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Abstract 

The obligate intracellular bacterial genus Chlamydia harbours species with zoonotic potential, particularly C. psittaci , causati v e a gent of 
psittacosis, and C. abortus , which may lead to miscarria ge in pr e gnant w omen. The impact of other bird c hlam ydiae suc h as C. avium , C. 
gallinaceae , and C. buteonis , or r e ptilian species suc h as C. cr ocodili , amongst others, on human health is unclear. The c hlam ydial nati v e 
plasmid, a suspected virulence factor, is present in all currently described 14 Chlamydia species except for some plasmid-free strains. 
The plasmid is also the primary tool to study c hlam ydial genetics, a still developing field that has mostly focused on C. trachomatis . 
Onl y r ecentl y, genetic transformation of C. felis , C. pecorum , C. pneumoniae , C. psittaci , and C. suis has succeeded, but existing methods 
have yet to be refined. In this re vie w article , w e will pr ovide an update on the r ecent dev elopments concerning the zoonotic potential of 
c hlam ydiae . Furthermore , w e present an overview about the current state of kno wledge regar ding the c hlam ydial plasmid in terms of 
pr ev alence and significance as a virulence factor. F inally, w e give insights into the progress of developing genetic tools for c hlam ydial 
species other than C. trachomatis with a special focus on zoonotic and v eterinar y c hlam ydiae . 

Ke yw or ds: Chlam ydia ; zoonotic; tr ansformation; plasmid; v eterinar y 
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Update on zoonotic and nonzoonotic 

veterinary chlamydiae 

The bacterial family Chlamydiaceae currently comprises the genus 
Chlamydia with 14 officially accepted species (Table 1 ) and a 
v ery r ecentl y ad ded gen us Chlamydiifrater with two new species,
Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris 
sp. nov., both isolated from wild flamingos ( Phoenicopterus roseus ) 
(Vorimore et al. 2021 ). Of all the currently accepted Chlamydi- 
aceae species (Luu et al. 2023 ), the most studied species is C. tra- 
c homatis , r estricted to human hosts and responsible for a chronic 
eye infection, termed tr ac homa, as well as the most common 

cause of bacterial sexually transmitted infections (STI) world- 
wide (Jordan et al. 2020 ). Of the remaining species, four nonhu- 
man chlamydiae possess a confirmed zoonotic potential, namely 
C. psittaci , C. abortus , C. caviae , and C. felis , whic h hav e been ex- 
tensiv el y r e vie wed (Cheong et al. 2019 , Sac hse and Bor el 2020 ,
Bor el and Sac hse 2022 ). The focus of this c ha pter is to pr ovide a 
brief update on w ell-kno wn zoonotic chlamydial species and to 
further explore animal-to-human transmission of newly discov- 
er ed c hlamydial species in birds, liv estoc k, pets, and exotic an- 
imals, as well as to look into uncommon reservoirs of zoonotic 
infection. 
Recei v ed 29 July 2024; revised 31 October 2024; accepted 19 November 2024 
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess on behalf of FEMS. This
Commons Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), whic
medium, provided the original work is properly cited.
hlamydia sp. in birds 

omestic and wild birds are among the most common sources for
oonotic chlamydial infections, for which, until recently, C. psittaci 
as considered to be the primary infecting chlamydial species (re-

entl y r e vie wed in Ravic handr an et al. 2021 ). Historical epidemics
f psittacosis were documented from the late nineteenth cen- 
ury to the 1930s, often associated with the trade of exotic birds.
ince then, C. psittaci has been detected in man y differ ent avian
osts , including pigeons , poultry, and wild birds, often following
uman cases. Ho w e v er, r ecent r esearc h has identified new species
f Chlamydia in birds, with or without clinical signs in their hosts.
 hese disco veries ha v e br oadened the definition of ‘avian c hlamy-
iosis’ to include C. gallinacea , C. avium , C. buteonis , and Candidatus
. ibidis. 

