
Genome analysis

Tiberius: end-to-end deep learning with an HMM for
gene prediction
Lars Gabriel 1,2,�, Felix Becker 1,2, Katharina J. Hoff1,2, Mario Stanke 1,2,�

1Institute of Mathematics and Computer Science, University of Greifswald, Greifswald 17489, Germany
2Center for Functional Genomics of Microbes, University of Greifswald, Greifswald 17489, Germany
�Corresponding authors. Institute of Mathematics and Computer Science, University of Greifswald, Walther-Rathenau-Str. 47, 17489 Greifswald, Germany;
Center for Functional Genomics of Microbes, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany; E-mails: lars.gabriel@uni-greifswald.de (L.G.) and mario.
stanke@uni-greifswald.de (M.S.)
Associate Editor: Peter Robinson

Abstract
Motivation: For more than 25 years, learning-based eukaryotic gene predictors were driven by hidden Markov models (HMMs), which were di-
rectly inputted a DNA sequence. Recently, Holst et al. demonstrated with their program Helixer that the accuracy of ab initio eukaryotic gene
prediction can be improved by combining deep learning layers with a separate HMM postprocessor.
Results: We present Tiberius, a novel deep learning-based ab initio gene predictor that end-to-end integrates convolutional and long short-term
memory layers with a differentiable HMM layer. Tiberius uses a custom gene prediction loss and was trained for prediction in mammalian
genomes and evaluated on human and two other genomes. It significantly outperforms existing ab initio methods, achieving F1 scores of 62%
at gene level for the human genome, compared to 21% for the next best ab initio method. In de novo mode, Tiberius predicts the exon−intron
structure of two out of three human genes without error. Remarkably, even Tiberius’s ab initio accuracy matches that of BRAKER3, which uses
RNA-seq data and a protein database. Tiberius’s highly parallelized model is the fastest state-of-the-art gene prediction method, processing the
human genome in under 2 hours.
Availability and implementation: https://github.com/Gaius-Augustus/Tiberius

1 Introduction
Gene prediction is the task of finding genes and their exon−in-
tron structure in a genome and is a fundamental step in the
analysis of a newly sequenced genome. Its output includes the
coordinates of exons, the set of protein sequences encoded by
the genome and is the basis for most downstream analysis
tasks. In eukaryotes, the gene prediction task has not yet been
solved with an accuracy that is satisfactory for most tasks. In
particular, comparative studies that correlate differences in ob-
served phenotypes with differences in genes require high ge-
nome annotation accuracy (Nachtweide et al. 2024). Plans to
sequence the genomes of all known eukaryotic species suggest
a demand of more than a million genomes that require annota-
tion in the next decade (Lewin et al. 2022).

Most currently deployed pipelines for gene prediction use evi-
dence from previously identified proteins and their accuracy
also benefits from integrating RNA-seq data (Keilwagen et al.
2019, Brůna et al. 2024, Gabriel et al. 2024). Furthermore,
RNA-seq is widely recognized to be required for highly accurate
predictions (Lawniczak et al. 2022). However, taking mammals
as an example, currently there are 341 mammalian species for
which a genome assembly is deposited at the National Center
for Biotechnology Information (NCBI) but no RNA-seq avail-
able (48% of the total). If a similar genome annotation quality
could be reached without RNA-seq, a substantial amount of
time and other resources could be saved.

Many existing genome annotation pipelines, such as
BRAKER (Brůna et al. 2021, Gabriel et al. 2024) or NCBI’s
Eukaryotic Genome Annotation Pipeline (https://www.ncbi.
nlm.nih.gov/books/NBK169439) already have machine
learning or statistical components, such as Markov chains or
splice site pattern recognizers that exploit patterns in the
genome itself whose parameters need to be trained for a
given clade. If only evidence from the target genome is used,
this is referred to as ab initio gene prediction. If also evolu-
tionary evidence from multiple (aligned) genomes is used,
this is referred to as de novo gene prediction. Formally, the
ab initio gene prediction task is to give each position in the
input genome sequence S 2 fA;C;G;TgT a biological label of
some set of labels Q that includes exons, introns and inter-
genic region, i.e. to produce an output Y 2QT . This formu-
lation is a simplification because it does not account for
alternative splicing and overlapping and nested genes.
Nevertheless, this simplified task is difficult and at the core
of genome annotation.

A hidden Markov model (HMM) is a generative probabil-
istic model P(X, Y) of an observed sequence X¼ f ðSÞ, where
f can be any transformation of the genomic input to the
HMM input, and a” hidden” sequence Y. Traditional meth-
ods directly use the DNA sequence as HMM input (i.e.
X¼S). Such HMMs with direct DNA input and slight gener-
alizations thereof have been used for gene prediction for

Received: 21 July 2024; Revised: 17 October 2024; Editorial Decision: 8 November 2024; Accepted: 13 November 2024
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2024, 40(12), btae685
https://doi.org/10.1093/bioinformatics/btae685
Advance Access Publication Date: 18 November 2024
Original Paper

https://orcid.org/0000-0003-0264-016X
https://orcid.org/0000-0001-6831-8523
https://orcid.org/0000-0001-8696-0384
https://github.com/Gaius-Augustus/Tiberius
https://www.ncbi.nlm.nih.gov/books/NBK169439
https://www.ncbi.nlm.nih.gov/books/NBK169439

more than 25years (Kulp et al. 1996, Stanke et al. 2003).
Arguably, the majority of genomes is currently annotated us-
ing annotation pipelines that employ HMMs such as the
NCBI pipeline which uses the ‘GenScan’-like HMM Gnomon
and BRAKER, which uses AUGUSTUS (Stanke et al. 2003)
and GeneMark (Lomsadze et al. 2005).

