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Abstract
Motivation: For more than 25 years, learning-based eukaryotic gene predictors were driven by hidden Markov models (HMMs), which were di
rectly inputted a DNA sequence. Recently, Holst et al. demonstrated with their program Helixer that the accuracy of ab initio eukaryotic gene 
prediction can be improved by combining deep learning layers with a separate HMM postprocessor.
Results: We present Tiberius, a novel deep learning-based ab initio gene predictor that end-to-end integrates convolutional and long short-term 
memory layers with a differentiable HMM layer. Tiberius uses a custom gene prediction loss and was trained for prediction in mammalian 
genomes and evaluated on human and two other genomes. It significantly outperforms existing ab initio methods, achieving F1 scores of 62% 
at gene level for the human genome, compared to 21% for the next best ab initio method. In de novo mode, Tiberius predicts the exon−intron 
structure of two out of three human genes without error. Remarkably, even Tiberius’s ab initio accuracy matches that of BRAKER3, which uses 
RNA-seq data and a protein database. Tiberius’s highly parallelized model is the fastest state-of-the-art gene prediction method, processing the 
human genome in under 2 hours.
Availability and implementation: https://github.com/Gaius-Augustus/Tiberius

1 Introduction
Gene prediction is the task of finding genes and their exon−in
tron structure in a genome and is a fundamental step in the 
analysis of a newly sequenced genome. Its output includes the 
coordinates of exons, the set of protein sequences encoded by 
the genome and is the basis for most downstream analysis 
tasks. In eukaryotes, the gene prediction task has not yet been 
solved with an accuracy that is satisfactory for most tasks. In 
particular, comparative studies that correlate differences in ob
served phenotypes with differences in genes require high ge
nome annotation accuracy (Nachtweide et al. 2024). Plans to 
sequence the genomes of all known eukaryotic species suggest 
a demand of more than a million genomes that require annota
tion in the next decade (Lewin et al. 2022).

Most currently deployed pipelines for gene prediction use evi
dence from previously identified proteins and their accuracy 
also benefits from integrating RNA-seq data (Keilwagen et al. 
2019, Brůna et al. 2024, Gabriel et al. 2024). Furthermore, 
RNA-seq is widely recognized to be required for highly accurate 
predictions (Lawniczak et al. 2022). However, taking mammals 
as an example, currently there are 341 mammalian species for 
which a genome assembly is deposited at the National Center 
for Biotechnology Information (NCBI) but no RNA-seq avail
able (48% of the total). If a similar genome annotation quality 
could be reached without RNA-seq, a substantial amount of 
time and other resources could be saved.

Many existing genome annotation pipelines, such as 
BRAKER (Brůna et al. 2021, Gabriel et al. 2024) or NCBI’s 
Eukaryotic Genome Annotation Pipeline (https://www.ncbi. 
nlm.nih.gov/books/NBK169439) already have machine 
learning or statistical components, such as Markov chains or 
splice site pattern recognizers that exploit patterns in the 
genome itself whose parameters need to be trained for a 
given clade. If only evidence from the target genome is used, 
this is referred to as ab initio gene prediction. If also evolu
tionary evidence from multiple (aligned) genomes is used, 
this is referred to as de novo gene prediction. Formally, the 
ab initio gene prediction task is to give each position in the 
input genome sequence S 2 fA;C;G;TgT a biological label of 
some set of labels Q that includes exons, introns and inter
genic region, i.e. to produce an output Y 2QT . This formu
lation is a simplification because it does not account for 
alternative splicing and overlapping and nested genes. 
Nevertheless, this simplified task is difficult and at the core 
of genome annotation.

A hidden Markov model (HMM) is a generative probabil
istic model P(X, Y) of an observed sequence X¼ f ðSÞ, where 
f can be any transformation of the genomic input to the 
HMM input, and a” hidden” sequence Y. Traditional meth
ods directly use the DNA sequence as HMM input (i.e. 
X¼S). Such HMMs with direct DNA input and slight gener
alizations thereof have been used for gene prediction for 
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more than 25years (Kulp et al. 1996, Stanke et al. 2003). 
Arguably, the majority of genomes is currently annotated us
ing annotation pipelines that employ HMMs such as the 
NCBI pipeline which uses the ‘GenScan’-like HMM Gnomon 
and BRAKER, which uses AUGUSTUS (Stanke et al. 2003) 
and GeneMark (Lomsadze et al. 2005).