C. psittaci is pr obabl y the most important species of the vet-
rinary chlamydiae from a One Health perspective. It has been
escribed in over 460 species of wild and ca ptiv e bir ds w orldwide

Kaleta and Taday 2003 ), although nonspecific serological testing 
n the past may hav e ov er estimated its presence while missing
he more recently described species. Based on genomic analyses,
. psittaci is divided into two genotypes (WC and M56) isolated

rom mammals and six avian genotypes identified in psittacines,
 is an Open Access article distributed under the terms of the Cr eati v e 
h permits unrestricted reuse, distribution, and reproduction in any 
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ducks , pigeons , and other birds (Sachse et al. 2023 ). All avian geno- 
types of C. psittaci have a zoonotic potential, with the psittacine 
str ains most commonl y implicated in human infections, particu- 
larl y. Comm unity-acquir ed pneumonia (CAP), to which C. psittaci 
contributes 1% of all cases (Hogerwerf et al. 2017 ). Human psit- 
tacosis/ornithosis presents with mild to severe respiratory symp- 
toms, including fe v er, pneumonia, my ocar ditis , encephalitis , and 

splenomegal y, and may r equir e hospitalization (Dembek et al.
2023 ). Zoonotic infection usually occurs through inhalation of 
feather dust or dried faeces after contact with an infected ani- 
mal. High-risk groups include breeders , veterinarians , pet shop,
or bird care centre staff as well as slaughterhouse workers. Veteri- 
nary laboratory personnel handling infectious material are also at 
risk of infection. Acute clinical signs predominate in young birds,
while infections often remain mild or asymptomatic in older birds.
Clinical signs in birds include coughing, r espir atory distr ess, con- 
junctivitis, nasal and ocular disc har ge, and sometimes gr eenish 

diarrhoea (Hogerwerf et al. 2020 ). Disease outbreaks in certain ge- 
ogr a phical r egions can cause significant economic losses to the 
poultry industry due to carcass condemnation, reduced egg pro- 
duction, mortality, and antibiotic treatment costs, as well as pos- 
ing an ongoing zoonotic risk. Inter estingl y, the host specificity of C.
psittaci is not strict, and strains have been isolated from nonavian 

species such as dogs (Sprague et al. 2009 ) and, more recently, from 

horses in Australia (Anstey et al. 2021 ). Zoonotic transmission to 
human from equine abortion cases caused by C. psittaci has been 

described (Chan et al. 2017 ). 
Over the last 20 years, several strains have been isolated from 

birds that wer e initiall y described as ‘similar to C. psittaci ’ or 
‘atypical’, before they were revisited and better characterized. 
This has led to the description of new species. C. gallinacea and 

C. avium were among the first new species described, marking 
the expansion of the Chlamydiaceae family in birds (Sachse et 
al. 2014 ). In 2009, an investigation in a poultry slaughterhouse 
in Fr ance r e v ealed atypical c hlamydiae isolated fr om c hic kens,
whic h wer e distinct fr om C. psittaci (Lar oucau et al. 2009 ). Phy- 
logenetic analysis and whole genome sequencing later led to the 
description of C. gallinacea in 2014 (Sachse et al. 2014 ). Although 

these str ains wer e initiall y suspected of causing human pneumo- 
nia cases, this has ne v er been confirmed. C. gallinacea is primar- 
ily found in chickens, although its presence has anecdotally been 

demonstrated in other birds such as pigeons, woodcock, and par- 
rots, as well as in ruminants (Guo et al. 2016 , Li et al. 2016 , Stokes 
et al. 2019 ). Globally distributed, genome analysis of C. gallinacea 
r e v eals significant heterogeneity within the species, although it 
is not yet known whether these genetic differ ences hav e func- 
tional implications for host adaptation or strain virulence (Hei- 
jne et al. 2021 ). Additionall y, a r etr ospectiv e study of chlamydial 
strains isolated from pigeons in Italy and France, and from tis- 
sues collected from psittacines with clinical signs in Germany,
led to the description of C. avium in 2014 (Sachse et al. 2014 ). C.
avium is primarily detected in pigeons and psittaciform birds, al- 
though its presence in other birds is suspected and anecdotally 
demonstrated. 

C. buteonis , a chlamydial species closely related to C. psittaci 
and C. abortus , and so far exclusiv el y isolated fr om birds of 
prey, can cause clinical signs such as conjunctivitis and may 
be fatal in extreme cases, although an asymptomatic carrier 
status appears to predominate. C. buteonis has been identified 

in birds of prey both in the USA (Mirandé et al. 1992 , Larou- 
cau et al. 2019 ) and more recently in the United Arab Emirates 
(UAE) (Stalder et al. 2021 ), with differ ent genotypes for whic h 

it is not known whether they are related to geographical re- 
ions (USA versus UAE) or hosts (falcon versus hawk) (Vorimore 
t al. 2021 ). 