Recently, gradient-based training of deep learning models
has been adapted for gene prediction. Stiehler et al. (2020) in-
troduced a deep neural network that uses a combination of
convolutional neural network (CNN) and long short-term
memory (LSTM) layers. Their program Helixer is a sequence-
to-sequence model f that outputs a matrix X 2 ½0;1�T× jQj

such that X½i;q� is the estimated probability that the ith ge-
nome position has biological label q. However, Helixer did
not yet predict gene structures. To provide gene predictions,
Holst et al. added an HMM-based ‘post-processor’ that uses
the Viterbi algorithm with input X¼ f ðSÞ to infer a most
likely gene structure Y� 2 argmaxY02QT PðX;Y0Þ. This version
of Helixer that is postprocessed by an HMM is here referred
to as just ‘Helixer'. It was hitherto arguably the overall most
accurate ab initio gene predictor, although Holst et al. did
not evaluate Helixer with regard to the usual measures of
gene prediction accuracy, such as recall and precision for the
prediction of exons and genes. With it, Holst et al. have
shown that deep learning has the potential to push the limits
of the ‘shallow’ learning approaches of classical HMMs such
as AUGUSTUS. However, in the Helixer model, f is not
adapted to the HMM that generates gene structures. Instead,
the model f is trained in an intermediate sequence classifica-
tion task without inductive bias of the true biological limita-
tions of a gene structure. All biological constraints imposed
on a full gene structure have to be learned and stored in the
parameters of f.

The accurate prediction of a gene structure is highly depen-
dent on the correct identification of state transitions, such as
the borders of exons. Holst et al. have shown that a general-
purpose deep learning sequence-to-sequence model can
achieve high base-level precision, but struggles to precisely lo-
cate exon boundaries, which could lead to low exon- and
gene-level accuracy. Marin et al. compared DNA language
models with classical HMM-based AUGUSTUS for human
gene finding. the best performing DNA language model,
Nucleotide Transformer (Dalla-Torre et al. 2023), did ‘not
approach the highly specialized AUGUSTUS’. Marin et al.
concluded that ‘more specialized downstream models are still
needed to accurately predict gene structure’.

Recently, Becker and Stanke developed an HMM layer
(Becker and Stanke 2022) in the context of multiple sequence
alignments with profileHMMs. This HMM layer is a special
case of a recurrent neural network that can be used in both su-
pervised and unsupervised settings jointly with other layers.
We utilize the HMM layer in a model inspired by Helixer, in-
corporating several enhancements. Instead of relying on a
post-processor, we integrate the HMM during both training
and inference. Therefore, we leverage end-to-end training with
the full inductive bias of a gene structure (consistent reading
frame, start- and stop codons and splice site patterns). In train-
ing mode, the output of our full model with HMM are the
posterior state probabilities bY ½i;q� ¼ PðYi ¼ qjXÞ. We train it
by minimizing a misclassification loss LðbY ;YtrueÞ. In contrast,
Helixer minimizes a loss function LðX;YtrueÞ that only
depends on X and thus is independent of the HMM.

Our new gene finder Tiberius outperforms Helixer on ab
initio mammalian genome annotation (gene-level F1-score
55% versus 19%) runs significantly faster on GPU than
Helixer as well as established CPU-based tools and can be
highly parallelized. We also compared Tiberius with
BRAKER3, as a representative of current state-of-the-art
pipelines that integrate RNA-seq and protein sequence data.
Despite Tiberius not using extrinsic evidence, it performed
slightly better in our test setting that disregarded alterna-
tive splicing.

2 Materials and methods
2.1 Dataset
A dataset comprising assemblies of 37 mammalian species
(see Supplementary Table S1) was used for training and eval-
uation of Tiberius. Genomes were soft-masked using
RepeatModeler2 (Flynn et al. 2020), RepeatMasker (http://
www.repeatmasker.org), and Tandem Repeats Finder
(Benson 1999). RefSeq reference annotations were retrieved
from NCBI. For details, we refer to the Supplementary
Methods. This dataset includes model species such as human
and mouse, covering a broad phylogenetic range of mamma-
lian species (see Supplementary Fig. S1). The gene prediction
challenge here arises from a relatively low gene density, large
numbers of exons per gene, GC-content heterogeneity, a large
genome size, and many long introns. For example, in human,
about half of the genes have at least one intron of size 10 kb
or larger. Dataset properties are given in Supplementary
Tables S1 and S2. To filter out annotations that suffer from
apparent false negatives, we included only species in the data-
set with a BUSCO (Manni et al. 2021) completeness >90%.

As test species, we chose the mammal with the arguably
best annotated genome, human (H. sapiens), as well as two
others for diversity: cow (B. taurus) and beluga whale (D.
leucas). The training and validation genomes were controlled
for phylogenetic proximity to the test species (Supplementary
Fig. S1). We did not include any species from the taxonomic
groups of Hominidae, Ruminantia, and Cetacea in the test or
validation set. The rationale is that the performance on the
test species shall be an estimate of the performance of
Tiberius on other mammalian genomes. The minimal evolu-
tionary distance from a training species to human is 43 MYA
and to cow and beluga whale 64 MYA.

For the validation of the Tiberius model training, Panthera
pardus and Rattus norvegicus were randomly selected from
the training species set. Their genomic data were subse-
quently excluded from the training process and only used for
hyperparameter selection.

For each gene within the reference annotations, the tran-
script with the longest coding sequence was chosen to gener-
ate unambiguous training labels. This is because the Tiberius
model’s output is designed to assign a single label per base
position, excluding the possibility of representing alternative
splicing isoforms.

