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Abstract
Volunteer responder systems (VRS) alert and guide nearby lay rescuers towards the location of an emergency. An application
of such a system is to out-of-hospital cardiac arrests, where early cardiopulmonary resuscitation (CPR) and defibrillation with
an automated external defibrillator (AED) are crucial for improving survival rates. However, manyAEDs remain underutilized
due to poor location choices, while other areas lack adequate AED coverage. In this paper, we present a comprehensive data-
driven algorithmic approach to optimize deployment of (additional) public-access AEDs to be used in a VRS. Alongside a
binary integer programming (BIP) formulation, we consider two heuristic methods, namely Greedy and Greedy Randomized
Adaptive Search Procedure (GRASP), to solve the gradualMaximalCoveringLocation (MCLP) problemwith partial coverage
for AED deployment. We develop realistic gradually decreasing coverage functions for volunteers going on foot, by bike, or
by car. A spatial probability distribution of cardiac arrest is estimated using kernel density estimation to be used as input for
the models and to evaluate the solutions.We apply our approach to 29 real-world instances (municipalities) in the Netherlands.
We show that GRASP can obtain near-optimal solutions for large problem instances in significantly less time than the exact
method. The results indicate that relocating existing AEDs improves the weighted average coverage from 36% to 49% across
all municipalities, with relative improvements ranging from 1% to 175%. For most municipalities, strategically placing 5 to
10 additional AEDs can already provide substantial improvements.

Keywords Facility location · Emergency · Partial cover · Volunteer responder system · Automated external defibrillator ·
Out-of-hospital cardiac arrest · Operations research · Operations management · Optimization

Highlights

• Unlocks the full potential ofVolunteerResponse Systems
for cardiac arrests by finding (near-)optimal locations of
AutomatedExternalDefibrillators (AEDs) to be retrieved
by dispatched volunteers using different modes of trans-
portation.

• Formulates and applies continuous coverage decay func-
tions for each mode of transportation, instead of the
commonly used binary coverage for cardiac arrests.

• Applies a data-driven algorithmic approach to 29 real-
world instances (municipalities) from the Netherlands,
including cardiac arrests in both public and residential
locations.

• Informs policymakers of the benefits of deploying addi-
tional AEDs and identifies areas that currently lack
coverage.

Extended author information available on the last page of the article

1 Introduction

Cardiovascular disease is one of the leading causes of pre-
mature death in the world [1]. Cardiac arrest occurs when the
heart is suddenly unable to effectively pump blood through-
out the body due to loss of heart function. Each year in
the United States, more than 350,000 people have an out-
of-hospital cardiac arrest (OHCA), assessed by emergency
medical services (EMS) [2]. In Europe, between 350,000 and
700,000 OHCAs are reported per year [3]. A recent meta-
analysis shows that only 10.7% of all OHCA patients in
Europe survive to hospital discharge [4]. Given its prevalence
and low survival rates, OHCA is recognized as an important
public health problem [5, 6].

Although overall survival rates are low, early cardiopul-
monary resuscitation (CPR) and early defibrillation using an
automated external defibrillator (AED) drastically increase
survival-to-discharge rates [3, 7, 8]. It is estimated that each
minute of delay in defibrillation decreases the probability
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of survival by roughly 10% [9]. Since EMS often cannot
arrive timely in case of a cardiac arrest, bystanders play a
crucial role in enhancing survival by initiating treatment,
performing CPR and delivering a shock using an AED [7,
10]. However, a nearby (on-site) AED is often not available
or accessible to bystanders [11–13]. Sondergaard et al. [14]
show that the probability of bystander defibrillation in public
areas decrease steeply after 100meter distance to theAED. In
residential areas, where more than 70% of the cardiac arrests
occur [14, 15], bystanders defibrillated a patient in merely
1.2% of the cases in Denmark [14].