Finally, during sampling of wild ibises in France to assess their
otential role in transmission of C. psittaci to ducks, atypical
 hlamydial str ains wer e isolated, whic h wer e then identified as
andidatus C. ibidis (Vorimore et al. 2013 ). This Candidatus species
as been isolated from healthy African sacred ibises in France and
or e r ecentl y fr om cr ested ibises in China (Li et al. 2020 ) and wild

irds in Australia (Kasimov et al. 2022 ), indicating worldwide dis-
ribution. 

It is likely that other avian species will continue to enrich this
xpanding family. As C. psittaci is the only species with confirmed
oonotic potential, the terms ‘psittacosis’ or ‘ornithosis’ are still 
sed to describe C. psittaci infections in humans (Borel and Greub
021 ). 

hlamydia sp. in li v estoc k 

hlamydia abortus is the most common infectious abortigenic 
gent in sheep and goats in Europe and, to a lesser extent, in other
ild and domestic ruminants , pigs , and horses (Buxton 1986 , Hyde
nd Benirschke 1997 , Longbottom and Coulter 2003 , Borel et al.
018 ). This pathogen is well known to pose a significant risk to
regnant women leading to miscarriage (Pospischil et al. 2002 , Es-
ig and Longbottom 2015 , Burgener et al. 2022 ). Recent uncommon
linical presentations in pregnant women included the develop- 
ent of acute r espir atory distr ess syndr ome (Pic hon et al. 2020 )

nd se v er e atypical pneumonia (Imkamp et al. 2022 ). All histor-
cal and recent cases have been linked to direct or indirect con-
act to aborting or lambing sheep and goats but not to other live-
tock. A 65-year-old male patient suffering of septic shock due to
. abortus denied any animal contact (Liu et al. 2022 ), highlight-

ng the need to explore sources of environmental exposure to this
nd other chlamydial species (Turin et al. 2022 ). Novel C. abortus
tr ains hav e r ecentl y been found in birds, initiall y inter pr eted as
ntermediates of C. abortus and C. psittaci (Szyma ́nska-Czerwi ́nska 
t al. 2017 , 2023 , Origlia et al. 2019 , Zar ęba-Marc he wka et al. 2020 ,
021 , Longbottom et al. 2021 , Stokes et al. 2021 , Aaziz et al. 2023 ,
asimov et al. 2023 ). These novel C. abortus strains harbour a plas-
id (Zar ęba-Marc he wka et al. 2021 ) and may cause pneumonia in

umans (Raven et al. 2024 ). 
Another common liv estoc k pathogen, C. pecorum , known to

ause abortion, ence phalom y elitis, and poly arthritis in rumi-
ants, has so far not been considered a zoonotic pathogen (Sachse
nd Bor el 2020 ). Ther e is one single case report of a sheep farmer
uffering from severe CAP. C. pecorum was detected in the br onc ho-
lv eolar lav a ge of this patient, indicating some le v el of zoonotic
ransmission (Cao et al. 2022 ). Although no causative relationship
etween CAP and C. pecorum infection could be demonstrated, the
ssumption that C. pecorum is not zoonotic should undergo some 
eassessment. 

C. suis , highl y ada pted to and endemic in pigs, mostly colonizes
he intestinal tract asymptomatically resulting in faecal shed- 
ing (Schautteet and Vanrompay 2011 , Hoffmann et al. 2015 ). This
hlamydial species is of particular concern since many strains 
arbour a tetracycline resistance gene, which is likely transmitted 

ithin C. suis , and potentially to other chlamydial species, through
omologous recombination (Lenart et al. 2001 , Dugan et al. 2004 ,
007 , Suchland et al. 2009 , Joseph et al. 2016 , Seth-Smith et al.
017b ). C. suis has been isolated from farmers and slaughterhouse
orkers but no disease resulted from these zoonotic infections 
nd none of the isolates were resistant to tetracycline (De Puys-
eleyr et al. 2014a ,b , 2017 , Kieckens et al. 2018 ). There is a single
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eport of C. suis being detected in the eyes of tr ac homa patients
rom Nepal (Dean et al. 2013 ). 

hlam ydia sp . in pets 

part from pet birds, guinea pigs and cats are known carriers
f chlamydial species. C. caviae is present in the eyes and rec-
um of clinically healthy guinea pigs with pr e v alences < 10% (2.7%
n Switzerland and 8.9% in the Netherlands), but may induce
onjunctivitis, pneumonia, and abortion in these hosts (Ciuria et
l. 2021 ). This pathogen r ecentl y r eceiv ed attention as a cause
f se v er e atypical pneumonia cases in humans (Ramakers et al.
017 ). Befor e the emer gence of these se v er e pneumonia cases
n the Netherlands, C. caviae was known to cause conjunctivi-
is in guinea pig owners after close contact (Lutz-Wohlgroth
t al. 2006 ). 