2.2 Tiberius’ architecture
The architecture of the Tiberius model integrates CNNs,
LSTMs, and a differentiable and parallelized HMM layer
(Fig. 1). Although the pre-HMM architecture shares similari-
ties with the Helixer model introduced by Holst et al., the ar-
chitecture of Tiberius distinguishes itself through several
unique features: an HMM layer, repeat information as an

2 Gabriel et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
http://www.repeatmasker.org
http://www.repeatmasker.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data

additional input, training loss, residual connection, number
of output class labels, and a larger parameter count.

The input to the model is a sequence representing the one-
hot encoded nucleotide sequence over the alphabet fA, C,
G, T, Ng stacked with a track of masked repeat regions.
The model outputs, during training, probabilities for 15 gene
structure classes we define below and, during inference, la-
bel sequences.

The model is capable of processing sequences of variable
lengths. This allows it to be trained on shorter sequences to
reduce training time and subsequently to be evaluated on lon-
ger sequences in order to get a longer context length. The ar-
chitecture is designed to predict one strand at a time. To
make a prediction on the reverse strand, Tiberius inputs the
reverse complement of the input sequence into the model.
This allows it in principle to predict overlapping or nested
genes on opposite strands (see Supplementary Fig. S5 for
an example).

2.3 Tiberius training
The Tiberius model was trained using batches of seamless
tiles of length 9999. The training process took 15 days on a
machine equipped with four A100 GPUs (80 GB memory
each). During a first phase, the pre-HMM training, we
trained the model without the HMM layer for six days.
Afterwards, in phase two, we fine-tuned the model end-to-
end for 9 days, including the HMM layer. The software doc-
umentation provides instructions that can be adapted for a
different training set. We used the Adam optimizer (Kingma
and Ba 2014) with a learning rate of 10−4 throughout train-
ing. The batch size per GPU was 250 during the pre-HMM
training and 128 during the fine-tuning.

For validation, we evaluated the model’s performance after
every 1000 training steps using selected genome segments from
the validation species, leopard and rat. The evaluation consisted
of making full gene structure predictions for these validation
data. Training was terminated when no improvement in gene
and exon level accuracies was observed on the validation set.

We selected the final model based on the highest combined F1-
scores for validation exon and gene level accuracies.

2.3.1 F1-loss
A notable challenge for training a gene prediction model with
genomic data is the underrepresentation of exon classes in ge-
nomic data. For instance, on the forward strand of the hu-
man genome, coding exon regions constitute only �1% of
the genomic sequence, while �16% are intron regions and
�83% intergenic regions. The standard cross-entropy loss
alone is not a suitable representation of how well the model
predicts the minority class (exons). The precision and recall
on gene and exon level are highly sensitive to changes in the
prediction of individual labels and require precise identifica-
tion of exon boundaries.

Loss functions with class weights typically fail to optimize
both precision and recall simultaneously, particularly for un-
derrepresented classes such as exons, as they are designed to
minimize overall error rates but do not effectively manage the
trade-offs between false positives and false negatives (here:
exons) (Tian et al. 2022). To address this imbalance and im-
prove model performance on gene prediction metrics, we in-
troduce the F1-loss function. This function creates a loss
function based on the estimated F1-score for the exon class
labels, which we use in combination with the categorical
cross-entropy (CCE) loss. The F1-loss aims to improve the
model’s accuracy in predicting exon labels, and it aligns the
training objectives better with the evaluation metrics (at least
on base level). The F1-loss is defined as

F1 � loss ¼
X

i is exon class

ð1 −cF1iÞ;

where cF1i is the estimated F1-score of class i. We describe the
computation of cF1i in the Supplementary Methods.

For training the Tiberius model, we use the F1-loss in com-
bination with the CCE-loss function. The latter takes all class
labels into account. In instances where a sequence has no
exon labels, the estimated false positive rate dFPR ¼
1
T �
P

i is exonclass
PT

j¼1
bY ½j; i� is calculated instead of the F1-loss.

The CCE-F1-loss is then computed as

CCE � F1 � loss ¼ CCEþ λ �
F1 � loss if

P
AP>0

dFPR otherwise:

(

In our experiments we chose λ¼2. The CCE-F1-loss is
computed for each sequence in a batch independently and the
per-sequence losses are averaged.

2.3.2 Ablations
To assess the impact of key features in our model, we con-
ducted ablation studies on Tiberius. Each ablation modified a
specific feature of the original model and the ablated model
was trained in the same manner as the pre-HMM training of
Tiberius (see Tiberius Training):

� Tiberius_preHMM: The model without the HMM layer.
� Tiberius_no_sm: Removed the repeat masking track

from input.
� Tiberius_CCE: Used CCE-loss, instead of CCE-F1-loss.

Figure 1. Illustration of the CNN-LSTM architecture of the Tiberius model
for gene structure classification at each base position. The HMM layer
computes posterior probabilities or complete gene structures (Viterbi
sequences). The model has approximately 8 million trainable parameters,
and it was trained with sequences of length T¼9999 and a length of
T ¼ 500,004 was used for inference.

Tiberius: gene prediction using deep learning 3

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data

� Tiberius_small: Reduced the number of parameters (to
approximately 2 million) by halving the filter and unit
sizes of the CNN-/biLSTM layers.

� Tiberius_5class: Removed splice site classes, by mapping
the 15 output classes to a set of five labels (IR, Intron,
Exon-0, Exon-1, Exon-2) more similar to the one used by
Helixer before loss calculation.

� Tiberius_5class_CCE: Used above five labels and the
CCE loss.

2.4. HMM layer
HMMs, traditionally used in gene finding, can be designed to
enforce biological constraints, e.g. reading-frame consistency.
A most probable sequence of states for an input sequence can
be computed with the Viterbi algorithm. Following Holst
et al., we decode complete gene structures from an input ma-
trix X of position-wise class probabilities.

