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Partitioned polygenic risk scores 
identify distinct types of metabolic 
dysfunction-associated steatotic  
liver disease

Oveis Jamialahmadi    1 , Antonio De Vincentis2,3, Federica Tavaglione    4,5, 
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Umberto Vespasiani-Gentilucci4,5, Frits Richard Rosendaal    7, 
Julia Kozlitina    11, Päivi Pajukanta    9,12,13, François Pattou14,15, Luca Valenti    6,16 & 
Stefano Romeo    1,17,18,19,20 

Metabolic dysfunction-associated steatotic liver disease (MASLD) is 
characterized by an excess of lipids, mainly triglycerides, in the liver and 
components of the metabolic syndrome, which can lead to cirrhosis and 
liver cancer. While there is solid epidemiological evidence that MASLD 
clusters with cardiometabolic disease, several leading genetic risk factors 
for MASLD do not increase the risk of cardiovascular disease, suggesting 
no causal relationship between MASLD and cardiometabolic derangement. 
In this work, we leveraged measurements of visceral adiposity identifying 
27 previously unknown genetic loci associated with MASLD (n = 36,394), 
six replicated in four independent cohorts (n = 3,903). Next, we generated 
two partitioned polygenic risk scores based on the presence of lipoprotein 
retention in the liver. The two polygenic risk scores suggest the presence 
of at least two distinct types of MASLD, one confined to the liver resulting 
in a more aggressive liver disease and one that is systemic and results in a 
higher risk of cardiometabolic disease. These findings shed light on the 
heterogeneity of MASLD and have the potential to improve the prediction of 
clinical trajectories and inform precision medicine approaches.

Paralleling the obesity epidemic, steatotic liver disease (SLD) is a growing 
burden worldwide. SLD includes a spectrum of conditions characterized 
by an excess of lipids, mainly triglycerides, stored in intracellular lipid 
droplets in the liver, potentially progressing to inflammation, fibro-
sis and ultimately to cirrhosis and liver cancer1. SLD is a heterogenous 
disease coexisting with a metabolic derangement, including visceral 
adiposity, insulin resistance and hypertension, namely, metabolic 
dysfunction-associated SLD (or MASLD). This metabolic derangement 

ultimately increases the risk of cardiovascular events, including heart 
failure, and also increases kidney disease2–4. Indeed, cardiovascular 
disease is the most frequent cause of death in individuals with MASLD, 
whereas liver-related death is less frequent; however, it is a common clini-
cal observation that some individuals develop a rapidly progressing liver 
disease despite similar or even less-marked metabolic derangement.

MASLD has a strong inherited component; several variants that 
increase primarily liver lipids by impairing hepatocyte lipid droplet 
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unadjusted (Supplementary Table 1)16. Genetic heritability estimates 
for PDFF showed that adjustment for adiposity index explains up to 6% 
more heritability compared to the unadjusted model (Supplementary 
Table 2). For cT1, all adiposity measurements yielded similar results 
to the unadjusted model. These data suggest that liver triglyceride 
content is dependent on adiposity, whereas inflammation is less cor-
related. Furthermore, genetic correlations among different adiposity 
adjustments showed that BMI and WFM adjustments shared the largest 
overlap for both PDFF and cT1 (Fig. 1a and Supplementary Table 3), 
consistent with the epidemiological correlation.

Statistically independent genetic loci for each adiposity-adjusted 
GWAS were identified by linkage disequilibrium (LD) clumping17 and 
conditional analysis (Methods)18. Next, we performed pleiotropic 
analysis19 to identify independent genetic loci from the four adiposity 
adjustments. In this context, pleiotropic analysis refers to genetic 
loci that are shared among more than two adiposity adjustments for 
each liver trait (Supplementary Table 4). Specifically, we assigned 
the same locus number to lead variants from adiposity-adjusted 
GWAS (four for PDFF and four for cT1) located within 1 Mb of each 
other, provided that more than two GWAS lead variants were in LD 
(r2 > 0.2). Finally, the strongest (lowest GWAS P value) association 
at each locus was selected as the independent lead variant for that 
trait (PDFF or cT1).

A total of 37 and 18 independent genetic loci for PDFF and cT1 
reached the genome-wide significance level (P < 5 × 10−8 not adjusted 
for the number of GWAS carried out), respectively (Fig. 1b and Table 1). 
Multiple loci showed the strongest associations when adjusted for 
specific adiposity indices (Supplementary Table 5).

We found 17 and 9 previously unknown genetic loci associating 
with PDFF and cT1, respectively (Methods, Table 1 and Supplementary 
Table 6). Four loci (PNPLA3, TM6SF2, GPAM and HFE/SLC17A3) were 
associated with both traits with at least one adiposity adjustment; 
however, only PNPLA3 and TM6SF2 loci were associated with both 
traits at a genome-wide level irrespective of the adjustment (Fig. 1b).

Identification of the putative causal loci associated with liver 
traits
To identify the putative causal loci, we fine-mapped the independent 
genome-wide significant loci associated with adiposity-adjusted PDFF 
and cT1. Independent lead variants at multiple loci had a posterior inclu-
sion probability (PIP) > 0.95, suggesting that these GWAS lead variants 
are causal variants (Supplementary Table 7). Notably, a missense variant 
on ADH1B (rs1229984) had a PIP of 1 at ADH1B, MTTP and RP11-766F14.2 
loci, suggesting that the observed effect from all three loci may derive 
from the same putative causal variant. In fact, ADH1B rs1229984 and 
MTTP rs11937107 have a D′ of 1 in Europeans20 (Supplementary Table 7).

To examine whether the set of independent variants could poten-
tially perturb the gene expression patterns of nearby genes, we per-
formed a Bayesian colocalization (Methods). We were able to colocalize 
13 and 7 GWAS signals with at least one eQTL evidence for PDFF and cT1, 
respectively (Supplementary Table 8).

Functional analyses of independent loci associated with liver 
traits
Independent genetic loci for adiposity-adjusted PDFF and cT1 were 
mapped to genes and ranked using multiple approaches (Methods). 
Out of 37 and 18 independent loci for PDFF and cT1, respectively, the 
majority (31 and 12) loci had the highest rank for the nearest genes 
(Supplementary Table 9). For the remaining loci, multiple candidate 
genes were found. To gain a deeper understanding of the biological 
implications of genome-wide significant loci, we conducted a func-
tional gene-set enrichment analysis using mapped genes with the  
highest evidence (Supplementary Table 10). Mapped genes for  
PDFF were enriched in genes mostly expressed in liver and they 
were involved in lipid metabolism (Supplementary Table 10a and 

remodeling and lipoprotein secretion also cause the progression of 
MASLD5; however, contrarily to the epidemiological evidence, these 
variants result in a protection against cardiovascular disease and no 
association with hypertension5–7 or heart failure, suggesting no causal 
relationship between MASLD and cardiometabolic derangement5.

Over the last 15 years, genome-wide association studies (GWAS) 
identified several genetic loci associated with chronic liver disease or 
proxies for increased liver triglyceride content8–13. Excess in adiposity 
amplifies the effect size of a handful of variants14 likely by increasing 
ectopic visceral fat. To improve the precision of genetic studies and to 
identify genetic variants with primary effects on the liver, independent 
of adiposity, GWAS analyses are typically adjusted for body mass index 
(BMI); however, anthropometric measures of adiposity (BMI) and body 
fat distribution (waist circumference) fail to provide an accurate quan-
tification of visceral adiposity, which is most closely related to insulin 
resistance and metabolic alterations. Therefore, standard adjustments 
for BMI may fail to capture and remove the total effect of adiposity on 
liver fat, limiting the precision of GWAS. In contrast, imaging (for exam-
ple, visceral adipose volume) and bioelectrical impedance analysis 
(for example, whole-body fat mass) are more accurate measurements 
of body composition and are better predictors of MASLD15. We thus  
reasoned that adjusting for these traits could better capture the  
effect of adiposity on liver fat, thereby improving the power to detect 
previously unknown loci contributing to SLD.