C. felis is widespread and endemic in both, household cats
nd stray cats, causing conjunctivitis (Bressan et al. 2021 ). Its
oonotic potential is considered low with six cases of follicu-
ar conjunctivitis in human patients reported between 1969 and
017 (Ostler et al. 1969 , Darougar et al. 1978 , Lietman et al. 1998 ,
artley et al. 2001 , Bomhard et al. 2003 , Sykes 2005 , Wons et
l. 2017 ). A less common clinical picture of chronic follicular
onjunctivitis with three cases, all related to cat contact, were
ecorded in the Netherlands between 2017 and 2022 (Hughes
t al. 2024 ). 

hlamydia sp. in exotic animals 

he human r espir atory pathogen C. pneumoniae , responsible for
% of human CAP cases (Merida Vieyra et al. 2023 ), possesses one
f the broadest host ranges of all known Chlamydia species, which
ncludes mammals such as horses, marsupials (e.g. koalas) but
lso reptiles and amphibians (Sachse and Borel 2020 ). Evolution-
ry data indicate that human strains were zoonotically acquired
Roulis et al. 2013 ), ho w e v er, no curr ent zoonotic infections ar e
ublished. 

In recent years, reptile-specific chlamydial species have been
dentified, namely C. poikilotherma , Candidatus C. serpentis, and
andidatus C. corallus in snakes (Taylor-Brown et al. 2017 , Staub
t al. 2018 ), and C. crocodili as well as new Candidatus species in
rocodiles (Chaiwattanarungruengpaisan et al. 2021 , 2024 ). Their
ost spectrum as well as zoonotic potential is curr entl y unknown
nd should be investigated further. 

otential sources of zoonotic transmission 

oonotic transmission has not only been associated with direct or
ndirect contact to farm animals and pets (e.g. contaminated bed-
ing, pastures, instruments, and handling contaminated clothes).
ild animals and the environment are gaining importance as

eservoirs for zoonotic chlamydial infections (Burnard and Polk-
nghorne 2016 ). In Sweden, psittacosis cases hav e r ecentl y been
ssociated with wild birds and bird feeders in winter but without
irect contact to domestic birds (Herrmann et al. 2024 ). Similarly,
vian C. abortus cases involving 10 human infections and one mor-
ality case also reported no animal contact, and remained without
bvious source of infection (Raven et al. 2024 ). Moreover, there are
uman pneumonia cases of C. caviae that could not be linked to
irect guinea pig contact (van Grootveld et al. 2018 ). These cases

ndicate a survival of chlamydiae in the envir onment. Chlam ydia
sittaci is w ell-kno wn for its aer osolization ca pabilities as well as
urvival in dust, but more recently, other chlamydial species such
s C. suis could be detected from dust in pig farm environments
Unterweger et al. 2024 ). 
 he r ole of the plasmid in c hlamydiae 

ccurrence and basic structure of the nati v e 

hlamydial plasmid 

n the earl y 1980s, r esearc hers identified plasmid-like DNA in C.
rac homatis . This double str anded cir cular DN A plasmid, ∼7.5 kb
n size, was subsequently found to be highly conserved across dif-
er ent Chlam ydia species and str ains, suggesting a pivotal r ole for
oth survival and virulence (Szabo et al. 2020 ). 

In detail, the chlamydial plasmid exhibits several distinct prop-
rties: it possesses eight genes or coding sequences (CDS) with a
opy number 4–10 times that of the c hr omosome (Thomas et al.
997 , Pickett et al. 2005 ). A detailed ma p of the plasmid fr om C.
rachomatis and its coevolution with the chromosome has been
escribed (Seth-Smith et al. 2009 ). A recent study further com-
ared the plasmids of 10 r ecognized c hlamydial species and iden-
ified three distinct plasmid lineages of which the first comprised
. pecorum and C. pneumoniae , the second C. trachomatis , C. suis , and
. muridarum , and the third all remaining species ( C. psittaci , C. fe-

is , C. caviae , C. avium , and C. gallinaceae ) (Szabo et al. 2020 ). These
lasmid lineages coincided with the corresponding genotypes that
ere based on the ompA gene that encodes for the major outer
embr ane pr otein (Szabo et al. 2020 ). Her e, we included the r e-
aining four recognised species ( C. abortus , C. buteonis , C. crocodili ,

nd C. poikilotherma ) and observed a similar but not identical strat-
fication of the whole c hr omosome into four major clusters (Fig. 1 ).
pecifically, the four additional species fell into the largest clade,
hic h shar es a significant cor e-genome [av er a ge nucleotide iden-

ity (ANI) > 77.8%]. C. trachomatis , C. suis , and C. muridarum belong
o a distinct second clade (ANI > 80.8%), follo w ed b y tw o mono-
pecific clades for C. pneumoniae and C. pecorum (Fig. 1 ). The plas-
id sequences were conserved and only CDS3 sho w ed significant

ariation within the clades with C. trachomatis , C. muridarum , and
. suis div er ging fr om the other clades (Fig. 1 ). 