We developed a novel HMM layer (Becker and Stanke
2022), which is an integral component of the model during
fine-tuning and inference. It implements standard HMMs
that emit one character per state. The layer uses the
TensorFlow library and supports all functionality of a tradi-
tional deep learning layer: it is vectorized (i.e. it runs on a
batch of independent sequences in parallel), it runs on GPU
and it is differentiable (i.e. it can be used for end-to-end fine-
tuning). It also supports a parallel mode that is able to paral-
lelize common HMM algorithms over segments of the input
sequences, as described later, in order to maximize utility of
the available GPUs.

2.4.1 HMM architecture
We use an HMM with 15 hidden states, one of which is for
intergenic positions, three for intron positions and 11 states
are for exon positions (Fig. 2). The exon states are further di-
vided into three states corresponding to the different reading
frames and nine states that are specifical for exon border
positions. The border states are two states for start and stop
codons of a gene and additionally two states for acceptor and
donor splice sites that transition to and from the in-
tron states.

The inputs to our HMM are position-wise class probabili-
ties and sequences of right- and left-adjusted, overlapping
triplets. The 15 input classes correspond one-to-one to the

states of the HMM. The HMM is designed to enforce canoni-
cal splice site patterns, start and stop codons, while also pre-
venting in-frame stop codons within exons. For details, we
refer to the Supplementary Methods. Note that the design
does not prevent in-frame stop codons that are spliced
across two exons, and these may appear in the predicted gene
structures; such genes are currently filtered out during
post-processing. Allowed splice site patterns and their relative
weighting can in principle be specified by the user or even be
learned. We benefit from the small number of states of
Tiberius’ HMM in the parallel implementation of the
Viterbi algorithm.

2.4.2 Fine-tuning with HMM
The standard HMM has only 24 parameters that were not
trained. The 23 transition parameters (one for each edge in
Fig. 2) model in particular geometric length distributions for
exons and introns. These parameters have been set so that the
means of these distributions are the empirical average lengths
of the intergenic, intron, and exon regions. The emission dis-
tribution maps input classes directly to corresponding states
and has only a single smoothing parameter to account for in-
correct inputs. See Supplementary Methods, Section 3 for
more details. Although the HMM itself is not trained, the
gradient of the loss computed from the HMM’s output with
respect to the HMM’s input was computed, and the HMM
serves during training as an inductive bias for biological con-
straints of the gene structures.

2.4.3 Parallel viterbi
We found that for long inputs the HMM layer is the compu-
tational bottleneck. The Viterbi algorithm requires to com-
pute dynamic programming variables sequentially for each
time step that depend on the variables of the previous step.
This is problematic for long sequences. Note that the LSTM
is also sequential but receives, like in the Helixer model, an
input that is shortened by a reshaping operation. To solve
this issue, we employ a parallel variant of Viterbi, which can
run in parallel on segments of a sequence. This can be done
by conditioning on the states at the segment borders and
computing local Viterbi variables under these conditions. An
equivalent result to the sequential Viterbi can be computed
from these local variables in another global pass, this time re-
quiring only one step per segment. More details are given in
the Supplementary Methods. This procedure trades off an in-
crease in the total number of necessary computations propor-
tional to the number of HMM states with the possibility of
high parallelization. The parallel Viterbi algorithm greatly
improves the speed of Tiberius and increases its GPU utiliza-
tion while being functionally equivalent. With parallelization,
it runs more than 17 times faster on GPU (Supplementary
Table S5).

2.4.4 Inference of gene structures
Tiberius uses the parallel Viterbi algorithm to infer complete
gene structures on both strands and outputs them in a GTF
formatted file. Internally and in a way that is transparent to
the user, the input sequence and its reverse complement are
partitioned into sequence tiles of size about 500 kb that are
initially processed independently. Afterward, for tile bound-
aries that appear to be in a gene (not intergenic), a
second pass of predictions is made in the sequence of size
about 1 mb that consists of the two tiles neighboring

Figure 2. The states of the HMM used for inference with Tiberius and the
transitions between them. The 11 coding-exon position states are
subdivided by reading frame i: Exon-i represents non-border positions
within an exon, while ASS-i (acceptor splice site) and DSS-i (donor splice
site) states are the first and last position of an exon that starts and ends
with reading frame i, respectively. The four non-coding position states are
intergenic region (IR) or within an intron.

4 Gabriel et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data

the boundary. For details of this inference, we refer to the
Supplementary Methods.

2.5 Tiberius de novo
Tiberius has a de novo mode that uses evolutionary evidence
from multiple unannotated genomes. This evidence, gener-
ated by ClaMSA (Mertsch and Stanke 2022) using 64 species
in the Zoonomia project alignment (Zoonomia Consortium
2020), provides site-specific coding probabilities. These are
summarized into four values per position, representing the
logit values for codon start sites. These values are integrated
into Tiberius by stacking them to each position’s input data.
For training and benchmarking, ClaMSA data were gener-
ated using Mus musculus and H. sapiens as reference species,
respectively. We only include de novo results for human as
our multiple genome alignment for inference was human ref-
erenced. See Supplementary Methods for more details.

2.6 Accuracy metrics
To assess the accuracy of predicted gene structures, we
adopted metrics commonly used in evaluating gene predic-
tion tools (Burset and Guigo 1996). We compared the pre-
dicted gene structures to a reference annotation at two
different levels: exon and gene. For both levels, we quantified
the number of true positives (TP), false positives (FP), and
false negatives (FN). We used the following metrics: Recall ¼
TP/(TP þ FN)—the proportion of instances correctly identi-
fied from the reference, Precision ¼ TP/(TP þ FP)—the pro-
portion of correct predictions, and the F1-score—their
harmonic mean. Note that in the field of gene finding meth-
ods and their evaluation, the terms ‘specificity’ and
‘sensitivity’ are sometimes used interchangeably with our def-
initions of ‘precision’ and ‘recall’, respectively. Additionally,
we computed the BUSCO completeness, as this is a com-
monly used metric for evaluating novel genome annotations.