To increase the chance of early defibrillation, volunteer
responder systems (VRS) have been introduced in several
countries. In the Netherlands, an alert system called Hart-
slagNu was developed to decrease the time to defibrillation,
particularly in residential areas [16, 17]. A dispatch center
activates this systemwhen there is a reasonable suspicion that
the emergency call is related to a cardiac arrest. Registered
volunteer responders1 that are within a 2000 meter radius of
the cardiac arrest receive a text message or an alert via the
smartphone application. If a dispatched volunteer is near a
registered AED, the volunteer also receives the location of
the AED and is asked to retrieve it. Based on the surveys
completed by volunteers in the Netherlands, it is known that
volunteer responders may retrieve the AED on foot, by bike,
or by car. Stieglis et al. [15] show that the median time to
shock decreases from 10:59 to 8:17 min for cardiac arrest
cases in which at least one volunteer was assigned an AED.

Having an AED nearby is crucial for enhancing the effec-
tiveness of public access defibrillation (PAD) programs.
Nonetheless, the cost of purchasing and maintaining AEDs
makes it impractical to deploy them everywhere. Ringh et al.
[18] andDemirtas et al. [19] argue that AED coverage should
prioritize high risk areas for cardiac arrests to successfully
implement a PAD program. Therefore, optimal positioning
of AEDs is essential to unlock the full potential of a VRS.

In this paper, we propose a comprehensive data-driven
algorithmic approach to optimize the deployment of public-
access AEDs to be used in a VRS. Although recent literature
on optimization methods for guiding AED deployment has
shown the potential of mathematical optimization [20–23],
no previous research has addressed dispatched volunteers in
a VRS. In particular, we develop a realistic coverage func-
tion that can be used in facility location models, accounting
for transportation mode and distance decay. Additionally, an
estimation of how much time a volunteer has on average
to retrieve an AED before EMS arrives is provided. Based
on this we formulate a gradually decreasing coverage func-
tion for each mode of transportation to model the decreasing
effectiveness of AEDs as distance to the victim increases.
To obtain a spatial distribution of cardiac arrest incidence,

1 Synonyms are citizen responder, lay responder, or lay rescuer

we apply kernel density estimation (KDE) to historical car-
diac arrest data in both public and residential areas. From
that distribution both training and evaluation sets of cardiac
arrests are sampled. We create candidate AED locations in a
uniform grid across the study region. It is known that tempo-
ral (in)accessibility of AEDs is an issue [24], so we assume
that these AED locations are accessible 24/7 since AEDs
can be placed outside in (secured) cabinets. In addition to a
binary integer programming (BIP) formulation, two heuristic
methods are considered, namely Greedy and Greedy Ran-
domized Adaptive Search Procedure, to solve the gradual
Maximal Covering Location Problem for AED deployment.
We show, using a large problem instance, that these heuristics
can obtain a solution within 0.18% of the BIP formulation’s
solution in 88% less time. In addition to that, the heuristics
are able to solve larger problem instances than BIP formu-
lation with the same computer memory. This implies that
a potentially better solution can be found by increasing the
granularity of candidate locations or demand points.

To demonstrate the effectiveness of our approach, we
apply it to 29 real-world instances from the Netherlands. By
using actual cardiac arrest and AED data, we optimize AED
locations in 29 municipalities in the North Holland region.
Moreover, we formulate a timeline of events during a cardiac
arrest to model a coverage function for volunteers traveling
on foot, by bicycle, and by car.

This paper has the following structure. Section 2 reviews
the related literature. Section 3 describes the formulation of
theMaximalCoveringLocationProblemwith a partial cover-
age, the exact method and the heuristics. Section 4 introduces
the data, explains our approach to formulating the cover-
age functions, and the procedure to generate cardiac arrest
locations. Section 5 then presents the experiment design and
provides the numerical results. Finally, Section 6 discusses
the finding while Section 7 concludes the paper.