Here, we show that indices of adiposity differentially contribute to 
the association between genetic variants and liver triglyceride content/
inflammation, and we leverage these indices to identify previously 
unknown genetic loci associated with SLD. We identified and replicated 
six previously unknown loci and generated two partitioned polygenic 
risk scores (pPRSs) that suggest the presence of at least two distinct 
types of MASLD, one confined to the liver and one entwined in the 
systemic cardiometabolic syndrome.

Results
Visceral adipose tissue, whole-body fat mass and BMI are 
independent predictors of liver triglyceride content and 
inflammation/fibrosis
To identify the independent predictors of liver triglyceride content and 
inflammation/fibrosis among the indices of adiposity, we examined the 
pairwise correlations among different measures of adiposity and (1) 
liver triglyceride content measured by magnetic resonance imaging 
(MRI)-derived proton density fat fraction (PDFF); and (2) liver inflam-
mation/fibrosis measured by liver iron corrected T1 (cT1) in European 
participants from the UK Biobank (Extended Data Fig. 1a). The strongest 
correlation with liver traits was observed for visceral adipose tissue 
(VAT) volume followed by BMI, waist-to-hip ratio (WHR) and whole-body 
fat mass (WFM). As expected, there was a high correlation between PDFF 
and cT1. Due to high multicollinearity among the adiposity indices, 
we used three penalized regression models (Methods) to assess their 
predictive contribution to PDFF and cT1. The standardized coefficients 
from the best performing algorithm (Ridge regression) showed that 
VAT was the strongest independent predictor of PDFF and cT1, followed 
by WFM and BMI for PDFF (Extended Data Fig. 1b). In the penalized 
regression analysis, WHR and impedance of whole body had almost 
no independent predictive power and therefore, we used WFM, BMI 
and VAT as covariates in the genetic association studies.

Identification of 17 previously unknown loci for liver 
triglyceride content and 9 for liver inflammation/fibrosis by 
the multi-adiposity-adjusted GWAS
To capitalize on the independent contribution of indices of adiposity to 
proxies of liver triglyceride content (PDFF) and inflammation/fibrosis 
(cT1), we conducted eight GWAS (four GWAS per each trait), together 
referred to as the multi-adiposity-adjusted GWAS. Each GWAS was 
adjusted for a specific index of adiposity (VAT, BMI and WFM), and one 
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Fig. 1 | Overview of the identified loci for liver triglycerides and inflammation/
fibrosis by the multi-adiposity-adjustment GWAS. a, Genetic correlation 
among different multi-adiposity-adjusted PDFF and liver iron corrected T1 was 
estimated using LD score regression analysis. The asterisks denote Benjamini–
Hochberg false discovery rate (FDR) <0.05. The color bar represents the genetic 
correlation values. Detailed summary statistics for genetic correlations have 
been reported in Supplementary Table 3. b, Circular Manhattan plot of PDFF 
and liver iron corrected T1 for different adiposity adjustments. The association 
analyses were performed using REGENIE adjusting for adiposity index, age, sex, 
age × sex, age2 and age2 × sex, first ten genomic principal components and array 

batch. Each dot represents an independent genetic locus. Yellow represents  
loci associated with liver PDFF and purple represents those associated with  
liver cT1. Large dots represent pleiotropic loci (where the association with  
either PDFF or liver cT1 was shared among two or more adiposity adjustments). 
Small dots show adiposity-trait specific associations. Loci in bold are shared 
among both traits irrespective of the adiposity adjustment. Only loci with a 
genome-wide significant P <5 × 10−8 calculated by a whole-genome regression 
model (Methods) are shown. P values were two-sided and not corrected for 
multiple testing among four different models (unadjusted, adjusted for BMI, 
WFM and VAT).
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Supplementary Fig. 1a). Conversely, mapped genes for liver iron corrected 
T1 were enriched in metal ion metabolism (Supplementary Table 10b and  
Supplementary Fig. 1b).

Previously unknown genetic loci, liver and metabolic traits
Given the causal relationship between liver triglyceride content and 
inflammation/fibrosis, we examined the association of the previously 
unknown variants identified by PDFF with cT1 and vice versa. Notably, 
most of the variants were associated with both traits and directionally 
concordant (Extended Data Fig. 2). This is consistent with the notion 
that liver triglyceride content causes inflammation21. A total of 5 (29 %) 
and 4 (44 %) loci were associated with either PDFF or cT1, suggesting 
a specificity of the effect on lipid or inflammation pathways. Further-
more, we examined the association between these previously unknown 
variants and indices of liver damage, fibrosis and liver disease (Extended 
Data Fig. 2 and Supplementary Table 11). More than 80% of variants 
associated with PDFF also associated with alanine aminotransferase 
(ALT) (one-sided Fisher’s exact test P = 0.028); however, there was no 
significant correlation between PDFF and cT1 loci associations with 
aspartate aminotransferase (one-sided Fisher’s exact test P = 0.613). 
Most variants were associated with plasma lipoproteins and glucose  
metabolism traits, including diabetes (Extended Data Fig. 2 and  
Supplementary Table 11).

Indices of adiposity contribute differentially to the 
association between genetic variants and liver triglycerides
Adiposity is a well-known risk factor for MASLD and there is no evidence 
on causal impact of SLD on adiposity22. Hence, it is safe to assume that 
adjusting for adiposity does not suffer from collider bias. Therefore, we 
hypothesized that the association between PDFF or cT1 and genetic loci 
depends on the measures of adiposity. To explore this, we performed 
different statistical analyses (Methods). As reported in Supplementary 
Tables 12 and 13, while the overall associations are consistent across 
multi-adiposity-adjusted GWAS, some loci display different associa-
tions depending on the adiposity adjustment.

For instance, we found no association between PDFF and 
rs73026242 CEBPG with BMI or WFM adjustments, but a strong 
genome-wide association with VAT adjustment. This locus has a strong 
association with VAT but in the opposite direction to that of PDFF,  
and mediation analysis suggests an inconsistent mediation, namely,  
a partial mediation in the opposite direction. This locus has been 
recently linked with visceral to abdominal subcutaneous fat ratio15.  
Our gene mapping suggests that CEBPA, known for its role in adipo-
genesis through PPARγ, is the potential causal gene (Supplementary 
Table 9a)23.

Conversely, while the PPARG locus shows evidence of interaction 
with all three adiposity measures, a putative inconsistent effect was 
only observed for WFM adjustment. This variant decreases PPARγ 
activity24 and confers a protection against diabetes25,26. While the con-
tribution of this variant to SLD is a matter of debate27, we observed a 
modest positive association with WFM. Another interesting finding is 
FAM101A locus, where there is a nominally significant association with 
BMI/WFM and VAT but in opposite directions. Hence, adjusting for 
VAT mitigated the association (PVAT = 0.01). The top-ranked gene at this 
locus, CCDC92, has been shown to play a role in insulin resistance and 
subcutaneous adipose and peripheral fat28. On the other hand, we also 
encounter the opposite scenario, where adiposity may act as a positive 
partial mediator, as for the PRMT8, MAST3 and CKM loci.