Recently, gradient-based training of deep learning models 
has been adapted for gene prediction. Stiehler et al. (2020) in
troduced a deep neural network that uses a combination of 
convolutional neural network (CNN) and long short-term 
memory (LSTM) layers. Their program Helixer is a sequence- 
to-sequence model f that outputs a matrix X 2 ½0;1�T× jQj

such that X½i;q� is the estimated probability that the ith ge
nome position has biological label q. However, Helixer did 
not yet predict gene structures. To provide gene predictions, 
Holst et al. added an HMM-based ‘post-processor’ that uses 
the Viterbi algorithm with input X¼ f ðSÞ to infer a most 
likely gene structure Y� 2 argmaxY02QT PðX;Y0Þ. This version 
of Helixer that is postprocessed by an HMM is here referred 
to as just ‘Helixer'. It was hitherto arguably the overall most 
accurate ab initio gene predictor, although Holst et al. did 
not evaluate Helixer with regard to the usual measures of 
gene prediction accuracy, such as recall and precision for the 
prediction of exons and genes. With it, Holst et al. have 
shown that deep learning has the potential to push the limits 
of the ‘shallow’ learning approaches of classical HMMs such 
as AUGUSTUS. However, in the Helixer model, f is not 
adapted to the HMM that generates gene structures. Instead, 
the model f is trained in an intermediate sequence classifica
tion task without inductive bias of the true biological limita
tions of a gene structure. All biological constraints imposed 
on a full gene structure have to be learned and stored in the 
parameters of f.

The accurate prediction of a gene structure is highly depen
dent on the correct identification of state transitions, such as 
the borders of exons. Holst et al. have shown that a general- 
purpose deep learning sequence-to-sequence model can 
achieve high base-level precision, but struggles to precisely lo
cate exon boundaries, which could lead to low exon- and 
gene-level accuracy. Marin et al. compared DNA language 
models with classical HMM-based AUGUSTUS for human 
gene finding. the best performing DNA language model, 
Nucleotide Transformer (Dalla-Torre et al. 2023), did ‘not 
approach the highly specialized AUGUSTUS’. Marin et al.
concluded that ‘more specialized downstream models are still 
needed to accurately predict gene structure’.

Recently, Becker and Stanke developed an HMM layer 
(Becker and Stanke 2022) in the context of multiple sequence 
alignments with profileHMMs. This HMM layer is a special 
case of a recurrent neural network that can be used in both su
pervised and unsupervised settings jointly with other layers. 
We utilize the HMM layer in a model inspired by Helixer, in
corporating several enhancements. Instead of relying on a 
post-processor, we integrate the HMM during both training 
and inference. Therefore, we leverage end-to-end training with 
the full inductive bias of a gene structure (consistent reading 
frame, start- and stop codons and splice site patterns). In train
ing mode, the output of our full model with HMM are the 
posterior state probabilities bY ½i;q� ¼ PðYi ¼ qjXÞ. We train it 
by minimizing a misclassification loss LðbY ;YtrueÞ. In contrast, 
Helixer minimizes a loss function LðX;YtrueÞ that only 
depends on X and thus is independent of the HMM.

Our new gene finder Tiberius outperforms Helixer on ab 
initio mammalian genome annotation (gene-level F1-score 
55% versus 19%) runs significantly faster on GPU than 
Helixer as well as established CPU-based tools and can be 
highly parallelized. We also compared Tiberius with 
BRAKER3, as a representative of current state-of-the-art 
pipelines that integrate RNA-seq and protein sequence data. 
Despite Tiberius not using extrinsic evidence, it performed 
slightly better in our test setting that disregarded alterna
tive splicing.

2 Materials and methods
2.1 Dataset
A dataset comprising assemblies of 37 mammalian species 
(see Supplementary Table S1) was used for training and eval
uation of Tiberius. Genomes were soft-masked using 
RepeatModeler2 (Flynn et al. 2020), RepeatMasker (http:// 
www.repeatmasker.org), and Tandem Repeats Finder 
(Benson 1999). RefSeq reference annotations were retrieved 
from NCBI. For details, we refer to the Supplementary 
Methods. This dataset includes model species such as human 
and mouse, covering a broad phylogenetic range of mamma
lian species (see Supplementary Fig. S1). The gene prediction 
challenge here arises from a relatively low gene density, large 
numbers of exons per gene, GC-content heterogeneity, a large 
genome size, and many long introns. For example, in human, 
about half of the genes have at least one intron of size 10 kb 
or larger. Dataset properties are given in Supplementary 
Tables S1 and S2. To filter out annotations that suffer from 
apparent false negatives, we included only species in the data
set with a BUSCO (Manni et al. 2021) completeness >90%.

As test species, we chose the mammal with the arguably 
best annotated genome, human (H. sapiens), as well as two 
others for diversity: cow (B. taurus) and beluga whale (D. 
leucas). The training and validation genomes were controlled 
for phylogenetic proximity to the test species (Supplementary 
Fig. S1). We did not include any species from the taxonomic 
groups of Hominidae, Ruminantia, and Cetacea in the test or 
validation set. The rationale is that the performance on the 
test species shall be an estimate of the performance of 
Tiberius on other mammalian genomes. The minimal evolu
tionary distance from a training species to human is 43 MYA 
and to cow and beluga whale 64 MYA.

