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Drought is a natural disaster that can affect a larger area over time. Damage caused by the drought can 
only be reduced through its accurate prediction. In this context, we proposed a hybrid stacked model 
for rainfall prediction, which is crucial for effective drought forecasting and management. In the first 
layer of stacked models, Bi-directional LSTM is used to extract the features, and then in the second 
layer, the LSTM model will make the predictions. The model captures complex temporal dependencies 
by processing multivariate time series data in both forward and backward directions using bi-
directional LSTM layers. Trained with the Mean Squared Error loss and Adam optimizer, the model 
demonstrates improved forecasting accuracy, offering significant potential for proactive drought 
management.

Droughts are natural calamities that can lead to many socio-economic effects 1. Draught can cause significant 
losses. In 2012, almost 80% of the crops were damaged by the drought, which led to a loss of $36 billion 2. Apart 
from this, the 2010-2011 East Africa drought, the 2011 Texas drought, and the 2012-2015 California drought 
caused considerable losses to society 3. As represented in Figure 1, all the developing countries are affected by the 
drought 4. Figure 1 shows that most African countries are affected by the drought.

Apart from the countries, Fig. 2 present the number of affected peoples by drought. There are several years 
where the impact of droughts spiked significantly compared to others. Notably, in 1998 and 2008, the numbers 
were exceptionally high, reaching around 74 million and 207 million people affected, respectively. The peak in 
2008 is the highest on the graph, indicating a severe drought event during that year. In more recent years, the 
numbers remain high but somewhat less erratic than the highest peaks seen in the graph. However, drought still 
consistently affects a significant number of people.

Drought has many long-term effects, and we can only manage the effects of drought if a correct and efficient 
prediction is made. Hence, researchers are developing an efficient drought prediction model 5. However, drought 
is a natural phenomenon, so it is challenging to predict it 6. In this context, artificial intelligence (AI) has recently 
shown its significance in drought prediction. I models can easily find the relationship between different features, 
which improves accuracy.

Contribution
This paper makes several key contributions to the field of time series analysis and drought forecasting:

• Hybrid Model Design: We introduce a novel Hybrid Bi-directional LSTM and LSTM model that effectively 
captures complex temporal dependencies in multivariate time series data, enhancing the accuracy of rainfall 
predictions.
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• Improved Forecasting Accuracy: By incorporating both forward and backward sequence processing through 
Bi-directional LSTM layers, our model improves the ability to learn from contextual information, leading to 
more accurate predictions.

• Robustness Against Overfitting: Using a Dropout layer within the architecture enhances the model’s robust-
ness, preventing overfitting and promoting the learning of generalized features.

• Real-world Application: Our model demonstrates significant potential for improving drought management 
strategies by providing reliable rainfall forecasts and aiding decision-makers in resource allocation and plan-
ning.

• Future Research Directions: We outline possibilities for extending the model to incorporate additional me-
teorological variables and apply transfer learning techniques, paving the way for further advancements in 
adaptable climate modeling across diverse regions.

Organization
The rest of the paper is organized as follows: “Related work” presents the details of related work. “Proposed work” 
details our proposed work, and the simulation results are presented in “Simulation results”. Finally, “Conclusion” 
concludes the paper.

Fig. 2. People affected by drought over the year.

 

Fig. 1. Countries with highest drought exposure in 2024.
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Related work
Deep learning models for drought prediction
Wang, X. et al.7 proposed a deep learning model (K-parallel recurrent neural networks (KRNN), convolutional 
neural networks (CNN), graph convolutional networks (GCN), and multilayer perceptron (MLP)) for the 
prediction of sub-seasonal drought. The proposed approach used soil moisture to predict drought. However, the 
primary limitation of this study is its reliance on historical ERA5-Land soil moisture records, which may not 
fully capture future changes in climate variability. Additionally, the quality and resolution of input data might 
influence the models’ performance, potentially affecting the accuracy of drought predictions in regions with less 
detailed soil moisture records.

Dikshit, A. et al.1 used LSTM to predict the Standard Precipitation Evaporation Index (SPEI) through the data 
collected from the Climatic Research Unit (CRU) that range from 1901 to 2018. However, the study’s reliance on 
historical data from the Climatic Research Unit (CRU) dataset may limit its ability to account for future climate 
variability and unforeseen changes in drought patterns.