2.7 Benchmarking
Whole-genome predictions were generated for the test spe-
cies—H. sapiens, B. taurus, and D. leucas—using Tiberius
and its ablated variants. We compared Tiberius with the
other ab initio gene finders Helixer and AUGUSTUS, which
can use the same input data. Helixer is a very closely related
method, as it has a similar architecture and is the only other
gene prediction tool based on deep learning. In contrast,
AUGUSTUS is a well-established gene finding model which
employs an HMM and does not utilize deep learning. For
AUGUSTUS, the standard human parameters were used,
which were trained in 2010 on 1784 human genes. Helixer
was executed with publicly available weights for vertebrate
genomes using recommended settings. The three species we
used for testing were all included in the list of 315 vertebrate
genomes on which Helixer was trained.

In a second set of experiments, we compared Tiberius with
the genome annotation pipelines BRAKER2 (Brůna et al.
2021), GALBA (Brůna et al. 2023), and BRAKER3 (Gabriel
et al. 2024), which utilize extrinsic evidence. In particular,
BRAKER2 and GALBA incorporate protein sequences.
BRAKER2 uses a large protein database that may include dis-
tantly related species. GALBA relies on sequences from a few
closely related species. BRAKER3, arguably the most accu-
rate automated genome annotation pipeline currently avail-
able in Gabriel et al. (2024), incorporates both RNA-seq data
and a large protein database as additional inputs. In our

experiments, we used the vertebrate partition of OrthoDB
v.11 as protein database for BRAKER2 and BRAKER3, ex-
cluding—just as for training Tiberius—sequences from 10
Hominidae, Ruminantia, or Cetacea, depending on the target
species. Additionally, BRAKER3 used 10 paired-end short-
read RNA-seq libraries for each test species (Supplementary
Table S3). For the GALBA experiments, we selected protein
sequences from three closely related species from the Tiberius
training set for each test (see Supplementary Methods,
Section 3). Unlike Tiberius, these pipelines can report alterna-
tive splice forms for each gene. To ensure a fair comparison
at the gene level, where additional isoforms can only increase
accuracy, we used only the isoform with the longest coding
sequence for each gene, even though the longest is not neces-
sarily the best or most accurate.

3 Results
3.1 Benchmarking results
The benchmarking experiments assessed Tiberius through
comparisons with two distinct groups of gene prediction
methods. The first comparison group consisted of other ab
initio methods—AUGUSTUS, and Helixer—which rely solely
on genomic data without extrinsic evidence. The second
group, consisting of BRAKER2, BRAKER3, and GALBA,
utilized extrinsic evidence for their gene predictions.

3.1.1 Comparison of ab initio methods
Tiberius consistently outperformed AUGUSTUS and Helixer
across all species and metrics (Fig. 3). On average, Tiberius
achieved an F1-score of 89.7% at exon level and 55.1% at
gene level, followed by Helixer (72.9% and 19.3%, respec-
tively) and then AUGUSTUS (67.3% and 12.4%, respec-
tively) (Supplementary Table S6). This trend was evident
across all tested species, the highest leading margin for
Tiberius was observed in H. sapiens, where Tiberius has
41.8% points higher precision and 40.5% points higher re-
call than Helixer on gene level. As an additional performance
metric for genome annotation, protein-level BUSCO com-
pleteness was calculated for all gene predictions. Tiberius led
this metric as well, achieving an average of 96.0% BUSCO
completeness for the test species, followed by Helixer at
92.1% and AUGUSTUS at 74.2% (Supplementary Fig. S2).

The models of Helixer and Tiberius share many similari-
ties, but their large test accuracy differences may be attrib-
uted to several design or implementation choices; these
include model size, training loss, output class labels, and end-
to-end learning with an HMM layer. The most significant
impact on training accuracy came from introducing the CCE-
F1-loss combined with output labels that include different
classes based on reading frame and exon borders (see
Ablation Studies and Generalizability). In contrast, Helixer
used a weighted CCE-loss without separate exon border clas-
ses and uses higher weights for the boundaries of reference
exons only (Holst et al. 2023). Integrating an HMM layer for
end-to-end training further improved test accuracy, increas-
ing F1-scores by 2.6 and 1.1 percentage points at gene and
exon levels, respectively. Increasing parameters from 2 mil-
lion (comparable to Helixer’s 3 million) to 8 million yielded
additional improvements of 4.9 and 1.2 percentage points in
gene and exon level F1-scores, respectively. Tiberius demon-
strates the ability to accurately predict even genes that span

Tiberius: gene prediction using deep learning 5

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data

large genomic regions. The longest human gene correctly pre-
dicted by Tiberius is 328,931 bases long.

3.1.2 Comparison with methods using extrinsic evidence
The integration of protein and RNA-seq data into genome
annotation methods has so far been regarded as a significant
advantage over ab initio predictions. The very recently pub-
lished BRAKER3, which uses both RNA-seq and protein evi-
dence, represents the current state of the art for genome
annotation. For our accuracy comparisons, we eliminated the
influence of the prediction of alternative splice forms by using
for each gene set, predicted or reference, only the transcript
variant with the longest coding sequence.