2 Related literature

Covering location models are among the most prominent
facility location models and have been favored for their
applicability in practice, especially for the deployment of
emergency facilities [25]. Despite this, Ahmada-Javid et al.
[26] concluded that merely 5% of the articles on healthcare
facility location focused on public access devices for medi-
cal emergencies. For the AED deployment problem, where
the number of facilities is limited and each facility has a
maximum service distance, the Maximal Covering Location
Problem (MCLP) [27] is particularly suitable. In the MCLP,
the goal is to find the optimal locations for a set number of
facilities to maximize the total demand covered. Demand is
considered covered if a facility lies within a specified ser-
vice distance. Replacing this binary coverage function with
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either a non-increasing step function or a gradually decaying
coverage functionwas proposed byChurch andRoberts [28],
Berman andKrass [29],Berman et al. [30], andKarasakal and
Karasakal [31]. Other extensions of theMCLP could include
probabilistic demand weights [32, 33], chance constraints to
address demand uncertainty [34], or expected coverage as a
measure of the probability that a facility is available [35].
Instead of focusing on coverage, Erkut et al. [36] used a sur-
vival function to maximize the expected number of cardiac
arrest survivals when determining locations for emergency
medical service stations.

While the medical community has emphasized the impor-
tance of availableAEDs (e.g. [37]), literature on optimization
techniques for guiding AED deployment remains limited. As
one of the first to apply mathematical optimization to AED
deployment, Mandell and Becker [38] proposed a multi-
objective ILP to determine an equitable distribution of AEDs
among basic life support units. Rauner and Bajmoczy [39]
evaluated the cost effectiveness of placing AEDs in ambu-
lances by developing a decision model in combination with
an integer programming model. On-site AED placement was
first modeled by Myers and Mohite [40], who applied the
MCLP model to a small case study on a university cam-
pus. Chan et al. [41] demonstrated that an MCLP approach,
using clusters of historic cardiac arrest locations, outper-
forms a population-guided method in Toronto. Sun et al. [24]
extended this model to include the temporal availability of
AEDs. Later, Sun et al. [23] applied the models of [24, 41] to
Danish data, showing that optimized AED locations signif-
icantly improve 30-day survival rates. Chan et al. [20] used
an exponential coverage decay function and formulated three
different models that consider how bystanders may retrieve
AEDs, which concern multiple responders, single-responder
worst case, and single-responder best case. Moreover, Chan
et al. [21] proposed a row-and-column generation algorithm
to determine a robust solution, optimizing AED locations for
the worst-case spatial distribution of cardiac arrests. Tierney
et al. [42] modeled the cost trade-off between purchasing
additional AEDs and relocating existing AEDs.

Exact methods are typically used to solve smaller cov-
ering problems, but heuristic approaches may be necessary
for larger problem instances. Berman and Krass [29] showed
through test cases that a Greedy algorithm often provides
optimal or near-optimal solutions for the generalized MCLP.
Greedy Randomized Adaptive Search Procedure (GRASP)
[43] was used by Resende [44] to solve covering problems.
GRASP is a multi-start heuristic that uses local search to iter-
atively improve initial solutions constructed by randomized
greedy. Genetic Algorithms (GA) have also been employed
successfully [45–48].

We observe that most studies focus on cardiac arrests
occurring in public spaces, and ignore residential areas [20,
21, 23, 40, 41]. However, more than 70% of the cardiac arrest

occur in residential areas [14, 15]. Similarly, these studies
also used a fixed set of candidate locations, typically public
buildings, whichmay not provide adequate potential for cov-
erage in residential areas. Tierney et al. [22] addressed both
issues by including cardiac arrests in residential areas and
using candidate locations that included residential buildings.
Nowadays, it is common practice to place AEDs outdoors in
(secured) cabinets.