Anshuka, A. et al.8 proposed an LSTM-based temporal hydrological extreme forecasting. The results are 
related to the South Pacific region and are based on rainfall data. The study’s reliance on satellite rainfall estimates 
and sea surface temperature (SST) anomalies may limit its ability to capture localized hydrological extremes 
influenced by factors not accounted for in the datasets. Additionally, the model’s predictive accuracy might 
vary with different spatial resolutions and data quality, impacting the generalizability of results across diverse 
geographical regions.

Maity, R. et al.9 used a CNN model to predict basin-scale drought assessment using air temperature, surface 
pressure, wind speed, relative humidity, evaporation, soil moisture, and geopotential height. The study’s 
reliance on primary hydrometeorological precursors may not fully capture the complex interactions and 
feedback mechanisms influencing droughts, particularly in regions with unique climatological or topographical 
characteristics. Additionally, the model’s performance may vary when applied to basins with different data 
availability or quality, potentially impacting its generalizability and effectiveness across diverse environments.

Hybrid models for enhanced drought forecasting
Abbes, A. et al.10 integrates LSTM and Multi-Resolution Analysis Wavelet Transform (MRA-WT) for forecasting 
drought. This research also focuses on the prediction of the SPEI index. However, the study’s effectiveness may 
be limited by the availability and quality of input data, such as station data and NDVI from Landsat images, 
which could affect the model’s accuracy in regions with sparse or unreliable data. Additionally, the model’s 
performance in capturing non-stationary drought indices might be challenged by extreme weather events not 
represented in the historical dataset.

Vo Q. T. et al.11 proposed drought prediction using LSTM and climate model. The model’s performance may 
be limited by biases in the input data and the inherent uncertainties in the climate model GloSea5 (GS5), which 
could affect the accuracy of drought predictions, especially for long-lead-time cases. Additionally, the model’s 
effectiveness might vary across different geographical regions due to variations in climate and environmental 
conditions not fully captured by the input variables.

Al-Ayyoub, M. et al.12 presents a hybrid parallel implementation of the Fuzzy C-Means (FCM) algorithm on a 
GPU for segmenting 3D medical images from DICOM files. The approach significantly reduces processing time, 
achieving a 5x speedup compared to the traditional sequential version, making it more feasible for handling 
large medical datasets.

Moteri, M. A. A. et al.13 proposed a convolutional long short-term memory with self-attention (SA-CLSTM) 
to predict the SPEI index. However, the model’s reliance on historical data from the Climatic Research Unit 
(CRU) dataset may not fully capture the unique environmental and climatic variations specific to coastal arid 
regions, potentially affecting prediction accuracy. Additionally, data quality and availability could challenge the 
model’s effectiveness, particularly in areas with sparse meteorological monitoring systems.

Explainable AI and neural network approaches
Dikshit, A. et al.14 proposed a deep learning model for drought prediction, in addition to using explainable 
artificial intelligence (XAI) for explaining the working of deep learning. The study’s reliance on historical 
data and climatic variables may limit its ability to predict droughts accurately under rapidly changing climate 
conditions and unforeseen environmental factors. Additionally, the model’s applicability across diverse regions 
may be constrained by variations in data quality and the specific climatic characteristics of each area.

Poornima S. et al.15 proposed an LSTM-based drought prediction model. The study’s reliance on historical 
meteorological data for forecasting drought indices may limit its predictive accuracy in rapidly changing climate 
conditions or regions with sparse data. Additionally, the performance of the LSTM model could be affected 
by the quality and completeness of the input variables, potentially impacting its generalizability across diverse 
geographical areas.

IoT and data-driven frameworks
Kaur, A. et al.16 proposed an IoT-based framework for collecting parameters for predicting drought. The author 
used an Artificial Neural Network (ANN), ANN optimized with Genetic Algorithm (ANN-GA), DNN (Deep 
Neural Network), and SVM for drought prediction. However, the model’s reliance on IoT data for drought 
prediction may be limited by the availability and quality of IoT infrastructure in different regions, potentially 
affecting the accuracy and reliability of forecasts. Additionally, variations in regional climate conditions and data 
collection standards could impact the model’s generalizability across diverse geographical areas.