For the validation of the Tiberius model training, Panthera 
pardus and Rattus norvegicus were randomly selected from 
the training species set. Their genomic data were subse
quently excluded from the training process and only used for 
hyperparameter selection.

For each gene within the reference annotations, the tran
script with the longest coding sequence was chosen to gener
ate unambiguous training labels. This is because the Tiberius 
model’s output is designed to assign a single label per base 
position, excluding the possibility of representing alternative 
splicing isoforms.

2.2 Tiberius’ architecture
The architecture of the Tiberius model integrates CNNs, 
LSTMs, and a differentiable and parallelized HMM layer 
(Fig. 1). Although the pre-HMM architecture shares similari
ties with the Helixer model introduced by Holst et al., the ar
chitecture of Tiberius distinguishes itself through several 
unique features: an HMM layer, repeat information as an 
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additional input, training loss, residual connection, number 
of output class labels, and a larger parameter count.

The input to the model is a sequence representing the one- 
hot encoded nucleotide sequence over the alphabet fA, C, 
G, T, Ng stacked with a track of masked repeat regions. 
The model outputs, during training, probabilities for 15 gene 
structure classes we define below and, during inference, la
bel sequences.

The model is capable of processing sequences of variable 
lengths. This allows it to be trained on shorter sequences to 
reduce training time and subsequently to be evaluated on lon
ger sequences in order to get a longer context length. The ar
chitecture is designed to predict one strand at a time. To 
make a prediction on the reverse strand, Tiberius inputs the 
reverse complement of the input sequence into the model. 
This allows it in principle to predict overlapping or nested 
genes on opposite strands (see Supplementary Fig. S5 for 
an example).

2.3 Tiberius training
The Tiberius model was trained using batches of seamless 
tiles of length 9999. The training process took 15 days on a 
machine equipped with four A100 GPUs (80 GB memory 
each). During a first phase, the pre-HMM training, we 
trained the model without the HMM layer for six days. 
Afterwards, in phase two, we fine-tuned the model end-to- 
end for 9 days, including the HMM layer. The software doc
umentation provides instructions that can be adapted for a 
different training set. We used the Adam optimizer (Kingma 
and Ba 2014) with a learning rate of 10−4 throughout train
ing. The batch size per GPU was 250 during the pre-HMM 
training and 128 during the fine-tuning.

For validation, we evaluated the model’s performance after 
every 1000 training steps using selected genome segments from 
the validation species, leopard and rat. The evaluation consisted 
of making full gene structure predictions for these validation 
data. Training was terminated when no improvement in gene 
and exon level accuracies was observed on the validation set. 

We selected the final model based on the highest combined F1- 
scores for validation exon and gene level accuracies.

2.3.1 F1-loss
A notable challenge for training a gene prediction model with 
genomic data is the underrepresentation of exon classes in ge
nomic data. For instance, on the forward strand of the hu
man genome, coding exon regions constitute only �1% of 
the genomic sequence, while �16% are intron regions and 
�83% intergenic regions. The standard cross-entropy loss 
alone is not a suitable representation of how well the model 
predicts the minority class (exons). The precision and recall 
on gene and exon level are highly sensitive to changes in the 
prediction of individual labels and require precise identifica
tion of exon boundaries.

Loss functions with class weights typically fail to optimize 
both precision and recall simultaneously, particularly for un
derrepresented classes such as exons, as they are designed to 
minimize overall error rates but do not effectively manage the 
trade-offs between false positives and false negatives (here: 
exons) (Tian et al. 2022). To address this imbalance and im
prove model performance on gene prediction metrics, we in
troduce the F1-loss function. This function creates a loss 
function based on the estimated F1-score for the exon class 
labels, which we use in combination with the categorical 
cross-entropy (CCE) loss. The F1-loss aims to improve the 
model’s accuracy in predicting exon labels, and it aligns the 
training objectives better with the evaluation metrics (at least 
on base level). The F1-loss is defined as 

F1 � loss ¼
X

i is exon class

ð1 −cF1iÞ;

where cF1i is the estimated F1-score of class i. We describe the 
computation of cF1i in the Supplementary Methods.

For training the Tiberius model, we use the F1-loss in com
bination with the CCE-loss function. The latter takes all class 
labels into account. In instances where a sequence has no 
exon labels, the estimated false positive rate dFPR ¼
1
T �
P

i is exonclass
PT

j¼1
bY ½j; i� is calculated instead of the F1-loss. 

The CCE-F1-loss is then computed as 

CCE � F1 � loss ¼ CCEþ λ �
F1 � loss if

P
AP>0

dFPR otherwise:

(

In our experiments we chose λ¼2. The CCE-F1-loss is 
computed for each sequence in a batch independently and the 
per-sequence losses are averaged.

2.3.2 Ablations
To assess the impact of key features in our model, we con
ducted ablation studies on Tiberius. Each ablation modified a 
specific feature of the original model and the ablated model 
was trained in the same manner as the pre-HMM training of 
Tiberius (see Tiberius Training):

� Tiberius_preHMM: The model without the HMM layer. 
� Tiberius_no_sm: Removed the repeat masking track 

from input. 
� Tiberius_CCE: Used CCE-loss, instead of CCE-F1-loss. 