For cT1, while most loci have consistent associations over  
different adiposity adjustments, the mediation analysis suggests  
a putative inconsistent effect for VAT-adjusted model at PEPD locus.  
The top-ranked gene at this locus is CEBPA; however, whether the 
putative mechanism is similar to the one described above for liver 
triglyceride content is unclear because PEPD has a similar rank and is 
associated with diabetes and adiposity29.Tr
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Finally, we performed sensitivity analysis to examine the robust-
ness of mediation analysis to unmeasured confounders, and observed 
a strong (for PDFF, ρ = 0.6) and moderate (for cT1, ρ = 0.4) robustness 
of mediation estimates to the sequential ignorability assumption30. 
Given the causality assumptions in mediation analysis, these potential 
mechanisms should be considered with caution. Furthermore, due 
to the statistical equivalence of mediation and confounding effects31, 
the observed inconsistent mediations may be interpreted as nega-
tive confounding effects that may enable the discovery of unknown 
genetic loci.

Considering this extensive body of evidence, measures of adipos-
ity contribute to the association between genetic loci and proxies of 
liver triglyceride content (PDFF) and inflammation/fibrosis (cT1), thus 
supporting our multi-adiposity-adjusted GWAS approach.

The association between six previously unknown loci and liver 
triglyceride content was replicated in independent cohorts
Based on the strong genetic correlation between PDFF and cT1, to 
validate the previously unknown SNPs, we meta-analyzed the asso-
ciation between all the previously unknown 26 variants and liver tri-
glyceride content in 3,903 individuals of European ancestry from four 
independent cohorts (Fig. 2 and Supplementary Table 14). We were  
able to replicate the association between six of the previously unknown 
loci (CEBPG, TSC22D2, ABO, GUSB, TECTB and TFCP2) and liver  
triglyceride content. The direction of the association in the replication 
cohort was consistent with the discovery cohort.

Partitioned polygenic risk scores identify a steatotic 
liver-specific disease and a systemic MASLD
Triglyceride secretion is a key mechanism regulating hepatocyte 
triglyceride homeostasis. Triglyceride secretion is mediated by 
very-low-density lipoprotein (VLDL) secretion that in fasting conditions 
are proxied by circulating triglyceride levels. Variants in genes ham-
pering VLDL secretion, including APOB, MTTP, TM6SF2 and PNPLA3, 
cause retention of liver triglycerides mirrored by lower circulating 
lipoproteins. Carriers of these variants have an increased risk of MASLD 
and lower risk for cardiovascular disease due to lower lipoproteins32–34.

Based on this mechanism, we allocated the previously unidentified 
replicated and the previously known variants into two pPRSs: (1) a group 
showing discordant association between PDFF and circulating triglyc-
erides (n = 10), suggesting that liver triglyceride content is primarily 
influenced by liver retention, and (2) a group with concordant associa-
tions (n = 13), indicating that liver triglyceride content may result from 
an increase in uptake, synthesis of energy substrates or a reduction 
in β-oxidation (Methods, Extended Data Fig. 3 and Supplementary 
Table 15). The variance explained by the discordant pPRS was higher 
than the concordant pPRS mirroring the fact that discordant pPRS is 
composed of PNPLA3 and TM6SF2 variants (Supplementary Table 16).

Both pPRSs were associated with an increased risk of MASLD with 
the largest association being with hepatocellular carcinoma (HCC); 
however, the association was stronger for the discordant pPRS (Fig. 3a, 
Supplementary Fig. 2 and Supplementary Tables 17 and 18). Of note, only 
the discordant pPRS was associated with autoimmune liver diseases.
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Fig. 2 | The association between six previously unknown loci and hepatic 
triglyceride content in independent cohorts. The association between each 
genetic variant and rank-based inverse normal transformed hepatic triglyceride 
content was performed using a linear regression analysis adjusted for age, sex, 
age2, age × sex, age2 × sex (shown as circles). Proxy variants were used for variants 
not available in the replication cohorts (r2 > 0.4 within a window of 1.5 Mb around 
each lead variant in the UK Biobank) as marked with an asterisk. Pooled effect 

estimates were calculated using inverse-variance-weighted fixed-effect meta-
analysis (shown as diamonds). Genomic loci in bold are those with a P value <0.05 
in the fixed-effects model. Error bars represent the 95% confidence intervals 
from the regression models or meta-analysis. Full summary statistics have been 
reported in Supplementary Table 14. P values are two-sided and not adjusted for 
multiple testing. NEO, Netherlands Epidemiology of Obesity study; DHS, Dallas 
Heart Study.
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Discordant pPRS was associated with a decreased risk of cardio-
vascular, whereas concordant PRS was associated with a substan-
tial increased risk of cardiovascular disease and heart failure. Both 
pPRSs conferred an increased predisposition to diabetes, suggesting 
that hepatic triglyceride accumulation predisposes to diabetes irres-
pective of the underlying cause. Conversely, the larger effect size of  
the concordant pPRS for diabetes despite the lower effect on liver 
triglyceride content would suggest that the association of diabetes in 
the concordant pPRS is not mediated by liver damage. In the case of 
hypertension and chronic kidney failure, discordant pPRS showed no 
association, whereas the concordant pPRS increased the risk of both 
diseases; however, when we adjusted for hypertension, the association 
with chronic kidney failure was no longer significant, whereas the other 
associations remained (Supplementary Table 18). Further adjustment 
for diabetes, total cholesterol and alcohol intake did not change the 
results (Supplementary Table 18). The prospective risk conferred by the 
pPRS to develop liver and cardiometabolic disease in the UK Biobank 
was virtually identical (Fig. 3b and Supplementary Table 18).

Functional gene-set enrichment analysis for both pPRSs also 
revealed a distinct metabolic pattern. While gene sets of discordant 
pPRS were mostly enriched in lipid and triglyceride homeostasis (Sup-
plementary Table 10c and Supplementary Fig. 3), concordant pPRS 
gene sets were enriched in insulin receptor signaling and glucose 
homeostasis pathways, overall consistent with an impact on stimula-
tion of de novo lipogenesis (Supplementary Table 10d and Supple-
mentary Fig. 3).

In addition to our hypothesis-driven approach, we performed 
an unsupervised soft clustering approach35 (Methods). Of 1,000  
iterations, 90% converged to two clusters and 10% to one cluster.  
One genetic locus, rs738408 PNPLA3, appeared in both clusters36  
(Supplementary Fig. 4). We used two top-weighted traits to name the  
clusters: (1) low-density lipoprotein (negative)/triglycerides (negative); 
and (2) triglycerides (positive)/ALT (positive). When examining the 
association of pPRS clusters with the same outcomes, we observed 
a similar dissociation to the PDFF-circulating TGs pPRS; however, dif-
ferences in the risk of diseases defining the two types of MASLD were 
larger in our hypothesis-driven approach (Supplementary Table 19). 
This may be attributed to the soft clustering feature of the Bayesian 

non-negative matrix factorization (bNMF) algorithm, where rs738408 
PNPLA3 was included in both clusters (Supplementary Fig. 5).

When comparing plasma biomarkers between individuals in  
the upper and lower quartiles of pPRS, those in the upper quartile 
of discordant pPRS had the largest differences in lipoprotein levels 
(Supplementary Table 20), consistent with the protective effect of 
the liver-specific subtype compared to the systemic subtype. In addi-
tion, individuals in the top quartile of concordant pPRS had higher 
lipoproteins and blood pressure and lower creatinine levels, consist-
ent with the increased risk of cardiovascular disease, heart failure and 
kidney failure.