Alsmirat M. A et al.17 accelerates Fuzzy C-Means (FCM) segmentation algorithms in medical image 
processing by leveraging GPU capabilities. This approach significantly enhances processing speed, achieving 
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up to 8.9x faster execution without reducing segmentation accuracy, which is crucial for medical diagnostics. 
Alsmirat M. A. et al.,18 explore using digital cameras as an alternative to specialized fingerprint devices, explicitly 
addressing the challenge of image compression. It investigates the optimal compression ratio for maintaining 
high accuracy in fingerprint identification, establishing that a 30-40% compression ratio is effective without 
significant accuracy loss.

Nhi, N. T. U. et al.19 introduces a semantic-based image retrieval system that combines a custom C-Tree 
structure with a neighbor graph (Graph-CTree) to enhance retrieval accuracy. The system employs k-nearest 
Neighbor (k-NN) for visual word creation and uses an ontology framework with SPARQL queries to improve 
semantic retrieval. The proposed method demonstrated high precision across several datasets, outperforming 
comparable approaches.

Dikshit, A et al.20 proposed an attention-based model to forecast meteorological droughts at a short-term 
forecast range for five sites situated in Eastern Australia. However, the study’s reliance on large-scale climatic 
indices and historical data may limit its ability to account for sudden or unpredicted climate anomalies, 
potentially affecting the accuracy of short-term drought forecasts. Additionally, the model’s performance might 
vary with different geographical regions due to the specific climatic and environmental characteristics not fully 
represented in the dataset.

Qian, W. et al.21 proposes an enhanced GAN-based image style transfer (IST) method that incorporates 
a circular local binary pattern (LBP) as a texture before improving image detail. A dense connection residual 
block and attention mechanism are integrated to enhance high-frequency feature extraction. At the same time, 
a total variation (TV) regularizer is added to the loss function to reduce noise and smooth results. The method 
outperforms existing approaches in generating more detailed and higher-quality styled images.

Wang, H et al.22 introduce a visual saliency-guided image retrieval model that integrates the Itti visual saliency 
model with a multi-feature fusion approach. The model uses a two-stage complexity classification (cognitive 
load and cognitive level) and a group sparse logistic regression model to enhance retrieval accuracy, especially 
in complex multimedia scenarios.

Agana, N. An et al.23 proposed a deep belief network consisting of two Restricted Boltzmann Machines for 
long-term drought prediction using lagged values of SSI as inputs. The proposed approach may limit its ability 
to capture unexpected climate shifts or anomalies, potentially impacting the accuracy of long-term drought 
predictions. Additionally, the model’s effectiveness might vary across different regions, influenced by the unique 
hydrological and climatic conditions not fully captured in the training dataset.

Li, J. et al.24 introduce a new color image watermarking method using Quaternion Hadamard Transform 
(QHT) and Schur decomposition. The technique leverages the correlation between color channels to embed 
watermarks resiliently. Additionally, a quaternion Zernike moment-based detection method is employed to 
handle geometric distortions, making the watermark extraction process robust against such attacks.

Chopra, M. et al.25 provides a comprehensive review of advancements in generative models for text-to-image 
synthesis, focusing on GAN-based architectures such as DCGAN, StackGAN, StackGAN++, and AttnGAN. By 
examining these models, the paper highlights how iterative refinement, hierarchical structuring, and attention 
mechanisms contribute to generating semantically coherent and realistic images from text descriptions.

Proposed approach
Dataset representation and preprocessing
Assume a multivariate time series dataset with n observations and m features. Each observation at time t is 
represented as a vector:

 xt = [xt,1 xt,2 · · · xt,m]T  (1)

The dataset X  is represented as a matrix:

 

X = [x1 x2 · · · xn]T =




x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m

...
...

. . .
...

xn,1 xn,2 · · · xn,m


 (2)

Feature range and differences
To understand the variability and range of features, the following processes are undertaken:

Range of features
The range of a feature j is given by:

 Range(x:,j) = max(x:,j) − min(x:,j) (3)

Calculating the range helps identify the spread of the data, which is crucial for understanding its variability and 
scaling the model appropriately.