The individual properties of the chlamydial plasmid encoded
r oteins hav e also been studied and they ar e involv ed in DNA
eplication, plasmid maintenance, and modulation of host cell
unctions (Zhong 2017 ). The plasmid encodes a strong promoter
riving the transcription of short antisense RNAs . T her e ar e addi-
ional promoters and a complex transcription profile with tempo-
 al contr ols as well as some CDS with transcriptional start points
Ricci et al. 1993 , 1995 ). 

The plasmid enhances pathogenicity and infection efficiency.
or example, the plasmid-protein Pgp3, encoded by CDS 5, is
nown to be involved in immune modulation and enhancing abil-
ty of the bacterium to invade specific host cells (Huo et al. 2020 ).
hese properties underscore the role of the plasmid in fine-tuning
he adaptability and pathogenicity of Chlamydia . 

lasmid-free Chlamydia strains 

otably, the plasmid is not essential for the existence of the bac-
erium, as plasmid-free Chlamydia strains occur naturally. How-
 v er, onl y thr ee suc h ‘liv e’ clinical isolates of C. trac homatis hav e
een described (Peterson et al. 1990 ). In C. trachomatis , the loss of
he plasmid in vivo is likely associated with a loss of virulence,
hich amounts to a loss of fitness and ultimately an extinction
 v ent for that specific plasmid. This is because such strains fail
o pr opa gate in the human population, consistent with the no-
ion of loss of virulence. Ho w e v er, plasmid loss can occur sponta-
eously in vitro (Matsumoto et al. 1998 ). Furthermore, the plasmid
an be ‘cured’ chemically (O’Connell and Nicks 2006 , Skilton et al.
018 ). In both C. trachomatis and C muridarum , loss of the plasmid
esults in a change of inclusion phenotype and loss of the ability
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Figure 1. P angenome anal ysis of 109 Chlam ydia spp. genomes. All complete genomes fr om GenBank carrying a plasmid wer e included. Separ ate 
analysis was done for the chromosomal genes and the plasmid genes . T he pangenomic analysis was done following the workflow pangenomic of 
Anvi’o 8 using Diamond and the default parameters for clustering the genes . T he gene clusters ar e or ganized according to their distribution across the 
genome, with co-occurring genes shown closer together. The layers are colour coded per species and represent individual genomes organized by their 
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to synthesize glycogen within the inclusion. There is phylogenetic 
evidence, based on SNP analyses, that the plasmid can be trans- 
ferr ed natur all y between c hlamydiae fr om the r ar e detection of 
recombination between plasmids in C. trachomatis isolates (Har- 
ris et al. 2012 ). In a compr ehensiv e follow-up study of c hlamydial 
genomes, plasmid replacement between lineages confirmed the 
natur al tr ansfer of the plasmid (Hadfield et al. 2017 ). This can only 
hav e occurr ed thr ough mixed infection and plasmid exc hange.
By contr ast, ther e ar e entir e clusters within other c hlamydial 
species that ar e stabl y plasmid-fr ee suc h as the human C. pneu- 
moniae isolates (Table 1 ) and all known ruminant C. abortus strains 
as opposed to the avian strains that all carry a plasmid (Seth- 
Smith et al. 2017a , Longbottom et al. 2021 , Zar ęba-Marc he wka 
et al. 2021 ). 

In C. pecorum , while the plasmid is fr equentl y found in strains 
originating from different hosts, plasmid-free strains have been 

c har acterized and may be common among bovine strains (Is- 
lam et al. 2019 , Jelocnik et al. 2023 , Ha genbuc h et al. 2024 ).
It has been speculated that the plasmid plays a role as a 
virulence factor in k oala str ains, but this could not be con- 
firmed in a study comparing differ ent str ains (Fernandez et 
al. 2023 ). Inter estingl y, a study of abortigenic ovine C. peco- 
rum strains found a distinct link between virulence and a 34- 
bp deletion in the nonessential CDS 1 of the plasmid (Jelocnik 
et al. 2023 ). 