Sex-specific effect of the association between pPRS and the 
feature of cardiometabolic syndrome
Liver diseases have a different prevalence between males and females. 
For instance, HCC is more frequent in men while liver autoimmune 
disease is more prevalent in females. Moreover, there are sex-specific 
differences in carriers of the PNPLA3 rs738409 between males and 
females37. Therefore, we examined the association between the two 
pPRS and cardiometabolic syndrome stratified by sex. Results of the 
stratified analyses are consistent with the pooled analyses, with the 
following exceptions: (1) HCC is associated with the concordant pPRS 
only in males; (2) heart failure is associated with protection in the dis-
cordant pPRS specifically in females; and (3) chronic kidney failure is 
increased in the concordant pPRS only in males (Supplementary Fig. 6 
and Supplementary Table 21).

mRNA expression of loci from the liver-specific PRS is more 
abundant in the liver
We further examined the messenger RNA expression of mapped genes 
within concordant and discordant pPRS using paired bulk RNA-seq of 
liver (n = 244) and VAT (n = 261) from participants with obesity from 
the MAFALDA cohort (Molecular Architecture of Fatty Liver Disease  
in Patients with Obesity Undergoing Bariatric Surgery study). Notably, 
only the mapped genes of discordant pPRS showed a significant over-
lap with upregulated differentially expressed genes in the liver (one- 
sided Fisher’s exact test, P = 0.007; Fig. 4). Given the tight interplay  
between VAT and liver in the MASLD, this finding suggests a liver-specific 

a b

OR HR
100 101100 101

Chronic kidney failure

Hypertension

Diabetes

Heart failure

Cardiovascular disease

All cancer (excluding blood)

Autoimmune liver diseases

HCC

Cirrhosis

Chronic liver disease

PDFF-circulating TGs pPRS
Concordant
Discordant

PDFF-circulating TGs pPRS
Concordant
Discordant

Fig. 3 | Partitioned polygenic risk scores identify a steatotic liver-specific 
disease and a systemic MASLD. a,b, The case–control (a) and prospective 
(b) association between two PDFF-circulating TGs pPRS and liver-related, 
cardiometabolic and chronic kidney failure traits in the UK Biobank. Effect plot 
of the association between concordant and discordant PDFF-circulating TGs PRS 
with each disease was tested using either logistic (a) or Cox proportional hazard 
(b) regression analysis adjusted for BMI, age, sex, age × sex, age2 and age2 × sex, 

first ten genomic principal components and array batch. The x axis shows either 
the odds ratio (OR) or hazard ratio. All association analyses have been performed 
after excluding individuals with available PDFF (n = 36,394). Error bars represent 
the 95% confidence intervals from the regression models. Full summary statistics 
have been reported in Supplementary Table 18. P values were two-sided and not 
corrected for multiple hypothesis testing. TG, triglyceride.
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nature of discordant pPRS compared to its metabolic counterpart, 
concordant pPRS.

Discussion
The main findings of this study are (1) the identification of previously 
unknown loci associated with SLD; and (2) the identification of two 
distinct types of MASLD, namely, a liver-specific and a systemic type.

BMI, as a proxy of adiposity, amplifies the genetic predisposition 
to SLD given by common variants14,22; however, BMI does not consider 
body fat distribution and body composition. To identify previously 
unknown genetic loci associated with SLD, we compared a range of 
measurements of adiposity finding that VAT volume, WFM and BMI 
were the best independent predictors.

Next, we performed multi-adiposity-adjusted GWAS on PDFF 
and iron corrected T1, as a measure of liver triglyceride content and 
inflammation/fibrosis. Our data demonstrate that adiposity indices 
may confound association between genetic variants and liver triglyc-
eride content and inflammation/fibrosis. By using this approach, we 
identified 17 previously unknown genetic loci for liver triglyceride 
content and 9 for liver inflammation, and replicated 6 of these loci in 
four independent cohorts.

The heritability of liver triglyceride content was influenced by 
the multi-adiposity adjustment explaining in the best-case scenario 
approximately 6% more heritability compared to the unadjusted; 
however, for inflammation this was not the case, suggesting that her-
itability of inflammation is not directly influenced by adiposity. We 
have previously demonstrated a causal link between liver triglyceride 
content and increased risk of liver inflammation using Mendelian 
randomization21. This finding is further supported by our observation 
that approximately 80% of the genetic loci associated with PDFF also 
associate with cT1 in the same direction.

Intrahepatocyte triglyceride homeostasis is governed by  
three fundamental mechanisms: triglyceride synthesis, lipoprotein 
secretion and energy substrate utilization. Hindering lipoprotein 
secretion causes liver triglyceride accumulation by retention. Indeed, 

loss-of-function variants in TM6SF2 and PNPLA3 cause liver triglycer-
ide retention by reducing lipoprotein secretion38,39. Consistently with 
hepatic lipoprotein retention, carriers of these variants have lower risk 
for cardiovascular disease due to the lower circulating lipoproteins32,40.

Therefore, we generated two pPRSs: one composed of variants in 
which the association between liver triglyceride content and circulating 
triglycerides were discordant and one in which they were concordant. 
‘Partitioned’ polygenic scores may elucidate disease pathogenesis and 
capture specific signatures driving the individual disease progression, 
hence providing a framework for tailored therapeutic interventions41.

Of note, the concordant pPRS predicts the entire spectrum of 
cardiometabolic disease. On the contrary, the discordant pPRS is asso-
ciated with liver disease mirrored by protection from cardiovascular 
disease due to lipoprotein retention, despite a marginal increase in the 
risk of diabetes. The liver specificity of the discordant pPRS is further 
supported by a higher mRNA expression of the genes composing this 
score in liver versus visceral adipose paired biopsies from individuals 
with obesity. We additionally generated pPRSs using hypothesis-free 
soft clustering35, which was very similar to our hypothesis-driven 
approach.

Our data suggest the presence of at least two distinct types of 
MASLD with specific disease-causing molecular mechanisms: one 
specific for the liver and one systemic and entwined with cardiometa-
bolic syndrome (Extended Data Fig. 4). Understanding the molecular 
mechanisms underlying these components may allow us to find effec-
tive treatments for MASLD and cardiometabolic syndrome. Clinically, 
these entities reflect the presence of individuals rapidly progressing 
to later stages of MASLD and those with a slow-progressing MASLD 
associated with the entire metabolic cardiometabolic syndrome. These 
types of MASLD may account for the disease heterogeneity and help 
explain why several drugs have failed in clinical trials to treat MASLD.

Currently Mendelian randomization studies are carried out by 
selecting variants associated with a trait and using them to explain 
the causal relationship with a different trait. In this study, the pPRS 
had opposite effects on cardiovascular risk, indicating that if we had 
pooled the variants together, we may have nullified the association. 
Therefore, our findings support the notion that the pPRSs constructed 
by integrating variants into physiological pathways may allow clarifying 
the heterogeneity of disease pathogenesis. Ultimately, this will lead 
to precision medicine, improving outcome prediction and therapy.

A strength of this study is that the partitioning of the PRS was based 
on a hypothesis-driven approach with solid knowledge of intracellular 
lipid homeostasis. While the finding on cardiovascular disease may be 
expected, the associations with hypertension and diabetes were not 
granted. Alcohol consumption may have an additive effect on SLD 
and cardiovascular disease. Alcohol is converted into triglycerides 
in hepatocytes and alcoholic and nonalcoholic SLD share common 
genetic determinants, suggesting common disease-causing mecha-
nisms42. Therefore, we did not exclude individuals based on alcohol 
consumption. Nonetheless, sensitivity analyses showed that adjust-
ing for alcohol did not change the results. Finally, we obtained similar 
results by using a completely different approach, namely, unsupervised 
clustering, in cohorts of individuals in whom liver biopsy was available 
(REF).