Compared to state-of-the-art methods that incorporate ex-
trinsic evidence, the ab initio predictions by Tiberius match
or surpass the performances of the other tools, despite its dis-
advantage (Fig. 3). At gene and exon level, Tiberius achieves
an F1-score of 55.1% and 89.7%, which is 1.4% and 6.5%
points higher than that of BRAKER3 (53.7% and 83.2%),
surpassing also the F1-scores of both GALBA (41.8% and
86.2%) and BRAKER2 (14.9% and 48.7%) (Supplementary
Table S6). The increase in accuracy is particularly notable in
the case of H. sapiens, where Tiberius surpasses the other
methods in all metrics. Tiberius executed in de novo mode on
human has even higher accuracy on gene level, reaching an
F1-score of 65.5% and 92.6% on gene and exon level. In
terms of BUSCO completeness, Tiberius achieves the highest
completeness for each species, most complete in human
with 98.9%.

As illustrated in Supplementary Fig. S6, the integration of
extrinsic evidence has the potential to reduce Tiberius’ errors
and to further improve gene prediction accuracy. The

evolution of other ab initio methods, that have incorporated
extrinsic evidence, suggests that such integration could ulti-
mately lead to substantial accuracy improvements (Yandell
and Ence 2012).

3.2 Ablation studies and generalizability
We evaluated the impact of key features of Tiberius by retrain-
ing ablation models and comparing them to the original
model. To reduce computational time, all models in this evalu-
ation, including the default model (Tiberius_preHMM), were
trained without the HMM layer. The HMM layer was used
only during inference.

3.2.1 Softmasking
Retraining Tiberius without the softmasking input track
(Tiberius_no_sm) shows a slight decline in prediction accu-
racy (Supplementary Table S7). The average F1-score was de-
creased by just 0.2% points on exon level and 0.9% points
on gene level. For more distant species, the differences are
larger, and Tiberius’s accuracy benefits substantially from the
softmasking input (Supplementary Fig. S3). This effect is pre-
sumably due to these species having different repeat families
that Tiberius_no_sm has not learned.

The minor gains in mammalian species must be weighed
against the additional preprocessing step required to mask
the repeats before running Tiberius. The Tiberius software
provides both options, allowing users to input genomic
sequences with or without softmasking.

3.2.2 Class labels and loss function
The F1 part of the CCE-F1-loss weights all exon classes
equally, regardless of their frequency of occurrence, which is

Figure 3. Gene and exon-level precision and recall for Tiberius, BRAKER3, GALBA, Helixer, BRAKER2, and AUGUSTUS. Tiberius, Helixer, and
AUGUSTUS performed ab initio predictions while the other methods additionally incorporated extrinsic evidence: GALBA proteins from related species,
BRAKER2 a large protein database, and BRAKER3 a large protein database and RNA-seq. For the human genome, Tiberius was also run de novo.

6 Gabriel et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data

particularly relevant for the positions of the splice sites. Using
separate classes for exon borders, as implemented in the 15
classes of the default model, aligns the loss function with the
target metrics of exon and gene level accuracies. The loss
function and class labels are beneficial because small differen-
ces in exon border positions can have a significant impact,
even if the majority of an exon segment is predicted correctly.

Our ablation studies demonstrate that both the CCE-F1-
loss and separate exon border classes lead to substantial
improvements, particularly on gene level accuracy.
Compared to Tiberius_preHMM, Tiberius_CCE decreases
gene and exon level F1-scores by 8.8 and 2.1 percentage
points, while Tiberius_5class decreases them by 11.8 and 5.4.
Removing both features causes even a decrease by 21.1 and
10.3 percentage points in gene and exon level F1-scores.

3.2.3 Generalizability
To assess Tiberius’s ability to generalize beyond the mamma-
lian training set, we evaluated its performance on species
across varying evolutionary distances (Fig. 4). The results
show robust performance on mammalian test species and a
steady decline in accuracy as phylogenetic distance increases.
Notably, Tiberius maintains strong performance on more dis-
tant vertebrates such as Gallus gallus and, at least on exon
level, Danio rerio. The most divergent species tested, Populus
trichocarpa and Solanum lycopersicum, show the lowest F1-
scores, as expected given their large evolutionary distance
from the training data. This demonstrates Tiberius’s potential
for applicability across domains that are adjacent to mam-
mals, while showing the need for re-training for other clades.

3.3 Runtime
We ran our experiments for Helixer and Tiberius on a high-
performance computing cluster using an NVIDIA A100 GPU
with 80 Gb memory and 48 CPU threads, but Tiberius makes
little use of the CPU cores. BRAKER3, GALBA, BRAKER2,
and AUGUSTUS do not support GPU execution and were ex-
ecuted on a node using 48 CPU threads. Among the models
tested, the ab initio methods had significantly lower runtimes,

as BRAKER3, GALBA and BRAKER2 include costly process-
ing steps for the extrinsic evidence and training of their
HMM models.

Tiberius demonstrated the fastest runtime per genome with
an average of 1:39 h, faster than AUGUSTUS at 2:25 h, while
Helixer lagged significantly at 8:54 h (Table 1, Supplementary
Table S4). In de novo mode for the human genome, Tiberius
took with a runtime of 2:05 h only 9 min longer than in
ab initio mode (Supplementary Table S4). Tiberius leverages
GPU processing across all computational steps of its model,
including the HMM. It employs batch parallelization and a
parallel implementation of the Viterbi algorithm (see Parallel
Viterbi). In contrast, Helixer utilizes the GPU’s computational
advantages only for its CNN-LSTM components, lacking
GPU integration for its HMM processing. The runtimes of
BRAKER3, GALBA, and BRAKER2 were significantly higher,
with BRAKER3 being the slowest, with an average runtime of
over 2 days.

3.3.1 Data availability
The Tiberius predictions for the three test species and a
UCSC Genome Browser track for human genome results are
available from the GitHub page.