In contrast, almost all known strains of C. suis are plasmid- 
bearing except for one strain. The significance of the C. suis plas- 
mid as a virulence factor is curr entl y unclear (Joseph et al. 2016 ,
Seth-Smith et al. 2017b ). 
he significance of the chlamydial plasmid in 

iagnostics and vaccine development 
ecause the plasmid is highly conserved in C. trachomatis and
r esent in nearl y all clinical isolates, it serves as an excellent tar-
et for diagnostic tests, helping to identify infections. Ho w e v er, in
006, a genital tract strain of C. trachomatis emerged in Sweden car-
ying a deletion that escaped detection by two of the main com-
ercial tests (Ripa and Nilsson 2007 ). This became an exemplifier

f selection by diagnostic failure and subsequent lack of treat- 
ent. As a result, dual target testing became the norm in screen-

ngs for STI. In veterinary medicine, most tests continue to use
nly one target gene, which, for chlamydiae, tend to be located on
he c hr omosome suc h as the gene encoding for the major outer

embr ane pr otein ( ompA ) and the 23S ribosomal RNA sequence
P antc he v et al. 2009 , 2010 ). One of the reasons why the plasmid
as not been considered as the primary diagnostic target is the
bsence of plasmid in man y v eterinary c hlamydiae, especiall y in
. abortus . Ho w e v er, the Pgp3 pr otein of C. trac homatis and C. psittaci
as been used as a target for serological testing of animal and hu-
an infections (Donati et al. 2009 ). 
The plasmid’s nonessential nature also makes it an attr activ e

andidate for de v eloping plasmid-fr ee C. trac homatis str ains for
se in li ve atten uated vaccines (Kari et al. 2011 ), but not in veteri-
ary chlamydiae given its uncertain role as a virulence factor. By
nderstanding the plasmid’s structure and function in each indi- 
idual chlamydial species, scientists are exploring ways to disrupt 
ts role in infection, paving the way for nov el tr eatment str ate-
ies . T his r esearc h highlights the plasmid’s significance not only
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n basic microbiology but also in advancing clinical interventions
 gainst c hlamydial diseases. 

 he na ti v e plasmid as a tool for genetic 

odification 

he obligate intracellular nature of the Chlamydiaceae family has
mpeded efforts to understand the biology of these complex bac-
eria. Ho w e v er, the stable and conserved nature of the chlamydial
lasmid has facilitated the de v elopment of tools for genetic ma-
ipulation of the Chlamydiaceae family (Wang et al. 2011 ). This has
pened ne w av en ues for stud ying chlam ydial genetics including
he molecular mechanisms underlying chlamydial infections for
xample virulence, host inter actions, and imm une e v asion str ate-
ies (O’Neill et al. 2020 , Banerjee and Nelson 2021 ). In the next
 ha pter, we will discuss curr entl y av ailable tools for all r ecognized
hlamydia species as well as important findings that could be cru-
ial for future gene modification trials. 

r ansforma tion of human, zoonotic, and 

ther veterinary Chlamydia species 

ince Wang et al. ( 2011 ) demonstrated stable transformation
f C. trachomatis using a species-specific shuttle vector, various
trategies for editing the chlamydial genome or mRNA expres-
ion have been established by different research groups . T hey in-
lude pr otein expr ession systems under pr omoter contr ol (Bauler
nd Hac kstadt 2014 ), Tar geTr on (Johnson and Fisher 2013 , Weber
t al. 2016 ), fluor escence-r eported allelic exc hange m uta genesis
FRAEM) (Mueller et al. 2016 ), floxed-cassette allelic exchange mu-
a genesis (FLAEM) (K eb et al. 2018 ), CRISPRi (Ouellette 2018 ), sR-
As (Wang et al. 2022 ), and transposon mutagenesis (LaBrie et al.
019 , Wang et al. 2019 , O’Neill et al. 2021 ). 