A limitation of our study is that the identified and replicated 
genetic loci were based on study cohorts of European ancestry limit-
ing the applicability in non-Europeans. Future studies are warranted 
to validate these loci and the pPRS in non-European populations.  
Furthermore, while we performed genetic colocalization and enrich-
ment analyses, the functional implications of the identified loci are yet 
to be established by in vitro and in vivo experiments.

In conclusion, we identified six previously unknown loci associated 
with SLD and two distinct types of SLD, namely, one that is liver specific 
and another that is entwined with the full spectrum of cardiometabolic 
syndrome.
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Methods
UK Biobank
The UK Biobank study has recruited over 500,000 participants 
aged between 40 and 69 years across the United Kingdom between 
2006 and 2010, with extensive phenotypic and genetic data43. The 
UK Biobank received ethical approval from the National Research  
Ethics Service Committee North West Multi-Centre Haydock (ref-
erence 16/NW/0274). Data used in this study were obtained under  
application number 37142. European ancestry was defined previ-
ously12 by removing outliers using genomic principal components. 
Additionally, participants were excluded if they fell into any of these 
categories: (1) more than ten putative third-degree relatives; (2) a 
mismatch between self-reported and genetically inferred sex; (3) puta-
tive sex chromosome aneuploidy; (4) heterozygosity and missingness 
outliers; and (5) withdrawn consent43.

Genotypes and imputation
UK Biobank participants were genotyped using two highly similar (>95% 
overlap) genotyping arrays, which were then imputed centrally by the 
UK Biobank based on the 1000 Genomes Project phase 3, UK 10K haplo-
type and Haplotype Reference Consortium reference panels. Starting 
from approximately 97 million variants, we kept only 9,356,431 variants 
with a minor allele frequency (MAF) > 1%, imputation quality (INFO) 
score > 0.8 and Hardy–Weinberg equilibrium P > 1 × 10−10 (refs. 12,43).

Definition of traits
We used adiposity measures directly provided by the UK Biobank, 
including VAT (data field 22407), WFM (data field 23100) and imped-
ance of whole body (data field 23106). WHR was calculated by dividing 
the waist-to-hip circumference. MRI-derived PDFF and liver iron cor-
rected T1 (cT1) were provided directly by the UK Biobank (data fields 
40061 and 40062). The details of liver MRI protocols can be found 
elsewhere44. In brief, individuals were scanned using a Siemens 1.5T 
Magnetom Aera. Two sequences were then used for data acquisition, a 
multiecho-spoiled gradient-echo and a modified look locker inversion 
sequence (ShMOLLI) for PDFF and cT1, respectively44. The definition 
of binary traits can be found in Supplementary Table 22.

Phenotypic prediction models
To address the multicollinearity between different measures of adipos-
ity and to verify their contribution in predicting PDFF and cT1 values, 
we fit penalized linear regression models and carried out a model 
selection in a tenfold nested cross-validation (CV) using Least Absolute 
Shrinkage and Selection Operator (LASSO), Ridge and Elastic Net. 
LASSO penalizes the regression model using the L1-norm, effectively 
reducing the influence of non-contributing features to zero. On the 
other hand, Ridge regression utilizes the L2-norm, allowing it to shrink 
regression coefficients toward zero. Elastic Net combines elements 
of both LASSO and Ridge by incorporating both L1 and L2 penalties 
through a mixing parameter α.

To conduct the CV process, the dataset was initially divided into 
training (80%) and test (20%) sets. Within the training set, the outer 
CV assessed the performance of each model, while the inner CV was 
utilized for hyperparameter tuning. This tuning was accomplished by 
minimizing the mean squared error across a grid of α and shrinkage 
values in each fold of the outer CV. The best performing model with 
the lowest mean squared error was then trained on the entire training 
set within a tenfold CV framework. Subsequently, its performance 
was evaluated using the remaining test set. Finally, the model with the 
optimal set of hyperparameters, determined in the previous step, was 
fitted to the entire dataset for final evaluation45. Adiposity indices were 
standardized before the training, whereas PDFF and cT1 values were 
rank-based inverse normal transformed. All models were adjusted for 
age, sex, age2, age × sex and age2 × sex. All analyses were performed in 
MATLAB (MathWorks) R2023a.

Genome-wide association analysis
The association between 9 million imputed common variants and PDFF 
or cT1 under different adiposity adjustments under an additive genetic 
model was performed using a whole-genome regression model as 
implemented in REGENIE (v.3.2.8)16. The analysis was adjusted for age at 
MRI, sex, age2, age × sex, age2 × sex, the first ten principal components 
(PCs) of ancestry, genotyping array and adiposity index, where adipo-
sity index was VAT, WFM, BMI or no adiposity adjustments.

Similarly, we tested the association between independent lead 
variants from multi-adiposity-adjusted GWAS of PDFF and cT1, and 
other binary or continuous metabolic traits using either a logistic or 
a linear whole-genome regression model in REGENIE and adjusted for 
the same set of covariates, including consistent adiposity adjustments. 
Individuals with an available PDFF or cT1 measurements were excluded 
before the association analysis (n = 36,748). In cases where the trait 
was measured at baseline, we used WHR instead of VAT adjustment, 
as the latter was not available at baseline. To fit the whole-genome 
regression model in step 1 of REGENIE, a subset of directly genotyped 
common variants (MAF > 1%) was used. After excluding variants on 
long-range LD and major histocompatibility complex (MHC) regions, 
variants with a missingness <0.01 and with Hardy–Weinberg equilib-
rium P > 1 × 10−15 were retained. Finally, 146,833 markers left following 
an LD pruning with a window of 500,000 base pairs and pairwise r2 < 0.1 
(ref. 17). Continuous traits were rank-based inverse normal transformed 
before the analyses.

Identifying independent variants
We first performed LD clumping (PLINK v.1.90b6.26 parameters: 
–clump-p1 5 × 10−8 –clump-r2 0.01 –clump-kb 1,000, after exclud-
ing individuals with third-degree or closer relatives17,43) to identify 
approximately independent loci. Next, to detect statistically independ-
ent variants, we conducted approximate step-wise model selection 
in conditional and joint multiple-single nucleotide polymorphism 
(SNP) analysis implemented in Genome-wide Complex Trait Analysis 
(GCTA-COJO18, v.1.94.0), with an LD window of 10 Mb and using 50,000 
randomly selected unrelated Europeans from the UK Biobank for 
in-sample LD structure, as described previously12. To examine whether 
the identified genetic loci were previously reported, we searched the 
NHGRI-EBI GWAS catalog database46 in a window of 1 Mb around each 
lead variant.

Estimating heritability and genetic correlations
SNP heritability and confounding bias were estimated with LD score 
regression analysis (LDSC; v.1.0.1, https://github.com/bulik/ldsc/)47 
using the baseline LD model (v.2.2; https://data.broadinstitute.org/
alkesgroup/LDSCORE/), containing 97 annotations, including func-
tional annotations and MAF-/LD-dependent architectures48. Similarly, 
pairwise genetic correlations were calculated using LDSC analysis47 
after excluding variants in the MHC region (chromosome 6, 25–34 Mb) 
due to the complex LD structure. Trait pairs with a Benjamini−Hochberg 
FDR < 0.05 were considered to have a significant genetic correlation. In 
all analyses, we set the LDSC parameter chisq-max to an arbitrary large 
number (99,999) to keep large-effect associations.

Pleiotropy analysis
We evaluated whether the independent genome-wide significant loci, 
adjusted for different adiposity measures, were specific to each adiposity 
measure, common between PDFF and cT1 GWAS or shared across both. 
Therefore, if two independent lead variants within 1 Mb of each other 
were in LD (r2 > 0.2), they were assigned the same locus ID (Supplemen-
tary Table 4). Circular Manhattan plots were visualized using Circos49.