Although the definition of the coverage function is a key
element in the MCLP, we observe that most studies made
simplistic assumptions about the maximal service distance
and function’s shape.Most studies used binary coveragewith
a radius of either 100m [22–24, 41] or 176.25m [49]. Chan et
al. [20] considered binary coverage unrealistic and opted for
an exponential coverage decay function with a cutoff point
at 100m and with its shape mimicking the survival curve of
cardiac arrests. The decision to use 100m as a cutoff is not
based on data. Additionally, no studies addressed dispatched
volunteers in a VRS, focusing solely on bystanders. Surveys
from the Netherlands show that dispatched volunteers in a
VRS may use various modes of transportation, necessitating
multiple coverage functions.

Our contributions are as follows. (1) We propose an
elaborate method to formulate a coverage function for the
deployment of AEDs, based on a timeline of activities dur-
ing the activation of a VRS and introducing various modes
of transportation beyond walking. (2) We present an exact
BIP and two heuristic methods to solve the MCLP with par-
tial coverage for AED deployment. The BIP formulation of
the MCLP is difficult to solve for larger instances, resulting
in a considerable computation time and memory demands.
We demonstrate that the heuristics can obtain a solution that
performs within 0.18% of the BIP formulation’s solution in
88% less time for large problem instances. (3) We apply our
methodology to cardiac arrests in both public and residen-
tial areas, addressing a gap in previous research that often
overlooked residential cases, to improve public health.

3 Methods

3.1 Maximum coverage location problemwith
gradual coverage decay

As discussed in Section 2, the AED deployment problem
can be interpreted as a Maximal Covering Location Prob-
lem (MCLP). This formulation assumes binary coverage,
meaning a demand point either receives full coverage from a
facility or none at all. Consequently, cardiac arrests close to
or far from the AED receive identical coverage if within the
coverage radius, while those just outside the range receive
no coverage at all. Given that the probability of surviving a
cardiac arrest decreases rapidly with time, it is logical that
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a cardiac arrest closer to an AED should receive a higher
coverage than one farther away. Therefore, we model this
problem as a gradual coverage decay extension of theMCLP,
as first introduced by Berman et al. [29] and Karasakal and
Karasakal [31]. We assume that purchasing, installing, and
maintenance costs of AEDs are equal and independent of
location.

Let I denote the set of demand points and J denote the
set of facility locations. Let J e then denote the locations of
existing facilities and J c denote the candidate locations for
new facilities, such that J = J e ∪ J c and J e ∩ J c =
∅. Furthermore, let di j be the distance between demand i
and facility j. We define a coverage decay function f that
maps a distance di j to a coverage value between [0, 1]. We
assume that this function is monotonically decreasing with
distance and has a cutoff point r, meaning that every distance
greater than r has a coverage value of 0. Also, let Ji ⊆ J
denote the set of locations j that can cover demand i, Ji ={
j ∈ J | f (di j ) > 0

}
.

Furthermore,we defineN as the total number of additional
facilities that can be opened. We define binary variables Y j

to be 1 if location j ∈ J is opened and 0 otherwise, and
Xi j to be 1 if demand i is covered by facility j ∈ J and
0 otherwise. Then, the MCLP with gradual coverage can be
formulated as follows:

Maximize
∑

i∈I

∑

j∈Ji

f (di j )Xi j (1a)

Subject to
∑

j∈J c

Y j ≤ N (1b)

Y j = 1 ∀ j ∈ J e (1c)

Xi j ≤ Y j ∀i ∈ I, j ∈ Ji (1d)
∑

j∈Ji

Xi j ≤ 1 ∀i ∈ I (1e)

Xi j ∈ {0, 1} ∀i ∈ I, j ∈ Ji (1f)

Y j ∈ {0, 1} ∀ j ∈ J (1g)

The objective function (1a) maximizes the total coverage.
Constraints (1b) ensure that up to N additional facilities are
open. Moreover, constraints (1c) force the existing facilities
to stay open. Constraints (1d) also model that a demand point
can only be covered by a facility that is open. Additionally,
constraints (1e) ensure that each demand point can only be
covered by at most one facility, meaning that for this max-
imization problem, it will be the facility that provides the
highest coverage. Finally, constraints Eqs. 1f and 1g impose
binary restriction on the decision variables.