While these novel techniques enable the characterization of
hlamydial virulence factors primarily in C. trachomatis , there are
ewer tools available for other Chlamydia spp. Table 1 lists all cur-
 entl y known tr ansformation systems de v eloped for all 14 r ecog-
ised c hlamydial species. Specificall y, Tar geTr on was successfull y
sed for C. caviae (Filcek et al. 2019 ), allelic exchange vectors for
. suis and C. psittaci (Binet and Maurelli 2009 , Marti et al. 2023 ),
nd a protein expression system under a tetracycline promoter-
ontrol system was developed for C. psittaci (Shima et al. 2020 ).
o w e v er, by far the most commonly used transformation system

or chlamydial species other than C. trachomatis are shuttle vector
ystems , which ha ve been developed for C. caviae , C. felis , C. muri-
arum , C. peccorum , C. pneumoniae , C. psittaci , and C. suis (Wang et
l. 2014 , Shima et al. 2018 , 2020 , Marti et al. 2023 , Faessler et al.
024 ). 

he basics of chlamydial transformation using 

huttle vectors 

hlamydial plasmid shuttle vectors typically utilize the complete
ativ e plasmid, whic h ar e intr oduced into the Chlam ydia species
f interest by calcium chloride (CaCl 2 )-mediated transformation
eading to stable transformants both in the presence and absence
f selection. C. trachomatis plasmid shuttle vector pGFP::SW2 was
he first shuttle vector described in literature (Wang et al. 2011 ).
t contains all eight CDS of the plasmid pSW2 derived from C. tra-
 homatis str ain SW2 as a bac kbone, of whic h the first was inter-
upted by an inserted bla gene, an Esc heric hia coli origin of repli-
ation ( ori ) as well as a cat gene fused with red-shifted green flu-
r escent pr otein gene (RSGFP) placed under a Neisseria meningi-
idis promoter (nmP). In other plasmid shuttle vectors, the native
lasmid is disrupted between CDS 1 and 2 (Bauler and Hackstadt
014 ). 

arriers of tr ansforma tion 

t has been suggested that plasmid shuttle v ectors m ust be con-
tructed with the same c hlamydial bac kbone as the plasmids har-
oured by the same chlamydial species. In fact, Song et al . ( 2014 )
emonstrated that successful transformation of C. trachomatis
nd C. muridarum was observed only when the plasmid shuttle
ector used for transformation possessed a compatible parental
hlamydial plasmid backbone. In their study, C. trachomatis serovar
 could not be transformed with a shuttle vector comprising an
2 plasmid backbone. 

One of the factors identified as conferring compatibility was
he CDS 2 region of the native plasmid (Song et al. 2013 , Wang
t al. 2014 ). Ho w e v er, the exact dynamics ar e not entir el y clear,
s some chlamydial shuttle vectors have crossed biovar, geno-
ype, and e v en species borders . For example , differ ent C. trac homa-
is ser ov ar E shuttle v ectors wer e successfull y tr ansformed into C.
rac homatis ser ov ars A, D, and L2 (Wang et al. 2011 , Ding et al. 2013 ,
’Neill et al. 2018 ). Mor eov er, C. pneumoniae plasmid shuttle vec-

or pRSGFPCAT-Cpn, derived from horse C. pneumoniae strain N16,
ould not only be transformed into koala strain LPCoLN and nat-
r all y plasmid-fr ee human str ains CV-6 (cardiov ascular isolate)
nd IOL-207 (CAP-associated) but was also stabl y intr oduced into
hr ee differ ent C. felis str ains without r ecombination of the plas-

id. Even though the C. pneumoniae genome is genetically closer
o C. pecorum than to C. felis , the C. pneumoniae shuttle vector could
ot be introduced into C. pecorum (Fig. 1 ) (Shima et al. 2018 ). These
ndings indicate that the similarity of genomic and plasmid se-
uences does not entir el y explain the barriers of transformation.

One major dr awbac k for all c hlamydial species is a v ery low
ransformation efficiency independent of the tr ansformation pr o-
ocol (O’Neill et al. 2021 , Marti et al. 2023 ). Factors such as CaCl 2
oncentration, selection antibiotics, and str ains of c hoice but also
he exact infection protocol play a significant role in increasing
he rate of transformation (Marti et al. 2023 ). For example, a re-
ent study in C. caviae sho w ed that, while the protocol established
or C. trachomatis , C. psittaci , and C. pneumoniae (Wang et al. 2011 ,
hima et al. 2018 , 2020 ) was successful, the protocol optimised
or C. suis (Marti et al. 2023 ) was not (Faessler et al. 2024 ). These
r otocols comprise differ ent CaCl 2 concentr ations (50 mM v er-
us 100 mM), v ector/ Chlam ydia coincubation times (30 min versus
 h), and additional coincubation with trypsinized cells (20 min
ersus none). The detailed protocols are published in protocols.io
 https:// dx.doi.org/ 10.17504/ protocols.io.kxygxy53wl8j/ v1 ). Inter-
stingl y, tr ansformation attempts with C. abortus remained unsuc-
essful with either protocol (Faessler et al. 2024 ). The C. abortus
huttle v ector deriv ed fr om the avian strain 15–70d24 (Zar ęba-
arc he wka et al. 2019 ) and transformation was attempted for

oth, a ruminant strain and 15–70d24. These results indicate that,
hile there may be true barriers of transformation between the
ifferent species, not all transformation protocols work for all
pecies , and adaptations ma y be necessary to impr ov e the tr ans-
ormation efficiency for individual species and strains. 