Functionally informed fine-mapping
Functionally informed genetic fine-mapping was performed using 
PolyFun v.1.0.0 and Sum of Single Effects (SuSiE, v.0.11.92)50,51. PolyFun 
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was used to estimate per-SNP heritability using L2-regularized exten-
sion of stratified LDSC (S-LDSC) and baseline LD model v.2.2 containing 
187 annotations47,48,50. The estimated per-SNP heritabilities were used 
as prior causal probabilities in SuSiE with a maximum of ten causal 
variants in each region. The subset of 337,000 unrelated white-British 
individuals from UK Biobank were used for in-sample LD structure. 
After excluding the MHC region on chromosome 6, fine-mapping per 
each locus was performed in a window of 1.5 Mb around the lead genetic 
variants (P < 5 × 10−8).

Colocalization
Colocalization was performed between independent genetic loci 
identified by COJO-GCTA, and summary statistics of gene expression 
quantitative trait loci (eQTL) of 49 tissues in GTEx (v.8) from the eQTL 
catalog release 4 (refs 52,53). The coordinates of GWAS summary statis-
tics were first converted from Build 37 to 38 using liftOver function of 
rtracklayer R package (v.1.54.0)54. We performed colocalization using 
COLOC-SuSiE assuming the presence of multiple causal variants (coloc 
R package55, v.5.1.0) with default priors and considered variants in a 
window of 1.5 Mb around the index variant at each locus. We considered 
only genes with at least one significant variant (FDR P < 0.1, eGenes) 
and performed the colocalization in a window of 1.5 Mb around each 
eGene. If SuSiE did not converge after 1,000 iterations, conventional 
(single causal variant) colocalization was used. Finally, an H4 posterior 
probability (PP) > 0.8 was considered as strong evidence that both traits 
share the same causal variant.

Variant annotation
Independent genome-wide significant and fine-mapped variants were 
annotated using Ensembl Variant Effect Predictor (VEP) accessed from 
REST API (https://rest.ensembl.org/).

Gene mapping and functional enrichment analysis
To map and prioritize potential candidate genes for independent 
genetic loci, we employed multiple approaches. (1) SNP2GENE mod-
ule of FUMA v.1.5.4 (ref. 56) was used for positional mapping of lead 
variants to genes with a maximum distance of 50 kb. (2) eQTL mapping 
using FUMA by considering only genes with at least one significant 
eQTL association (FDR < 0.05). (3) 3D chromatin interaction mapping 
using FUMA by considering only significant interactions (FDR < 1 × 10−6) 
within 250–500 bp upstream and downstream of the transcription 
start site, respectively. (4) Multi-marker analysis of genomic anno-
tation (MAGMA, v.1.08)57 implemented in FUMA was carried out to 
perform genome-wide gene association analysis using 19,535 curated 
protein-coding genes. Only genes with a Bonferroni threshold below 
0.05/19,535 = 2.56 × 10−6 were kept for gene mapping. Variants within 
the MHC region were excluded before the analysis. (5) Colocalized 
genes from colocalization analysis with at least one tissue and an H4 
PP > 0.8. (6) Nearest gene(s) to the fine-mapped variants with the maxi-
mum PP per each locus. (7) Genes with the highest overall V2G score at 
each locus were based on Open Targets Genetics58. Finally, to prioritize 
the mapped genes, we calculated an unweighted ranking score by 
summing over the evidence from the above-mentioned approaches.

By using the set of genes with the maximum ranking score at each 
locus, we performed functional gene-set enrichment analysis using 
Enrichr tool59 against, ARCHS4 tissues, Reactome biological pathways 
and Gene Ontology Biological Processes. Significant terms with a 
Benjamini–Hochberg FDR-corrected P value <0.05 per each database 
were reported. For visualization, both adjusted P values and Enrichr 
combined scores (−log(P) × OR) were used.

Partitioned polygenic risk scores of liver triglyceride content
To define the pPRSs, genetic loci (full list in Supplementary Table 15) 
were assigned into two groups based on their concordant or discord-
ant associations with PDFF and circulating triglycerides. We excluded 

the genetic loci that did not associate with circulating triglycerides. 
Finally, the pPRSs were generated by taking the weighted sum of genetic 
variants, where the strongest association at each locus was used as the 
weight, following the pleiotropy analysis.

Replication cohorts
NEO. NEO is a population-based cohort study in men and women 
aged 45 to 65 years, with oversampling of individuals having BMI over 
27 kg m−2 from Leiden and surrounding areas in the Netherlands. At 
baseline, 6,671 participants were included and around 35% of the NEO 
participants were randomly selected to undergo hepatic triglyceride 
content (HTGC) measurements by magnetic resonance spectroscopy. 
Genotyping was performed using Illumina HumanCoreExome-24 
BeadChip and imputed to TOPMed reference genome panel60. In the 
present work, a total of 1,822 individuals of European ancestry with an 
available HTGC were used.

Liver BIBLE. The Liver BIBLE-2022 cohort comprises 1,144 healthy 
middle-aged individuals (40–65 years) with metabolic dysfunction 
(at least three criteria for metabolic syndrome among BMI ≥ 35 kg m−2, 
arterial hypertension ≥135/80 mm Hg or therapy, fasting glucose 
≥100 mg dl−1 or diabetes, low high-density lipoprotein <45/55 mg dl−1 
in males/females and high triglycerides ≥150 mg dl−1) who presented 
for blood donation from June 2019 to February 2021 at the Transfusion 
Medicine unit of Fondazione IRCCS Ca’ Granda Hospital (Milan, Italy)61. 
Hepatic fat content was estimated noninvasively by controlled attenu-
ation parameter (CAP) with FibroScan device (Echosens). Genotyping 
was performed by Illumina GlobalScreeningArray (GSA)-24 v.3.0 plus 
Multidisease Array (Illumina) and further imputed to TOPMed refer-
ence genome panel62. At the time of analysis, genomic data passing 
quality control with an available CAP measure were available for 1,081 
patients of European ancestry.

MAFALDA. The MAFALDA study started in May 2020 and ended in  
April 2022. It comprised a total of 468 consecutive participants 
with morbid obesity (BMI ≥ 35 kg m−2) who underwent bariatric sur-
gery at Campus Bio-Medico University of Rome, Italy. In MAFALDA  
participants, SLD diagnosis was assessed only by liver histology in 
n = 116, only by vibration-controlled transient elastography, including 
CAP measurement with FibroScan (Echosens)63 in 141 individuals, with 
both in 148 individuals and 63 with neither CAP nor liver biopsy. In this 
study, only individuals with liver fat content estimated by CAP were 
included (n = 172). Genotyping was performed in the same manner as 
that of the Liver BIBLE cohort. MAFALDA includes a total of 264 paired 
visceral and liver biopsies with available bulk transcriptomic data.

Dallas Heart Study. In this study, only 828 European Americans from 
the Dallas Heart Study (DHS-1) were used. The DHS is a population-based 
sample study of Dallas County, Texas, USA, where liver triglyceride con-
tent was measured by magnetic spectroscopy. Details of this study can 
be found elsewhere13.