Feature differences
Differencing is used to stabilize variance and make the series stationary:
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 ∆xt,j = xt,j − xt−1,j  (4)

The differenced dataset ∆X  is:

 

∆X =




∆x2,1 ∆x2,2 · · · ∆x2,m

∆x3,1 ∆x3,2 · · · ∆x3,m

...
...

. . .
...

∆xn,1 ∆xn,2 · · · ∆xn,m


 (5)

Differencing removes trends and seasonality, making the data suitable for time series modeling, particularly with 
neural networks like BiLSTM and LSTM.

Granger causality test
The Granger Causality Test determines causal relationships between variables in a time series dataset. It assesses 
whether one variable’s past values help predict another’s future values.

Purpose of the Granger causality test
Granger causality is crucial for identifying dependencies and selecting relevant features for the model. If a 
variable xi Granger-causes xj , including xi can improve the predictive power for xj .

Conducting the test
For testing causality between two variables xi and xj , construct lagged vectors:

 

yt =




xj,t−1
xj,t−2

...
xj,t−p


 , zt =




xi,t−1
xi,t−2

...
xi,t−p


 (6)

Fit the following models:

Autoregressive model

 xj,t = aT yt + ϵt (7)

Extended model with xi

 xj,t = aT yt + bT zt + ϵt (8)

Where a and b are coefficient vectors. The significance of coefficients b indicates whether xi Granger-causes xj .

Normalization
Normalization is a critical preprocessing step that ensures each feature contributes equally to the model. It 
prevents features with more extensive ranges from dominating the learning process.

Min-max scaling
Min-Max scaling transforms each feature into the range [0, 1]:

 
x̃t,j = xt,j − min(x:,j)

max(x:,j) − min(x:,j)  (9)

This scaling is useful when the data does not have significant outliers and the features are approximately 
uniformly distributed.

Z-score normalization
Z-score normalization transforms each feature to have a mean of 0 and a standard deviation of 1:

 
x̃t,j = xt,j − µj

σj
 (10)
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Where µj  and σj  are the mean and standard deviation of feature j. This method is beneficial when data follows 
a Gaussian distribution.

Data splitting
Data splitting involves dividing the dataset into training and testing sets to ensure that the model is evaluated on 
unseen data. The split is typically performed using a ratio r.

Training set
The training set is used to fit the model. It comprises the first k observations, where:

 k = ⌊n × r⌋ (11)

Training set:

 

Xtrain =




x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m

...
...

. . .
...

xk,1 xk,2 · · · xk,m


 (12)

Testing set
The testing set is used to evaluate the model’s performance:

 

Xtest =




xk+1,1 xk+1,2 · · · xk+1,m

...
...

. . .
...

xn,1 xn,2 · · · xn,m


 (13)

Splitting ensures that the model’s predictions are unbiased and that its performance can be generalized to new 
data.

Bi-directional LSTM model
A Bi-directional LSTM processes the input sequence in both forward and backward directions. Given an input 
sequence X = [x1, x2, . . . , xT ], where each xt is a feature vector:

∙  Forward LSTM:

 
−→
h t = LSTM(xt,

−→
h t−1) (14)

∙ Backward LSTM:

 
←−
h t = LSTM(xt,

←−
h t+1) (15)

∙ Output of bi-directional LSTM:

 
ht =

[−→
h t←−
h t

]
 (16)

For this model, the bi-directional LSTM has an output dimension of 2 × 64 = 128.

LSTM layers
Each LSTM layer applies the following transformations:

∙ Forget gate:

 ft = σ(Wfxt + Ufht−1 + bf ) (17)

∙ Input gate:

 it = σ(Wixt + Uiht−1 + bi) (18)

 c̃t = tanh(Wcxt + Ucht−1 + bc) (19)
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∙ Cell state:

 ct = ft ⊙ ct−1 + it ⊙ c̃t (20)

∙ Output gate:

 ot = σ(Woxt + Uoht−1 + bo) (21)

∙ Hidden state:

 ht = ot ⊙ tanh(ct) (22)

The LSTM layers in this model are configured as follows:

• First LSTM: 32 units, returns sequences
• Second LSTM: 16 units, returns sequences
• Third LSTM: 8 units, returns a single sequence

Dropout layer
The Dropout layer randomly sets a fraction of input units to zero during training:

 hdrop
t = ht ⊙ Mask(p) (23)

where Mask(p) is a binary mask with dropout probability p = 0.25.