We extend this formulation to model the different modes
of transportation that a volunteer may use. Let T denote the
set ofmodes of transportation and letwt be the fraction of vol-

unteers that would travel bymode t ∈ T , with
∑

t∈T wt = 1.
Furthermore, we define a specific coverage function f t for
each of the modes of transportation. So, we redefine the cov-
erage function f to Eq. 2.

f (di j ) =
∑

t∈T
wt f

t (di j ) (2)

3.2 Heuristic approaches

The formulation described in Section 3.1 does not scale
well with larger problem instances. Therefore, this section
introduces heuristic approaches that deliver near-optimal
solutions with significantly lower computational costs, suit-
able for larger problem sizes. In Section 3.2.1, we propose
a Greedy algorithm for AEDs deployment. In Section 3.2.2
we propose a GRASP algorithm which extends the Greedy
algorithm by incorporating randomness during a construc-
tion phase and improving the solution through a local search
procedure.

3.2.1 Greedy algorithm

Let ci j = f (di j ) = ∑
t∈T wt f t (di j ) be the coverage

values. Among the open facilities in Ji , which includes
existing facilities, the one that provides the highest cover-
age to demand point i is indicated by the variable J ∗

i =
argmax( j∈Ji |Y j=1) ci j , for all i ∈ I. If no facility can cover
demand point i (i.e. Ji = ∅), then J ∗

i = nil. Let I j ⊆ I
denote the subset of demand points that can be covered by
a facility at location j, that is, I j = {

i ∈ I | f
(
di j

)
> 0

}
.

Related is I∗
j , which is the set of all demand assigned to the

facility at location j. Thus, I∗
j = {i ∈ I j | J ∗

i 
= nil}, for all
j ∈ J .
Let ϕi denote the best coverage that demand point i

receives in the current solution, ϕi = {ci J∗
i

| J ∗
i 
= nil}.

In case no facility is assigned to demand i (i.e. J ∗
i = nil),

we define ϕi = 0. Furthermore, let the variable ϕ0
j denote

the total potential coverage that a facility at location j can
add to the current solution, assuming that currently no facil-
ity is placed at candidate location j (i.e. Y j = 0), thus
ϕ0
j = ∑

i∈I j
max{ci j − ϕi , 0}.

Using the introduced notations, we now define the Greedy
algorithm for the MCLP in Algorithm 1, having as input the
setsI andJ , the coveragematrixC with values ci j = f (di j ),
and the number of facilities to be deployed N.

First, the increase in objective function ϕ0
j by opening

location j is calculated for each candidate location, after
which the location with the highest value is chosen to be
opened. Then OpenFacility checks all demand that can be
covered by the new facility in set I j and assigns them to this
new facility if their coverage is improved. Unlike the reg-
ular MCLP, using gradual coverage means that the already
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Algorithm 1 Greedy algorithm for the MCLP with partial
coverage.
1: procedure Greedy(I, J , C, N )
2: n ← 0
3: Initialize ϕi = 0,∀i ∈ I
4: Initialize Y j = 0,∀ j ∈ J
5: while n < N do
6: Calculate ϕ0

j ,∀ j ∈ J
7: j∗ ← argmax j ϕ

0
j

8: OpenFacility( j∗)
9: n ← n + 1
10: end while
11: end procedure

assigned demand may need to be reassigned to the newly
added facility. Note that after opening location j∗, in the next
loop, ϕ0

j needs to be updated accordingly only for candidate
locations j ∈ ⋃

i∈I j∗ Ji .

3.2.2 Greedy randomized adaptive search procedure

To define the GRASP algorithm, let S denote the set of solu-
tions found in the algorithm where initially S = ∅, and in
total θ solutions are constructed. Furthermore, let s∗ denote
the best solution among all solutions and z(s) denote the
objective value of a solution s. The generic GRASP is given
in Algorithm 2.