Ethics. This research complies with the principles outlined in the  
Declaration of Helsinki. The UK Biobank received ethical approval 
from the National Research Ethics Service Committee Northwest 
Multi-Centre Haydock (reference 16/NW/0274). Data used in this study 
were obtained under application number 37142. The NEO study was 
approved by the medical ethical committee of the Leiden University 
Medical Center. The Liver BIBLE study was approved by the ethical com-
mittee of the Fondazione IRCCS Ca’ Granda (ID 1650, revision 23 June 
2020). The MAFALDA study was approved by the Local Research Ethics 
Committee (no. 16/20). The DHS was approved by the institutional 
review board of the University of Texas Southwestern Medical Center. 
Each participant provided written informed consent. The baseline 
characteristics for these cohorts are listed in Supplementary Table 23.
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Meta-analysis
The association between previously unknown independent loci for 
PDFF and cT1 and magnetic resonance spectroscopy liver fat (DHS-1 
and NEO studies) or CAP measurement (MAFALDA and Liver BIBLE) 
was performed using a linear regression analysis adjusted for age, sex, 
age2, age × sex, age2 × sex and BMI after a rank-based inverse normal 
transformation of the response. An inverse-variance meta-analysis 
was then performed with fixed-effect model using the meta R pack-
age (v.6.5.0). For genetic variants not available in either of replication 
cohorts, a proxy variant was used instead: variants in LD (R2 > 0.4) 
with the lead variant in the UK Biobank within a window of 1.5 Mbp. If 
no such variant was found in the UK Biobank, the LDproxy tool with 
Europeans from 1000 Genomes Project was used instead20. In case of 
multiple proxy variants, the one with the highest LD and functional 
consequence was selected.

RNA-seq analysis
Total RNA for 264 paired liver and VAT samples from the MAFALDA 
cohort was isolated using miRNeasy Advanced Mini kit (QIAGEN). RNA 
sequencing and library preparation was performed in a paired-end 
150-bp mode using the Illumina NovaSeq PE150 (Novogene). Reads 
were aligned to GRCh38 reference genome by STAR64 (v.2.7.10a) after 
quality check (FastQC software v.0.12.0, Babraham Bioinformatics) and 
trimming of low-quality reads and potential contaminating adapters 
by Trimmomatic65 (v.0.39). Gene-level read counts were quantified by 
RSEM66 (v.1.3.3) tool against the Ensembl (release 107). Samples with 
insufficient mapping specificity (uniquely to total mapped reads <0.7) 
were excluded before the analysis. Finally, a paired differential expres-
sion analysis of 261 VAT and 244 liver samples was carried out using 
DESeq2 (ref. 67) (v.1.38.3), while adjusting for RNA integrity number, 
individual ID and five surrogate variables detected by surrogate vari-
able analysis68.

Follow-up analysis
The longitudinal association of PRS with the occurrence of the out-
comes was tested through Cox proportional hazard regression and 
expressed as hazard ratios with 95% confidence intervals. The median 
follow-up was 14.5 years and individuals with any of diagnoses at the 
baseline were excluded before the analysis (Supplementary Table 22). 
The proportional hazard assumption was checked through the con-
sideration of Schoenfeld residuals and no violations were detected. 
Prospective associations were performed in R v.4.0.2 (R Foundation 
for Statistical Computing).

Gene–adiposity interaction analysis
Gene–adiposity interaction for independent loci from multi- 
adiposity-adjusted GWAS was performed in REGENIE (v.3.2.8) using 
robust standard errors (sandwich estimators HC3) to guard against 
heteroskedasticity16. The analysis was adjusted for age at MRI, sex, age2, 
age × sex, age2 × sex, the first ten PCs of ancestry, genotyping array and 
adiposity index, where adiposity index was VAT, WFM or BMI. Due to 
the sensitivity of interaction effect sizes to the trait transformation, 
PDFF and liver iron corrected T1 were log-transformed before the 
interaction analyses69,70.

Mediation analysis
To examine whether the impact of identified independent loci on PDFF 
or liver iron corrected T1 are mediated via the measures of adiposity, 
we performed mediation analysis using the mediation R package71. All 
models were adjusted for age at MRI, sex, age2, age × sex, age2 × sex, the 
first ten PCs of ancestry, genotyping array and the polygenic covariate 
estimated in step 1 of REGENIE16. We additionally considered the sce-
nario with a genetic variant-mediator interaction term. The significance 
of mediation (P values and 95% CIs) was assessed via a nonparametric  
bootstrap method (1,000 simulations) on the rank-based inverse 

normal transformed PDFF and liver iron corrected T1 as outcomes 
and adiposity measures as mediators. We also performed sensitivity 
analyses to examine sequential ignorability assumption (possible exist-
ence of unobserved confounders between adiposity indices and liver 
traits)30. This was carried out by examining the correlation coefficient 
between error terms of liver traits and adiposity index models, at which 
estimated mediation effect was zero (95% CI contains 0).

Association analysis with adiposity measures
The association between independent loci from multi-adiposity- 
adjusted GWAS and BMI, WFM or VAT was performed using a whole- 
genome regression model as implemented in REGENIE (v.3.2.8)16. All 
models were adjusted for age at MRI, sex, age2, age × sex, age2 × sex, the 
first ten PCs of ancestry and genotyping array. Measures of adiposity 
were rank-based inverse normal transformed before the analysis.

bNMF clustering
We applied bNMF, an unsupervised soft clustering approach, to 
define ‘hypothesis-free’ clusters of independent loci from multi- 
adiposity-adjusted GWAS35. This approach has been successfully 
employed to find physiologically relevant partitioned polygenic risk 
scores for type 2 diabetes35. We first performed the association analysis 
between ALT, aspartate aminotransferase, glycated hemoglobin, circu-
lating triglycerides, low-density lipoprotein cholesterol, glucose, cre-
atinine, systolic blood pressure and cystatin C using REGENIE adjusted 
for age, sex, age2, age × sex, age2 × sex, the first ten PCs of ancestry and 
adiposity index, where adiposity index was chosen based on the strong-
est association from the multi-adiposity-adjusted GWAS. As VAT was 
not available at baseline, we used WHR instead. Next, a variant-trait 
association matrix of standardized z-scores (m × n, where m and n are 
the number of independent loci associating with PDFF and continuous 
traits mentioned above, respectively) was constructed while account-
ing for different sample sizes in each GWAS on continuous traits35. This 
scaled matrix was then aligned to PDFF-increasing alleles. bNMF clus-
tering was performed using the bNMF R pipeline (https://github.com/
gwas-partitioning/bnmf-clustering) by setting the maximum number 
of clusters, K, to 7 for 1,000 iterations and removing highly correlated 
traits (Pearson correlation coefficient >0.85). After determining the 
maximum posterior solution at the most probable K, a cutoff maximiz-
ing the signal-to-noise ratio (1.08) was used to keep variants in each 
cluster35. Two top-weighted traits at each cluster were used to define 
the cluster names. Finally, pPRSs were generated by a weighted sum of 
genetic variants at each cluster, where weights were derived from the 
multi-adiposity-adjusted GWAS of PDFF.