Figure 1. Illustration of the CNN-LSTM architecture of the Tiberius model 
for gene structure classification at each base position. The HMM layer 
computes posterior probabilities or complete gene structures (Viterbi 
sequences). The model has approximately 8 million trainable parameters, 
and it was trained with sequences of length T¼9999 and a length of 
T ¼ 500,004 was used for inference.
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� Tiberius_small: Reduced the number of parameters (to 
approximately 2 million) by halving the filter and unit 
sizes of the CNN-/biLSTM layers. 

� Tiberius_5class: Removed splice site classes, by mapping 
the 15 output classes to a set of five labels (IR, Intron, 
Exon-0, Exon-1, Exon-2) more similar to the one used by 
Helixer before loss calculation. 

� Tiberius_5class_CCE: Used above five labels and the 
CCE loss. 

2.4. HMM layer
HMMs, traditionally used in gene finding, can be designed to 
enforce biological constraints, e.g. reading-frame consistency. 
A most probable sequence of states for an input sequence can 
be computed with the Viterbi algorithm. Following Holst 
et al., we decode complete gene structures from an input ma
trix X of position-wise class probabilities.

We developed a novel HMM layer (Becker and Stanke 
2022), which is an integral component of the model during 
fine-tuning and inference. It implements standard HMMs 
that emit one character per state. The layer uses the 
TensorFlow library and supports all functionality of a tradi
tional deep learning layer: it is vectorized (i.e. it runs on a 
batch of independent sequences in parallel), it runs on GPU 
and it is differentiable (i.e. it can be used for end-to-end fine- 
tuning). It also supports a parallel mode that is able to paral
lelize common HMM algorithms over segments of the input 
sequences, as described later, in order to maximize utility of 
the available GPUs.

2.4.1 HMM architecture
We use an HMM with 15 hidden states, one of which is for 
intergenic positions, three for intron positions and 11 states 
are for exon positions (Fig. 2). The exon states are further di
vided into three states corresponding to the different reading 
frames and nine states that are specifical for exon border 
positions. The border states are two states for start and stop 
codons of a gene and additionally two states for acceptor and 
donor splice sites that transition to and from the in
tron states.

The inputs to our HMM are position-wise class probabili
ties and sequences of right- and left-adjusted, overlapping 
triplets. The 15 input classes correspond one-to-one to the 

states of the HMM. The HMM is designed to enforce canoni
cal splice site patterns, start and stop codons, while also pre
venting in-frame stop codons within exons. For details, we 
refer to the Supplementary Methods. Note that the design 
does not prevent in-frame stop codons that are spliced 
across two exons, and these may appear in the predicted gene 
structures; such genes are currently filtered out during 
post-processing. Allowed splice site patterns and their relative 
weighting can in principle be specified by the user or even be 
learned. We benefit from the small number of states of 
Tiberius’ HMM in the parallel implementation of the 
Viterbi algorithm.

2.4.2 Fine-tuning with HMM
The standard HMM has only 24 parameters that were not 
trained. The 23 transition parameters (one for each edge in  
Fig. 2) model in particular geometric length distributions for 
exons and introns. These parameters have been set so that the 
means of these distributions are the empirical average lengths 
of the intergenic, intron, and exon regions. The emission dis
tribution maps input classes directly to corresponding states 
and has only a single smoothing parameter to account for in
correct inputs. See Supplementary Methods, Section 3 for 
more details. Although the HMM itself is not trained, the 
gradient of the loss computed from the HMM’s output with 
respect to the HMM’s input was computed, and the HMM 
serves during training as an inductive bias for biological con
straints of the gene structures.

2.4.3 Parallel viterbi
We found that for long inputs the HMM layer is the compu
tational bottleneck. The Viterbi algorithm requires to com
pute dynamic programming variables sequentially for each 
time step that depend on the variables of the previous step. 
This is problematic for long sequences. Note that the LSTM 
is also sequential but receives, like in the Helixer model, an 
input that is shortened by a reshaping operation. To solve 
this issue, we employ a parallel variant of Viterbi, which can 
run in parallel on segments of a sequence. This can be done 
by conditioning on the states at the segment borders and 
computing local Viterbi variables under these conditions. An 
equivalent result to the sequential Viterbi can be computed 
from these local variables in another global pass, this time re
quiring only one step per segment. More details are given in 
the Supplementary Methods. This procedure trades off an in
crease in the total number of necessary computations propor
tional to the number of HMM states with the possibility of 
high parallelization. The parallel Viterbi algorithm greatly 
improves the speed of Tiberius and increases its GPU utiliza
tion while being functionally equivalent. With parallelization, 
it runs more than 17 times faster on GPU (Supplementary 
Table S5).