4 Discussion
Tiberius and BRAKER3 both use previously annotated mam-
malian genomes. BRAKER3 explicitly aligns protein sequen-
ces against sequences from the target species using several
alignment tools. Tiberius, however, only implicitly represents
the prior knowledge of the annotations on nucleotide level in
a large number of parameters that are trained with the objec-
tive of maximizing a measure of gene prediction accuracy.
The fact that Tiberius is even slightly more accurate than
BRAKER3, although the latter uses RNA-seq data in addi-
tion to a protein database, suggests that the deep learning ap-
proach of Tiberius is more effective. Moreover, the new
paradigm of representing knowledge within parameters has
not yet been subject to the extensive research and refinement
seen in traditional pipelines that integrate alignment tools
with ‘shallow’ machine learning methods. Consequently, it
holds the potential for faster advancements in the future.

The integration of RNA-seq into a genome annotation
pipeline has been known to be very beneficial (Gabriel et al.
2024) and is even necessary if transcriptome assemblers are
used. However, using ten RNA-seq libraries per species has
not helped BRAKER3 to surpass the accuracy of Tiberius.

Figure 4. Tiberius accuracy for test species, including non-mammalian species, plotted against the median time from the most recent common ancestor
(MRCA) with Mus musculus, generated with TimeTree (Kumar et al. 2022).

Table 1. Average runtime (h: m) of the five gene prediction tools used in
the benchmarking experiments.

A100 GPU 48 threads CPU

Tiberius Helixer AUGUSTUS BRAKER3 GALBA BRAKER2

1:39 8:54 2:25 48:53 35:12 15:36

Tiberius: gene prediction using deep learning 7

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data

We are not aware of a published and benchmarked general-
purpose annotation pipeline that is more accurate than
BRAKER3 and consequently than Tiberius as an ab initio
gene finder. When Tiberius could exploit evolutionary infor-
mation from aligned genomes in de novo mode, it even pre-
dicted two out of three human genes without error. This
approach requires significant bioinformatics resources, as
whole-genome alignments need to be processed, but is the
most accurate among the compared genome annotation
methods and does not require any other data besides
genomes. Therefore, currently transcriptome sequencing is
becoming dispensable if it is only done to increase the average
accuracy of mammalian genome annotation. Naturally, in
the future, deep learning gene finders that integrate RNA-seq
as well may be even more accurate.

4.1 BUSCO as an accuracy measure
Although BUSCO completeness is a useful indicator of the
sensitivity of predicting the presence of genes when annotat-
ing a genome, it is not suited to assess gene structure accu-
racy. False positive or missing exons need not affect the
BUSCO scores, neither do false-positive genes. Furthermore,
BUSCO genes are widely conserved, which introduces a bias
such that performance weaknesses on less widely conserved
genes—the majority—may be undetected. The example of
Helixer shows that high BUSCO completeness can go along
with a low accuracy on gene level. For example, on human
Helixer achieves a very good BUSCO score of about 95%,
while only 19% of its predicted genes are correct. In addition,
BUSCO scores do not reflect relative performance in the pre-
diction of gene structures: On cow and beluga whale, Helixer
achieves a higher BUSCO completeness than BRAKER3 but
predicts less than 40% as many genes correctly.

4.2 HMMs for gene prediction
From our experiments with deep learning architectures, we
draw the conclusion that two things should be customized to
the gene prediction task. First, an HMM is a crucial layer to
be included in the model architecture because general-
purpose sequence-to-sequence models are not competitive
without it. Tiberius, Helixer and AUGUSTUS all use an
HMM, and AUGUSTUS—now the weakest of the three—still
beats all 13 DNA language models tested by Marin et al. at
the task of human gene prediction. We attribute this to the in-
ductive bias that the HMM introduces by enforcing the com-
mon biological knowledge about the admissible label
sequences: gene structures obey a regular grammar that is de-
fined by the HMM’s transition graph. Secondly, the choice of
a loss function that is adapted to gene prediction is also vital.
Whether a base is labeled ‘intron’ or ‘intergenic’ is deter-
mined by neighboring exons that may be distant. The precise
identification of exon boundaries is therefore particularly im-
portant; we achieve this with a custom loss that explicitly
penalizes exon boundary errors.

4.3 Limitations of Tiberius and future work
It is currently not recommended to use Tiberius to annotate
non-vertebrate genomes without retraining it. BRAKER3 has
the advantage over Tiberius in that it does not need training
gene structures. A practical approach to annotating another
clade may be to use BRAKER3 for a selection of genomes
with available RNA-seq data, to train Tiberius on the

BRAKER3 annotations, and to use Tiberius for the remaining
genomes of the clade.

The prediction of alternative splicing and, relatedly, the
proper integration of RNA-seq data is not naturally
addressed by Tiberius and other sequence-to-sequence mod-
els, which find one label per position. For this, another ap-
proach may have to be found that allows one to model
multiple alternative label sequences, each of which obeys the
grammar of gene structures with its long-range dependencies.
Due to its simple HMM state model, Tiberius cannot predict
gene structures with spliced start codons. The current archi-
tecture does not prevent in-frame stop codons that span an
intron and such transcripts are only removed with a simple
post-filter.

5 Conclusion
Ab initio genome annotation can be as accurate as genome
annotation based on RNA-seq mapping and protein align-
ment. When exploiting prior knowledge about protein-
coding genes from other species, a fast, convenient, and
accurate alternative to aligning individual protein sequences
is to represent the prior knowledge in the parameters of a ma-
chine learning model instead.

Acknowledgements
We thank Alisandra Denton for pioneering deep learning in
gene finding and for sharing her team’s experience in train-
ing Helixer.

Author Contributions
Conceptualization: LG, FB, MS; Data curation: LG, KJH;
Software: LG, FB, MS; Formal analysis: LG, FB; Writing—
original draft: LG, FB, KJH, MS; Writing—review & editing:
LG, FB, KJH, MS.