Comparison between bNMF and PDFF-TGs pPRS
To compare the PDFF-TGs hypothesis-driven pPRS approach and two 
pPRSs identified by bNMF algorithm to distinguish between liver, 
cardiometabolic and kidney outcomes, we performed a Wald test  
as follows:

W =
β̂pPRS1 − β̂pPRS2

√SE2pPRS1 + SE2pPRS2

where β̂pPRS1, SE2pPRS1  and β̂pPRS2, SE2pPRS2  are the log OR and standard  
error of either discordant/concordant or bNMF pPRSs, respectively. 
In the equation above, W is the Wald test statistic and W2 ∼ χ21 . Simi-
larly, we compared the model fit, by calculating the difference 
between Akaike information criterion between the pPRS (Supple-
mentary Table 19).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.
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Data availability
All data associated with this study are presented in the paper or the Sup-
plementary Information. Multi-adiposity-adjusted GWAS of PDFF and 
liver iron corrected T1 (GRCh37) are publicly available on GWAS catalog 
with the following accession IDs: GCST90446646, GCST90446647, 
GCST90446648, GCST90446649, GCST90446650, GCST90446651, 
GCST90446652 and GCST90446653. All external GWAS summary 
statistics accessed via the GWAS catalog are publicly available and 
have been cited in Supplementary Table 6a,b. For the UK Biobank, all 
individual-level phenotype/genotype data are accessible via a formal 
application to the UK Biobank at http://www.ukbiobank.ac.uk. The 
ethical approval of the MAFALDA study restricts the public sharing of 
individual data; however, the data of the liver visceral adipose biopsies 
from the MAFALDA cohort researchers can submit a proposal to access 
either raw or analyzed data between 9 to 36 months after publication. 
Proposals should be directed to S.R. at stefano.romeo@ki.se. S.R. 
will review each request to assess data availability. Responses will be 
provided within 8 weeks of receiving the request. It is important to 
note that patient-related data may be restricted due to confidential-
ity regulations. If approved for sharing, data will be transferred under 
a material transfer agreement. NEO study requests should be sent to  
f.r.rosendaal@lumc.nl. Liver BIBLE study requests should be sent to 
luca.valenti@unimi.it. Dallas Heart Study requests should be sent to 
dallasheartstudy@utsouthwestern.edu. The following online databases 
have been used: GWAS catalog, https://www.ebi.ac.uk/gwas/ and base-
line LD model: https://data.broadinstitute.org/alkesgroup/LDSCORE/.

Code availability
All codes and scripts used for analyses are available at https://github. 
com/Ojami/PartiotionedPRS_custom. MATLAB R2023a was used 
under an academic license. Publicly available tools used in this work 
are listed as follows: REGENIE v.3.2.8 (https://github.com/rgcgithub/ 
regenie); PLINK v.1.90b6.26 (https://www.cog-genomics.org/plink/); 
GCTA-COJO (https://yanglab.westlake.edu.cn/software/gcta/#COJO); 
LDSC (https://github.com/bulik/ldsc/); Circos (http://circos.ca/); Poly-
Fun: https://github.com/omerwe/polyfun); SuSiE v.0.11.92 (https:// 
github.com/stephenslab/susieR); rtracklayer v.1.54.0 (https://bio-
conductor.org/packages/release/bioc/html/rtracklayer.html); coloc 
v.5.1.0 (https://github.com/chr1swallace/coloc); Ensembl VEP REST 
API (https://rest.ensembl.org/); FUMA v.1.5.4 and MAGMA (https:// 
fuma.ctglab.nl/); Open Targets Genetics (https://genetics.opentargets.
org); Enrichr R wrapper (https://github.com/wjawaid/enrichR); meta 
(https://cran.r-project.org/web/packages/meta/index.html); LDproxy 
(https://ldlink.nih.gov/?tab=ldproxy); STAR v.2.7.10a (https://github. 
com/alexdobin/STAR); FastQC (https://www.bioinformatics.babraham. 
ac.uk/projects/fastqc/); Trimmomatic v.0.39 (http://www.usadellab. 
org/cms/?page=trimmomatic); RSEM v.1.3.3 (https://github.com/ 
deweylab/RSEM); DESeq2 v.1.38.3 (https://bioconductor.org/packages/ 
release/bioc/html/DESeq2.html); R v4.0.2 (https://www.r-project.org/);  
bNMF (https://github.com/gwas-partitioning/bnmf-clustering); and the  
mediation R package v.4.5.0 (https://cran.r-project.org/web/packages/ 
mediation/index.html).
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Extended Data Fig. 1 | Measures of adiposity are highly correlated with liver 
triglycerides and inflammation/fibrosis, with VAT, WFM, and BMI being 
independent predictors of liver outcomes. In (a), the phenotypic correlation 
between different measures of adiposity, liver triglyceride content measured 
by proton density fat fraction (PDFF), and inflammation/fibrosis measured 
by liver iron corrected T1 (cT1); pairwise Spearman’s correlation coefficients 
have been shown on the heatmap. All correlations had a Benjamini–Hochberg 

False Discovery Rate (FDR) <0.05. (b) penalized Ridge regression analysis of 
different adiposity indices in predicting PDFF and liver iron corrected T1. Each 
dot represents standardized coefficients, and dashed line represents the lack 
of contribution of each trait to the liver outcomes. Both target variables were 
rank-based inverse normal transformed before the regression analysis. VAT: 
visceral adipose tissue, WFM: whole-body fat mass, BMI: body mass index, IWB: 
impedance of whole body, WHR: waist-to-hip ratio.
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Extended Data Fig. 2 | Previously unknown genetic loci were associated with 
liver disease and metabolic traits. Heatmap of the Z-score of associations 
for the effect (risk) allele between previously unknown genetic loci and liver 
or metabolic-related traits (columns) in n=397,780 UKBB participants after 
excluding individuals with available PDFF or liver iron corrected T1 (n=36,748). 
The association analyses were performed by linear or logistic regression 
analysis using REGENIE and adjusted for adiposity index, age, sex, age×sex, age2 

and age2×sex, first 10 genomic principal components and array batch. Upper 
and lower boxes correspond to liver iron corrected T1 and PDFF genetic loci, 
respectively. Full summary statistics have been reported in Supplementary 
Table 11. P values were two-sided and not corrected for multiple hypothesis 
testing. VAT: Visceral adipose tissue; WFM: Whole-body fat mass (kg/m2); cT1: 
liver iron corrected T1; PDFF: proton density fat fraction; CLD: chronic liver 
disease.
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Extended Data Fig. 3 | Association between 26 previously known and 6 
previously unknown replicated genetic loci and circulating triglycerides in 
the UK Biobank. The heatmap shows the Z-score of associations for the effect 
(risk) allele in Europeans (n=397,780) after excluding individuals with available 
PDFF or liver iron corrected T1 (n=36,748). The association was performed by 
linear regression analysis using REGENIE and adjusted for adiposity index, age, 

sex, age×sex, age2 and age2×sex, first 10 genomic principal components and array 
batch. Upper and lower boxes correspond to liver iron corrected T1 and PDFF 
genetic loci, respectively. Previously unknown replicated genetic loci have been 
marked in blue. Full summary statistics have been reported in Supplementary 
Table 15. P values were two-sided and not corrected for multiple hypothesis 
testing.
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Extended Data Fig. 4 | Putative model of the two different types of MASLD.  
a) In the steatotic liver-specific disease, the primary increase in the liver 
triglyceride content is due to the hepatic retention of very low-density 
lipoproteins (VLDL). This retention is causally related to liver inflammation, 
fibrosis, and hepatocellular carcinoma. In this type of MASLD, the higher risk of 
diabetes is due to the degree of liver fibrosis, while the lower risk of cardiovascular 
disease (CVD) to lipoprotein retention. b) In the systemic MASLD, the liver is 
entwined in the crosstalk among metabolic organs. In this type of MASLD, a 

dysfunctional visceral adipose tissue may increase the diabetes risk and may 
release free fatty acids that are incorporated into triglycerides in the hepatocytes 
causing liver steatosis. In turn, liver steatosis causes an overproduction of VLDL 
with a subsequent increase in circulating low-density lipoproteins (LDL) resulting 
in a higher risk of CVD. Additionally, the systemic MASLD associates with an 
increased blood pressure resulting in kidney failure and further increasing the 
CVD risk. This figure was created with BioRender.com. CKD: chronic kidney 
disease (failure); VAT: visceral adipose tissue; LD: lipid droplets.
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