Algorithm 2 General procedure of GRASP.
1: procedure GRASP(I, J , C, N , θ , α)
2: s∗ ← 0
3: for iteration = 1 to θ do
4: s ← RandomizedGreedy(I, J , C , N , α)
5: LocalSearch(I, J , s, C, ε)
6: if z(s) > z(s∗) then
7: s∗ ← s
8: end if
9: end for
10: end procedure

During each iteration of GRASP’s construction phase
RandomizedGreedy, the next element to be added is ran-
domly selected from a restricted candidate list (RCL), as
opposed to the deterministic selection as in Greedy. The RCL
is a subset of all candidate locations where no facility has
been placed yet that have a contribution to the objective value
ϕ0
j above a certain threshold. It is defined as RCL = { j ∈

J c | ϕ0
j ≥ mink∈J c ϕ0

k + α(maxl∈J c ϕ0
l − mink∈J c ϕ0

k )}.
The overall quality of the elements in the RCL is tuned by
parameter α ∈ [0, 1]. Consequently, the length of the RCL
may be different in each stage of adding a facility.

In the local search phase, neighborhoods are explored to
find better solutions. For an incumbent solution, every pos-
sible swap of an active location j1 ∈ { j ∈ J c | Y j = 1} and

an inactive location j2 ∈ { j ∈ J c | Y j = 0} is evaluated.
Afterwards, the swap ( j∗1 , j∗2 ) with the largest improvement
in the value of the objective function is chosen and applied
to the incumbent solution. This process continues until the
improvement of the best swap is smaller than ε.

4 Case study

Subsection 4.1 presents our data. Subsection 4.2 describes
our approach to formulating the coverage function. Finally,
Subsection 4.3 discusses how we estimate the spatial proba-
bility distribution of OHCA incidences and utilize it to find
and evaluate solutions.

4.1 Data

4.1.1 Cardiac arrest and AED data

We obtained historical OHCA data from Amsterdam REsus-
citationSTudies (ARREST),which is an ongoingprospective
registry of all OHCAs that occur inmost of themunicipalities
of the province North Holland in the Netherlands. Data from
January 1, 2006 to December 31, 2016 is included (11 years).
OHCA locations are included in the form of addresses. The
geocoding functionality of the geographical information sys-
tem software ESRI ArcMap 10.5 was used to convert these
addresses into spatial coordinates. The instances where the
software indicated that the interpretation of the address was
ambiguous were manually checked and corrected.

We also obtained GPS coordinates of the AED loca-
tions from the VRS HartslagNu, which are registered AEDs
intended to be used byHartslagNuvolunteers and can be pub-
licly or privately owned. We included the 29 municipalities
for which we have both the OHCA and the AED data. Car-
diac arrests for which resuscitation was not started, or which
had a non-medical cause as determined using the Utstein
guidelines, were excluded. The final dataset consists of 4229
OHCAs and 1149 AEDs.

4.1.2 HartslagNu data

We received 1721 completed surveys of HartslagNu volun-
teers that were assigned an AED and arrived at the scene of
the alert location between November 1, 2016 and December
1, 2017. From those, we found 949 unique alert locations.

4.2 Coverage decay function

The coverage decay function is a key element in the MCLP
with partial coverage, modeling the decreasing effective-
ness of an AED as distance to the cardiac arrest increases.
We assume this function is monotonically decreasing with
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distance, with a cutoff at distance r, after which coverage
remains 0. To define this function, we determine a Euclidean
cutoff distance r (Section 4.2.2) and a shape (Section 4.2.3).

4.2.1 Distance metric

In order to calculate coverage, the distance between a cardiac
arrest and candidate locations for AEDs should be calculated
in an efficient manner. While many previous studies used
Euclidean distance [20, 22, 24], Deakin et al. [12] showed
that Euclidean distances underestimated walking distances
by about 30%. Similarly, Fan et al. [50] reported that actual
walking distances were nearly double the straight line dis-
tances. Furthermore, another study found walking distance
multipliers between 1.4 and 1.6 for Toronto andCopenhagen,
respectively [51].