2.4.4 Inference of gene structures
Tiberius uses the parallel Viterbi algorithm to infer complete 
gene structures on both strands and outputs them in a GTF 
formatted file. Internally and in a way that is transparent to 
the user, the input sequence and its reverse complement are 
partitioned into sequence tiles of size about 500 kb that are 
initially processed independently. Afterward, for tile bound
aries that appear to be in a gene (not intergenic), a 
second pass of predictions is made in the sequence of size 
about 1 mb that consists of the two tiles neighboring 

Figure 2. The states of the HMM used for inference with Tiberius and the 
transitions between them. The 11 coding-exon position states are 
subdivided by reading frame i: Exon-i represents non-border positions 
within an exon, while ASS-i (acceptor splice site) and DSS-i (donor splice 
site) states are the first and last position of an exon that starts and ends 
with reading frame i, respectively. The four non-coding position states are 
intergenic region (IR) or within an intron.
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the boundary. For details of this inference, we refer to the 
Supplementary Methods.

2.5 Tiberius de novo
Tiberius has a de novo mode that uses evolutionary evidence 
from multiple unannotated genomes. This evidence, gener
ated by ClaMSA (Mertsch and Stanke 2022) using 64 species 
in the Zoonomia project alignment (Zoonomia Consortium 
2020), provides site-specific coding probabilities. These are 
summarized into four values per position, representing the 
logit values for codon start sites. These values are integrated 
into Tiberius by stacking them to each position’s input data. 
For training and benchmarking, ClaMSA data were gener
ated using Mus musculus and H. sapiens as reference species, 
respectively. We only include de novo results for human as 
our multiple genome alignment for inference was human ref
erenced. See Supplementary Methods for more details.

2.6 Accuracy metrics
To assess the accuracy of predicted gene structures, we 
adopted metrics commonly used in evaluating gene predic
tion tools (Burset and Guigo 1996). We compared the pre
dicted gene structures to a reference annotation at two 
different levels: exon and gene. For both levels, we quantified 
the number of true positives (TP), false positives (FP), and 
false negatives (FN). We used the following metrics: Recall ¼
TP/(TP þ FN)—the proportion of instances correctly identi
fied from the reference, Precision ¼ TP/(TP þ FP)—the pro
portion of correct predictions, and the F1-score—their 
harmonic mean. Note that in the field of gene finding meth
ods and their evaluation, the terms ‘specificity’ and 
‘sensitivity’ are sometimes used interchangeably with our def
initions of ‘precision’ and ‘recall’, respectively. Additionally, 
we computed the BUSCO completeness, as this is a com
monly used metric for evaluating novel genome annotations.

2.7 Benchmarking
Whole-genome predictions were generated for the test spe
cies—H. sapiens, B. taurus, and D. leucas—using Tiberius 
and its ablated variants. We compared Tiberius with the 
other ab initio gene finders Helixer and AUGUSTUS, which 
can use the same input data. Helixer is a very closely related 
method, as it has a similar architecture and is the only other 
gene prediction tool based on deep learning. In contrast, 
AUGUSTUS is a well-established gene finding model which 
employs an HMM and does not utilize deep learning. For 
AUGUSTUS, the standard human parameters were used, 
which were trained in 2010 on 1784 human genes. Helixer 
was executed with publicly available weights for vertebrate 
genomes using recommended settings. The three species we 
used for testing were all included in the list of 315 vertebrate 
genomes on which Helixer was trained.

In a second set of experiments, we compared Tiberius with 
the genome annotation pipelines BRAKER2 (Brůna et al. 
2021), GALBA (Brůna et al. 2023), and BRAKER3 (Gabriel 
et al. 2024), which utilize extrinsic evidence. In particular, 
BRAKER2 and GALBA incorporate protein sequences. 
BRAKER2 uses a large protein database that may include dis
tantly related species. GALBA relies on sequences from a few 
closely related species. BRAKER3, arguably the most accu
rate automated genome annotation pipeline currently avail
able in Gabriel et al. (2024), incorporates both RNA-seq data 
and a large protein database as additional inputs. In our 

experiments, we used the vertebrate partition of OrthoDB 
v.11 as protein database for BRAKER2 and BRAKER3, ex
cluding—just as for training Tiberius—sequences from 10 
Hominidae, Ruminantia, or Cetacea, depending on the target 
species. Additionally, BRAKER3 used 10 paired-end short- 
read RNA-seq libraries for each test species (Supplementary 
Table S3). For the GALBA experiments, we selected protein 
sequences from three closely related species from the Tiberius 
training set for each test (see Supplementary Methods, 
Section 3). Unlike Tiberius, these pipelines can report alterna
tive splice forms for each gene. To ensure a fair comparison 
at the gene level, where additional isoforms can only increase 
accuracy, we used only the isoform with the longest coding 
sequence for each gene, even though the longest is not neces
sarily the best or most accurate.