Supplementary data
Supplementary data are available at Bioinformatics online.

Conflict of interest: None declared.

Funding
None declared.

Data availability
All source code is available at https://github.com/Gaius-
Augustus/Tiberius. The genome assemblies were extracted
from the Zoonomia genome alignment of mammals
(Zoonomia Consortium 2020). Reference annotations were
retrieved from the NCBI (accession numbers in
Supplementary Tables 1 and 2).

References
Becker F, Stanke M. learnMSA: learning and aligning large protein fam-

ilies. Gigascience 2022;11:giac104.
Benson G. Tandem repeats finder: a program to analyze DNA sequen-

ces. Nucleic Acids Res 1999;27:573–80.

8 Gabriel et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data
https://github.com/Gaius-Augustus/Tiberius
https://github.com/Gaius-Augustus/Tiberius
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae685#supplementary-data

Brůna T, Hoff KJ, Lomsadze A et al. BRAKER2: automatic eukaryotic
genome annotation with GeneMark-EPþ and AUGUSTUS sup-
ported by a protein database. NAR Genom Bioinform 2021;
3:lqaa108.

Brůna T, Li H, Guhlin J et al. Galba: genome annotation with miniprot
and augustus. BMC Bioinformatics 2023;24:327.

Brůna T, Lomsadze A, Borodovsky M. GeneMark-ETP significantly
improves the accuracy of automatic annotation of large eukaryotic
genomes. Genome Res 2024;34:757–68.

Burset M, Guigo R. Evaluation of gene structure prediction programs.
Genomics 1996;34:353–67.

Dalla-Torre H, Gonzalez L, Mendoza-Revilla J et al. The nucleotide
transformer: building and evaluating robust foundation models for
human genomics. bioRxiv, 2023, 2023-01, preprint: not
peer reviewed.

Flynn JM, Hubley R, Goubert C et al. RepeatModeler2 for automated
genomic discovery of transposable element families. Proc Natl Acad
Sci USA 2020;117:9451–7.

Gabriel L, Brůna T, Hoff KJ et al. BRAKER3: fully automated genome
annotation using RNA-seq and protein evidence with GeneMark-
ETP, AUGUSTUS, and TSEBRA. Genome Res 2024;34:769–77.

Holst F, Bolger A, G€unther C et al. Helixer–de novo prediction of pri-
mary eukaryotic gene models combining deep learning and a hidden
markov model. bioRxiv, 2023, 2023-02, preprint: not
peer reviewed.

Keilwagen J, Hartung F, Grau J. GeMoMa: homology-based gene pre-
diction utilizing intron position conservation and RNA-seq data. In:
Kollmar M (ed.), Gene Prediction: Methods and Protocols. New
York: Humana, 2019, 161–77.

Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv,
arXiv:1412.6980, 2014, preprint: not peer reviewed.

Kulp D, Haussler D, Reese M et al. A generalized hidden Markov model
for the recognition of human genes in DNA. In Proceedings
International Conference on Intelligent Systems for Molecular
Biology. 1996, 134–42.

Kumar S, Suleski M, Craig JM et al. TimeTree 5: an expanded resource
for species divergence times. Mol Biol Evol 2022;39:msac174.

Lawniczak MK, Durbin R, Flicek P et al. Standards recommendations
for the earth BioGenome project. Proc Natl Acad Sci USA 2022;
119:e2115639118.

Lewin HA, Richards S, Lieberman Aiden E et al. The earth BioGenome
project 2020: starting the clock. Proc Natl Acad Sci 2022;119:
e2115635118.

Lomsadze A, Ter-Hovhannisyan V, Chernoff YO et al. Gene identifica-
tion in novel eukaryotic genomes by self-training algorithm. Nucleic
Acids Res 2005;33:6494–506.

Manni M, Berkeley MR, Seppey M et al. BUSCO update: novel and
streamlined workflows along with broader and deeper phylogenetic
coverage for scoring of eukaryotic, prokaryotic, and viral genomes.
Mol Biol Evol 2021;38:4647–54.

Marin FI, Teufel F, Horlacher M et al. BEND: benchmarking DNA lan-
guage models on biologically meaningful tasks. In: The Twelfth
International Conference on Learning Representations, 2023.

Mertsch D, Stanke M. End-to-end learning of evolutionary models to
find coding regions in genome alignments. Bioinformatics 2022;
38:1857–62.

Nachtweide S, Romoth L, Stanke M. Comparative genome annotation.
In: Setubal JC, Stadler PF, Stoye J (eds.), Comparative Genomics:
Methods and Protocols. New York: Humana, 2024, 165–87.

Stanke M, Waack S. Gene prediction with a hidden Markov model and
a new intron submodel. Bioinformatics 2003;19 Suppl. 2:ii215–25.

Stiehler F, Steinborn M, Scholz S et al. Helixer: cross-species gene anno-
tation of large eukaryotic genomes using deep learning.
Bioinformatics 2021;36:5291–8.

Tian J, Mithun NC, Seymour Z et al. Striking the right balance: recall
loss for semantic segmentation. In: International Conference on
Robotics and Automation (ICRA). IEEE, 2022; 5063–69.

Yandell M, Ence D. A beginner’s guide to eukaryotic genome annota-
tion. Nat Rev Genet 2012;13:329–42.

Zoonomia Consortium. A comparative genomics multitool for scientific
discovery and conservation. Nature 2020;587:240–5.

© The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2024, 40, 1–9
https://doi.org/10.1093/bioinformatics/btae685
Original Paper

Tiberius: gene prediction using deep learning 9

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	5 Conclusion
	Acknowledgements
	Author Contributions
	Supplementary data
	Funding
	Data availability
	References