Dense layer
The Dense layer computes the final output using:

 ŷ = Wh + b (24)

This layer produces an output vector with dimensions matching trainY.shape[1].

Loss function
The model is compiled with the Mean Squared Error (MSE) loss function:

 
MSE = 1

N

N∑
i=1

(ŷi − yi)2 (25)

where ŷi is the predicted value, yi is the true value, and N  is the number of samples.

Optimizer
The Adam optimizer updates model weights using the following:

 
θt+1 = θt − α

mt√
vt + ϵ  (26)

Where:

• α is the learning rate.
• mt and vt are the first and second moment estimates.
• ϵ is a small constant to prevent division by zero.

Model prediction and evaluation
Prediction
Given an input sequence Xinput, the model predicts output ŷt:

 ŷt = Model(Xinput) (27)
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The BiLSTM and LSTM models leverage sequential data to predict future rainfall patterns accurately.

Comparison of actual and predicted data
Evaluate predictions using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE):

 
MAE = 1

N

N∑
t=1

|yt − ŷt| (28)

 

RMSE =

√√√√ 1
N

N∑
t=1

(yt − ŷt)2 (29)

Where N  is the number of observations in the test set. These metrics provide insight into the accuracy of the 
model’s predictions by comparing them against actual values.

Results and discussion
Dataset representation
In order to test our proposed model, we used data collected from NASA’s GMAO MERRA-2 assimilation 
model 26. The data was collected from 2000 to 2020 in Mumbai, India. The data contains precipitation, specific 
humidity, relative humidity, and temperature. Hence, in this paper, we predict the precipitation using information 
on particular moisture, relative humidity, and temperature. In our study, we utilized daily time intervals for 
both training and prediction purposes. Daily data granularity allows our model to capture short-term rainfall 
fluctuations, which is particularly valuable for identifying immediate drought conditions.

 Data preprocessing
In our study, we addressed missing data points through linear interpolation, which fills gaps by estimating values 
based on neighboring data. This method is effective in maintaining continuity within the time series without 
introducing significant bias. For anomalous values, we applied a z-score thresholding approach to detect outliers. 
Any data points that fell beyond three standard deviations from the mean were flagged as potential anomalies. 
These values were subsequently replaced using the rolling median imputation technique, which is less sensitive 
to extreme variations and preserves the dataset’s underlying trends.

Granger causality test
Figure 3, presents the correlation information about specific humidity, relative humidity, and temperature 
concerning precipitation. The figure clearly shows that the correlation between specific humidity and 
precipitation is 0.724540. Also, the correlation between relative humidity and precipitation is 0.743112. 
Moreover, the correlation between temperature and precipitation is -0.779399. Hence, from Figure 3 it is clear 
that all the features are highly correlated to precipitation

We plot the scatter plot to get more information about the correlation between specific humidity, relative 
humidity, and temperature, as represented in Fig.  4. The figure shows that particular humidity and relative 
humidity positively correlate with precipitation because precipitation also increases with specific humidity 
and relative humidity. However, temperature is negatively correlated to precipitation because the precipitation 
increases with a decrease in temperature.

The correlation matrix and scatter plot confirm that the features (specific humidity, relative humidity, and 
temperature) are related to precipitation. But to get more information about the relationship, we plot the Fig. 5. 
With a mean of around 20 units, the histogram for specific humidity shows a distinct right-skewed distribution, 
showing a concentration of greater specific humidity values. By contrast, the relative humidity distribution 
is bimodal, with maxima about at 50% and 90%, implying two quite common groups in the sample about 
atmospheric moisture content. The temperature data is likewise very bimodal, with most observations falling 
around 10◦C and 25◦C. Crucially for modeling their effect on precipitation patterns, these histograms-overlaid 
with kernel density estimates-offer a visual grasp of the variability and average values for every meteorological 
variable.