3 Results
3.1 Benchmarking results
The benchmarking experiments assessed Tiberius through 
comparisons with two distinct groups of gene prediction 
methods. The first comparison group consisted of other ab 
initio methods—AUGUSTUS, and Helixer—which rely solely 
on genomic data without extrinsic evidence. The second 
group, consisting of BRAKER2, BRAKER3, and GALBA, 
utilized extrinsic evidence for their gene predictions.

3.1.1 Comparison of ab initio methods
Tiberius consistently outperformed AUGUSTUS and Helixer 
across all species and metrics (Fig. 3). On average, Tiberius 
achieved an F1-score of 89.7% at exon level and 55.1% at 
gene level, followed by Helixer (72.9% and 19.3%, respec
tively) and then AUGUSTUS (67.3% and 12.4%, respec
tively) (Supplementary Table S6). This trend was evident 
across all tested species, the highest leading margin for 
Tiberius was observed in H. sapiens, where Tiberius has 
41.8% points higher precision and 40.5% points higher re
call than Helixer on gene level. As an additional performance 
metric for genome annotation, protein-level BUSCO com
pleteness was calculated for all gene predictions. Tiberius led 
this metric as well, achieving an average of 96.0% BUSCO 
completeness for the test species, followed by Helixer at 
92.1% and AUGUSTUS at 74.2% (Supplementary Fig. S2).

The models of Helixer and Tiberius share many similari
ties, but their large test accuracy differences may be attrib
uted to several design or implementation choices; these 
include model size, training loss, output class labels, and end- 
to-end learning with an HMM layer. The most significant 
impact on training accuracy came from introducing the CCE- 
F1-loss combined with output labels that include different 
classes based on reading frame and exon borders (see 
Ablation Studies and Generalizability). In contrast, Helixer 
used a weighted CCE-loss without separate exon border clas
ses and uses higher weights for the boundaries of reference 
exons only (Holst et al. 2023). Integrating an HMM layer for 
end-to-end training further improved test accuracy, increas
ing F1-scores by 2.6 and 1.1 percentage points at gene and 
exon levels, respectively. Increasing parameters from 2 mil
lion (comparable to Helixer’s 3 million) to 8 million yielded 
additional improvements of 4.9 and 1.2 percentage points in 
gene and exon level F1-scores, respectively. Tiberius demon
strates the ability to accurately predict even genes that span 
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large genomic regions. The longest human gene correctly pre
dicted by Tiberius is 328,931 bases long.

3.1.2 Comparison with methods using extrinsic evidence
The integration of protein and RNA-seq data into genome 
annotation methods has so far been regarded as a significant 
advantage over ab initio predictions. The very recently pub
lished BRAKER3, which uses both RNA-seq and protein evi
dence, represents the current state of the art for genome 
annotation. For our accuracy comparisons, we eliminated the 
influence of the prediction of alternative splice forms by using 
for each gene set, predicted or reference, only the transcript 
variant with the longest coding sequence.

Compared to state-of-the-art methods that incorporate ex
trinsic evidence, the ab initio predictions by Tiberius match 
or surpass the performances of the other tools, despite its dis
advantage (Fig. 3). At gene and exon level, Tiberius achieves 
an F1-score of 55.1% and 89.7%, which is 1.4% and 6.5% 
points higher than that of BRAKER3 (53.7% and 83.2%), 
surpassing also the F1-scores of both GALBA (41.8% and 
86.2%) and BRAKER2 (14.9% and 48.7%) (Supplementary 
Table S6). The increase in accuracy is particularly notable in 
the case of H. sapiens, where Tiberius surpasses the other 
methods in all metrics. Tiberius executed in de novo mode on 
human has even higher accuracy on gene level, reaching an 
F1-score of 65.5% and 92.6% on gene and exon level. In 
terms of BUSCO completeness, Tiberius achieves the highest 
completeness for each species, most complete in human 
with 98.9%.

As illustrated in Supplementary Fig. S6, the integration of 
extrinsic evidence has the potential to reduce Tiberius’ errors 
and to further improve gene prediction accuracy. The 

evolution of other ab initio methods, that have incorporated 
extrinsic evidence, suggests that such integration could ulti
mately lead to substantial accuracy improvements (Yandell 
and Ence 2012).

3.2 Ablation studies and generalizability
We evaluated the impact of key features of Tiberius by retrain
ing ablation models and comparing them to the original 
model. To reduce computational time, all models in this evalu
ation, including the default model (Tiberius_preHMM), were 
trained without the HMM layer. The HMM layer was used 
only during inference.

3.2.1 Softmasking
Retraining Tiberius without the softmasking input track 
(Tiberius_no_sm) shows a slight decline in prediction accu
racy (Supplementary Table S7). The average F1-score was de
creased by just 0.2% points on exon level and 0.9% points 
on gene level. For more distant species, the differences are 
larger, and Tiberius’s accuracy benefits substantially from the 
softmasking input (Supplementary Fig. S3). This effect is pre
sumably due to these species having different repeat families 
that Tiberius_no_sm has not learned.