lasmid sequence-independent tr ansforma tion 

ectors without the plasmid backbone sequence of any Chlamy-
ia species have been transformed into both C. trachomatis and C.
uis (Binet and Maurelli 2009 , Garvin et al. 2021 , Marti et al. 2023 ).
ll vectors contained sequences that were homologous with

he c hr omosomal tar get gene, whic h enabled allele r eplacement.

https://dx.doi.org/10.17504/protocols.io.kxygxy53wl8j/v1
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Inter estingl y, an allele replacement vector containing the genomic 
C. suis trpBA operon was successfully integrated into C. trachoma- 
tis but not C. muridarum , although its phylogenetic relationship to 
C. suis is closer (Fig. 1 ) (Marti et al. 2023 ). Vectors with only the 
chlamydial plasmid origin of replication have also been success- 
full y intr oduced (Fields et al. 2022 ). These minimal r eplicon v ec- 
tors could be applied as gene deletion tools for studies as they do 
not replace the native plasmid, as is common for vectors contain- 
ing the whole plasmid, and are unstable in the absence of antibi- 
otic selection. 

Finall y, Tar geTr on shuttle v ectors suc h as pDFTT3, pDFTT3- 
CAT, and pACT as well as transposon shuttle vectors such as 
pCMA and pCMC5M encode onl y c hlamydial pr omoter r egions but 
not chlamydial plasmid backbone sequences (Johnson and Fisher 
2013 , Weber et al. 2016 , Filcek et al. 2019 , LaBrie et al. 2019 , Wang 
et al. 2019 , DeBoer et al. 2023 , Karanovic et al. 2023 ). Mostly used 

for C. trachomatis and C. muridarum , this has also been successfully 
applied for C. caviae (Table 1 ) and is ther efor e a feasible alternative 
to shuttle vector transformation for other zoonotic and veterinary 
chlamydial species. 

Outlook/conclusion 

Zoonotic infections due to chlamydiae in humans, such as CAP or 
miscarria ge, often r emain undia gnosed and underr eported. The 
identification of ne w c hlamydial species in various hosts as well 
as examples of new disease manifestations and infection sources 
demonstr ate that dia gnostic inv estigations into CAP or miscar- 
ria ge m ust expand. Specificall y, dia gnostic tests should go be- 
yond C. psittaci and C. pneumoniae for CAP, or C. abortus for miscar- 
riage, either by a broader screening targeting the entire Chlamy- 
diaceae family, or by expanded species-specific testing. Moreover, 
extended patient histories concerning the direct or indirect con- 
tact to wildlife , pets , and liv estoc k, ar e crucial to discov er ne w 

reservoirs and potential sources of transmission. The conserved 

plasmid of the chlamydiae could serve as an excellent screening 
method, particularly if it is combined as a dual approach with a 
c hr omosomal tar get to avoid overlooking the presence of plasmid- 
fr ee str ains, particularl y among C. pneumoniae , C. abortus , and C.
pecorum . 

The plasmid could further serve as a fascinating area of study 
given its unclear status as a virulence factor, which appears 
to be species- and possibly even host species-specific. In par- 
ticular, C. abortus with the plasmid-free ruminant and plasmid- 
carrying avian strains could serve as model organism to investi- 
gate whether tissue tropism, host specificity as well as virulence 
are tied to the presence of a plasmid. Furthermore, the plasmid 

remains an intriguing target for vaccine development and has 
been indispensable for the de v elopment of gene modification ap- 
pr oac hes. 

Finall y, the v ariety of available tools for gene modification 

among the Chlamydia has consider abl y incr eased and could be 
successfull y a pplied to 8 of the 14 r ecognised Chlam ydiaceae 
species. Ho w e v er, despite efforts to optimise existing transforma- 
tion protocols, not all chlamydial species and strains could be ge- 
netically modified and require further attention. The development 
of such tools could help to unravel the versality of the Chlamydi- 
aceae by gaining a better understanding of known and identifying 
new virulence factors that are unique to this bacterial family. 
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