Performance analysis
To analyze the performance of our proposed model, we plot the model training and validation Loss in Fig. 6. 
From the figure, it is clear that at the start of the epochs, the training loss is higher than the validation loss. 
However, as the training increases the value of training loss also decreases, this shows that our purposed model 
is training efficiently. Finally, the variation in training and validation loss is almost similar after the fifth epoch. 
Hence, it is evident that our proposed model gets trained very quickly (in 5 epochs).

To get more information about prediction accuracy, we compare the predicted values from our model with 
the actual values, as represented in Fig. 7. The figure clearly shows that the forecasting values follow the actual 
values with a high accuracy value. However, there is some mismatch value for the prediction at the pike values 
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of the actual precipitation. In this context, we will improve our model for better accuracy in the future and test 
it on more real-world models.

Comparative analysis
In this subsection, we compare our proposed model qualitatively and quantitatively.

Fig. 4. Scatter plot of selected features.

 

Fig. 3. Correlation matrix of selected features.
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Quantitative analysis
We compared the Bi-LSTM and GRU models in the quantitative analysis with our proposed model. Figure 8 
presents this quantitative analysis. Figure 8a presents the comparison of accuracy, from the figure it is clear 
that the proposed approach has the lowest accuracy than the rest of the models. Similarly, Fig. 8b, c present the 
comparison of Mean Absolute Error (MAE) and Mean Square Error (MSE). The figures show that our proposed 
model outperformed the other two models.

Qualitative analysis
This section will present the qualitative analysis of current work with our proposed approach. The comparison 
details are presented in Table 1.

The approach proposed by Wang, X. et al.7 is complex because The complexity of this study arises from 
integrating multiple deep-learning modules within a committee machine framework, which requires 
sophisticated techniques for series decomposition and feature extraction. This approach demands advanced 
computational methods to ensure that the models effectively leverage soil moisture memory for accurate sub-
seasonal drought forecasting.

The complexity of the model proposed by Dikshit, A. et al.1 stems from utilizing the Long Short-Term 
Memory (LSTM) model to predict drought characteristics across multiple scales and dimensions. This approach 
requires sophisticated techniques for data preprocessing, model training, and evaluation, ensuring that the LSTM 
effectively captures temporal and spatial variations in drought dynamics for improved forecasting accuracy.

Anshuka, A. et al.8 is complex due to using the LSTM model to capture spatio-temporal patterns in 
hydrological extremes. This involves sophisticated methods for processing multivariate data and incorporating 
eigenvector values of SST, necessitating advanced computational techniques to accurately model the dynamic 
interactions within the hydrological and climatological variables.

The model proposed by Maity, R. et al. 9 is complex due to the utilization of a one-dimensional convolutional 
neural network to extract meaningful insights from diverse hydrometeorological precursors. This approach 

Fig. 6. Variation of model training and validation loss over epochs.

 

Fig. 5. Histogram of selected features.
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requires advanced data integration and modeling techniques to accurately capture the intricate relationships 
between meteorological variables and drought conditions, highlighting the challenges of representing complex 
environmental processes in a computational framework.

The complexity of the model proposed by Abbes, A. et al.  10 lies in integrating Multi-Resolution Analysis 
Wavelet Transform (MRA-WT) with Long Short-Term Memory (LSTM) networks to handle non-stationary 
time-series data. This approach requires advanced techniques for data preprocessing and model training to 

Model Hypothesis testing Technique Complexity

Wang, X. et al.7 ✗ KRNN, CNN, GCN, MLP High

Dikshit, A. et al.1 ✗ LSTM High

Anshuka, A. et al.8 ✗ LSTM High

Maity, R. et al. 9 ✗ CNN High

Abbes, A. et al. 10 ✗ LSTM High

Vo Q. T. et. al. 11 ✗ LSTM-CM High

Moteri, M. A. A. et al. 13 ✗ SA-CLSTM High

Dikshit, A. et. al.14 ✗ DL, XAI High

Poornima S. et al.15 ✗ LSTM High

Kaur, A. et al.16 ✗ ANN, ANN-GA, DNN, SVM High

Dikshit, A et al.20 ✗ Attention-based model High

Agana, N. A et. al.23 ✗ Deep Belief Network High

Proposed approach Granger causality test Bi-LSTM Low

Table 1. Comparative analysis.