The minor gains in mammalian species must be weighed 
against the additional preprocessing step required to mask 
the repeats before running Tiberius. The Tiberius software 
provides both options, allowing users to input genomic 
sequences with or without softmasking.

3.2.2 Class labels and loss function
The F1 part of the CCE-F1-loss weights all exon classes 
equally, regardless of their frequency of occurrence, which is 

Figure 3. Gene and exon-level precision and recall for Tiberius, BRAKER3, GALBA, Helixer, BRAKER2, and AUGUSTUS. Tiberius, Helixer, and 
AUGUSTUS performed ab initio predictions while the other methods additionally incorporated extrinsic evidence: GALBA proteins from related species, 
BRAKER2 a large protein database, and BRAKER3 a large protein database and RNA-seq. For the human genome, Tiberius was also run de novo.
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particularly relevant for the positions of the splice sites. Using 
separate classes for exon borders, as implemented in the 15 
classes of the default model, aligns the loss function with the 
target metrics of exon and gene level accuracies. The loss 
function and class labels are beneficial because small differen
ces in exon border positions can have a significant impact, 
even if the majority of an exon segment is predicted correctly.

Our ablation studies demonstrate that both the CCE-F1- 
loss and separate exon border classes lead to substantial 
improvements, particularly on gene level accuracy. 
Compared to Tiberius_preHMM, Tiberius_CCE decreases 
gene and exon level F1-scores by 8.8 and 2.1 percentage 
points, while Tiberius_5class decreases them by 11.8 and 5.4. 
Removing both features causes even a decrease by 21.1 and 
10.3 percentage points in gene and exon level F1-scores.

3.2.3 Generalizability
To assess Tiberius’s ability to generalize beyond the mamma
lian training set, we evaluated its performance on species 
across varying evolutionary distances (Fig. 4). The results 
show robust performance on mammalian test species and a 
steady decline in accuracy as phylogenetic distance increases. 
Notably, Tiberius maintains strong performance on more dis
tant vertebrates such as Gallus gallus and, at least on exon 
level, Danio rerio. The most divergent species tested, Populus 
trichocarpa and Solanum lycopersicum, show the lowest F1- 
scores, as expected given their large evolutionary distance 
from the training data. This demonstrates Tiberius’s potential 
for applicability across domains that are adjacent to mam
mals, while showing the need for re-training for other clades.

3.3 Runtime
We ran our experiments for Helixer and Tiberius on a high- 
performance computing cluster using an NVIDIA A100 GPU 
with 80 Gb memory and 48 CPU threads, but Tiberius makes 
little use of the CPU cores. BRAKER3, GALBA, BRAKER2, 
and AUGUSTUS do not support GPU execution and were ex
ecuted on a node using 48 CPU threads. Among the models 
tested, the ab initio methods had significantly lower runtimes, 

as BRAKER3, GALBA and BRAKER2 include costly process
ing steps for the extrinsic evidence and training of their 
HMM models.

Tiberius demonstrated the fastest runtime per genome with 
an average of 1:39 h, faster than AUGUSTUS at 2:25 h, while 
Helixer lagged significantly at 8:54 h (Table 1, Supplementary 
Table S4). In de novo mode for the human genome, Tiberius 
took with a runtime of 2:05 h only 9 min longer than in 
ab initio mode (Supplementary Table S4). Tiberius leverages 
GPU processing across all computational steps of its model, 
including the HMM. It employs batch parallelization and a 
parallel implementation of the Viterbi algorithm (see Parallel 
Viterbi). In contrast, Helixer utilizes the GPU’s computational 
advantages only for its CNN-LSTM components, lacking 
GPU integration for its HMM processing. The runtimes of 
BRAKER3, GALBA, and BRAKER2 were significantly higher, 
with BRAKER3 being the slowest, with an average runtime of 
over 2 days.

3.3.1 Data availability
The Tiberius predictions for the three test species and a 
UCSC Genome Browser track for human genome results are 
available from the GitHub page.

4 Discussion
Tiberius and BRAKER3 both use previously annotated mam
malian genomes. BRAKER3 explicitly aligns protein sequen
ces against sequences from the target species using several 
alignment tools. Tiberius, however, only implicitly represents 
the prior knowledge of the annotations on nucleotide level in 
a large number of parameters that are trained with the objec
tive of maximizing a measure of gene prediction accuracy. 
The fact that Tiberius is even slightly more accurate than 
BRAKER3, although the latter uses RNA-seq data in addi
tion to a protein database, suggests that the deep learning ap
proach of Tiberius is more effective. Moreover, the new 
paradigm of representing knowledge within parameters has 
not yet been subject to the extensive research and refinement 
seen in traditional pipelines that integrate alignment tools 
with ‘shallow’ machine learning methods. Consequently, it 
holds the potential for faster advancements in the future.

