamydiaceae
species. However, despite efforts to optimise existing transforma-
tion protocols, not all chlamydial species and strains could be ge-
netically modified and require further attention. The development
of such tools could help to unravel the versality of the Chlamydi-
aceae by gaining a better understanding of known and identifying
new virulence factors that are unique to this bacterial family.
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