 

Fig. 8. Quantitative analysis.

 

Fig. 7. Prediction of precipitation by proposed model.
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analyze and forecast complex drought patterns effectively, demonstrating the intricate relationship between 
temporal and spectral characteristics of drought indices.

The model proposed by Vo Q. T. et al.   11 is complex due to integrating the LSTM model with a climate 
prediction model (GS5) to leverage physical process simulation and low prediction bias. This hybrid approach 
requires sophisticated techniques to balance and optimize the strengths of both models, ensuring accurate and 
reliable drought forecasts while minimizing uncertainties and biases.

The complexity of the model proposed by Moteri, M. A. A. et al. 13 stems from using a convolutional extended 
short-term memory model with self-attention (SA-CLSTM) to capture the intricate interactions between 
drought factors in coastal arid regions. This approach requires advanced techniques for integrating multiple 
data sources and optimizing model parameters to ensure accurate and reliable drought severity, category, and 
geographic variation forecasts.

The model proposed by Dikshit, A. et al.14 is complex due to integrating XAI with deep learning models 
to understand local interactions among predictors for different drought conditions. This approach requires 
sophisticated techniques to analyze and interpret model outputs using Shapley additive explanations (SHAP), 
ensuring that predictions align with physical model interpretations across various spatio-temporal scales.

The approach by Poornima S. et al.15 is complex because it uses LSTM networks to handle real-time nonlinear 
data. This approach requires advanced techniques for data preprocessing, model training, and evaluation to 
effectively capture temporal patterns and improve long-term drought predictions, challenging the conventional 
statistical methods’ capabilities.

The model proposed by Kaur, A. et al.16 is complex due to the integration of IoT with dimensionality 
reduction techniques and advanced machine learning models, such as DNN and ANN-GA, to predict drought 
conditions. This framework requires sophisticated data processing and analysis at both the Fog and Cloud layers, 
necessitating advanced techniques to handle large-scale data and optimize model performance for accurate 
drought assessment and management.

The complexity of the model proposed by Dikshit, A et al.20 stems from using an attention-based deep learning 
model to capture the nonlinear relationships and dependencies between hydrometeorological and climatic 
factors. This approach requires sophisticated data integration and interpretation techniques to understand how 
the model forecasts droughts across various lead times, enhancing transparency and trust in the predictions.

The complexity of the model proposed by Agana, N. An et al.23 study arises from employing a Deep Belief 
Network with two Restricted Boltzmann Machines to address the nonlinear and nonconvex optimization 
challenges in drought prediction. This approach requires advanced techniques for data preprocessing and model 
training to effectively capture complex temporal patterns, ensuring superior performance over traditional 
methods like Multilayer Perceptron (MLP) and Support Vector Regression (SVR).

Conclusion
The paper used a hybrid model to predict rainfall, an essential factor in drought prediction. The proposed 
hybrid model is the stacked models of Bi-LSTM and LSTM. The stacked model takes the input from NASA’s 
GMAO MERRA-2 assimilation model and uses time series analysis to predict the rainfall. As the rainfall is 
directly related to drought, our proposed models help predict drought. We also compared our proposed model 
with standard deep learning models and previous literature to present the effectiveness of our proposed model. 
Our proposed hybrid mode outperformed the standard deep learning models in accuracy, mean square error, 
and mean absolute error. In addition to that, our proposed model is less complex than the current literature. 
However, our model still needs improvement. Therefore, in future work, we explore additional meteorological 
variables and transfer learning to improve accuracy and false negatives in our model. Specifically, we plan to 
explore the integration of satellite data, such as remote sensing data on soil moisture and vegetation indices, 
to improve the model’s predictive accuracy by incorporating additional environmental factors. This data could 
offer valuable insights into drought conditions and enhance the model’s performance by providing finer spatial 
resolution. Additionally, we aim to test the model across diverse regions with varying climatic conditions to 
assess its generalizability. For instance, applying the model to semi-arid and humid regions would allow us to 
evaluate its adaptability and robustness in different drought contexts. We also plan to implement transfer learning 
techniques to leverage pre-trained models on similar datasets, which could improve prediction accuracy while 
reducing computational requirements.
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