The integration of RNA-seq into a genome annotation 
pipeline has been known to be very beneficial (Gabriel et al. 
2024) and is even necessary if transcriptome assemblers are 
used. However, using ten RNA-seq libraries per species has 
not helped BRAKER3 to surpass the accuracy of Tiberius. 

Figure 4. Tiberius accuracy for test species, including non-mammalian species, plotted against the median time from the most recent common ancestor 
(MRCA) with Mus musculus, generated with TimeTree (Kumar et al. 2022).

Table 1. Average runtime (h: m) of the five gene prediction tools used in 
the benchmarking experiments.

A100 GPU 48 threads CPU

Tiberius Helixer AUGUSTUS BRAKER3 GALBA BRAKER2

1:39 8:54 2:25 48:53 35:12 15:36

Tiberius: gene prediction using deep learning                                                                                                                                                                      7 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data


We are not aware of a published and benchmarked general- 
purpose annotation pipeline that is more accurate than 
BRAKER3 and consequently than Tiberius as an ab initio 
gene finder. When Tiberius could exploit evolutionary infor
mation from aligned genomes in de novo mode, it even pre
dicted two out of three human genes without error. This 
approach requires significant bioinformatics resources, as 
whole-genome alignments need to be processed, but is the 
most accurate among the compared genome annotation 
methods and does not require any other data besides 
genomes. Therefore, currently transcriptome sequencing is 
becoming dispensable if it is only done to increase the average 
accuracy of mammalian genome annotation. Naturally, in 
the future, deep learning gene finders that integrate RNA-seq 
as well may be even more accurate.

4.1 BUSCO as an accuracy measure
Although BUSCO completeness is a useful indicator of the 
sensitivity of predicting the presence of genes when annotat
ing a genome, it is not suited to assess gene structure accu
racy. False positive or missing exons need not affect the 
BUSCO scores, neither do false-positive genes. Furthermore, 
BUSCO genes are widely conserved, which introduces a bias 
such that performance weaknesses on less widely conserved 
genes—the majority—may be undetected. The example of 
Helixer shows that high BUSCO completeness can go along 
with a low accuracy on gene level. For example, on human 
Helixer achieves a very good BUSCO score of about 95%, 
while only 19% of its predicted genes are correct. In addition, 
BUSCO scores do not reflect relative performance in the pre
diction of gene structures: On cow and beluga whale, Helixer 
achieves a higher BUSCO completeness than BRAKER3 but 
predicts less than 40% as many genes correctly.

4.2 HMMs for gene prediction
From our experiments with deep learning architectures, we 
draw the conclusion that two things should be customized to 
the gene prediction task. First, an HMM is a crucial layer to 
be included in the model architecture because general- 
purpose sequence-to-sequence models are not competitive 
without it. Tiberius, Helixer and AUGUSTUS all use an 
HMM, and AUGUSTUS—now the weakest of the three—still 
beats all 13 DNA language models tested by Marin et al. at 
the task of human gene prediction. We attribute this to the in
ductive bias that the HMM introduces by enforcing the com
mon biological knowledge about the admissible label 
sequences: gene structures obey a regular grammar that is de
fined by the HMM’s transition graph. Secondly, the choice of 
a loss function that is adapted to gene prediction is also vital. 
Whether a base is labeled ‘intron’ or ‘intergenic’ is deter
mined by neighboring exons that may be distant. The precise 
identification of exon boundaries is therefore particularly im
portant; we achieve this with a custom loss that explicitly 
penalizes exon boundary errors.

4.3 Limitations of Tiberius and future work
It is currently not recommended to use Tiberius to annotate 
non-vertebrate genomes without retraining it. BRAKER3 has 
the advantage over Tiberius in that it does not need training 
gene structures. A practical approach to annotating another 
clade may be to use BRAKER3 for a selection of genomes 
with available RNA-seq data, to train Tiberius on the 

BRAKER3 annotations, and to use Tiberius for the remaining 
genomes of the clade.

The prediction of alternative splicing and, relatedly, the 
proper integration of RNA-seq data is not naturally 
addressed by Tiberius and other sequence-to-sequence mod
els, which find one label per position. For this, another ap
proach may have to be found that allows one to model 
multiple alternative label sequences, each of which obeys the 
grammar of gene structures with its long-range dependencies. 
Due to its simple HMM state model, Tiberius cannot predict 
gene structures with spliced start codons. The current archi
tecture does not prevent in-frame stop codons that span an 
intron and such transcripts are only removed with a simple 
post-filter.

5 Conclusion
Ab initio genome annotation can be as accurate as genome 
annotation based on RNA-seq mapping and protein align
ment. When exploiting prior knowledge about protein- 
coding genes from other species, a fast, convenient, and 
accurate alternative to aligning individual protein sequences 
is to represent the prior knowledge in the parameters of a ma
chine learning model instead.
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