In this study, we denote qt as a multiplier of the Euclidean
distance for each mode of transportation to approximate the
actual distances. Directly measuring distances using tools
like Google Maps API is too costly for the large cardiac
arrest training sets and large number of candidate locations
that we use in our experiments (Section 4.3). Instead, we used
Google Maps API to calculate the distances and expected
travel times for 949 unique HartslagNu alert locations and
their corresponding AED locations, repeated for each mode
of transportation. Table 1 shows the root mean square error
(RMSE) and the mean absolute percentage error (MAPE)
for both Euclidean distances (i.e. qt = 1) and the adjusted
distances using the multipliers qt . Car has the highest multi-
plier, the highest MAPE, and also the lowest impact of using
a multiplier. These findings align with those reported in the
literature [12, 51].

4.2.2 Cutoff point

From 1721 completed HartSlagNu surveys, we found that
22% of the volunteers traveled on foot, 33% by bicycle, and
45%by car.We determined a cutoff distance rt for eachmode
of transportation using the following approach:

1. Estimate average travelling speed st for each mode of
transportation.

2. Define the time interval in which coverage would
decrease from 1 to 0.

3. Convert this time interval to a cutoff distance rt , using st
and qt .

Travel speeds for bicycling and driving were estimated
usingGoogleMaps, as outlined inSection 4.2.1. Forwalking,
we assumed a brisk walking pace of 8 km/h, consistent with
findings from Jonsson et al.[52] in Sweden and previously
used by Chan et al. [20].

Todefine a time interval,we developed a timeline detailing
the activities of a dispatched volunteer responding to a Hart-
slagNu alert. The aim was to determine the average earliest
arrival time at the scene.We estimated the average duration of
each activity based on our data or relevant literature, adjust-
ing for the mode of transportation, which resulted in three
distinct timelines.

• Call-to-alert: Time between calling the emergency num-
ber and the activation of HartslagNu, based on historic
data. (2:18 minutes)

• Preparation: Time for volunteers to process the alert and
prepare.Anadditional 30 seconds is added for those using
bicycles or cars (1:00 or 1:30 minutes)

• Travel-to-AED: Time to travel from the volunteer’s loca-
tion to the assigned AED. Estimated by finding the
averageminimumEuclidean distance between the volun-
teer and theAEDper alert, whichwas 236m, and adjusted
for travel speed st and distance multiplier qt . (

qt236
st

: 2:25
minutes for walking, 1:16 minutes for cycling, and 1:42
minutes for driving)

• Retrieve-AED: Time estimated for retrieving the AED,
considering some are placed in secured cabinets. (0:30
minutes)

• Travel-to-victim: Time to travel from the location of the
AED to the victim, which will vary depending on AED
placement and would therefore be a result of the model.

• Connection: Time to connect an AED to the victim.
Gundry et al. [53] showed that on average profession-
als connected an AED and defibrillated the patient in 67
seconds. We subtracted 23 seconds to remove the shock
part and added 10 seconds for preparation at the scene
based on expert opinions. (0:54 minutes)

• Shock: Time to deliver the first shock after the AED is
connected, obtained from the ARREST data set. (0:23
minutes)

Table 1 Euclidean distance
multipliers qt fit using least
squares for different modes of
transportation

Mode of transportation t qt Avg. Google Maps Euclidean errors Multiplier errors
distance (m) RMSE MAPE RMSE MAPE

Foot 1.383 503 228 28.2% 164 17.1%

Bicycle 1.519 555 289 33.3% 195 21.6%

Car 1.961 742 639 44.1% 503 40.0%
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Fig. 1 Timeline (minutes) of an average volunteer, depending on the mode of transportation. The travel-to-victim time depends on AED locations,
and is here chosen as the maximum value that this activity could take in reference to median EMS shock time of 10:39 minutes

Figure 1 displays the timeline and indicates that the fastest
possible time-to-shock would be 6:51 minutes, by assuming
no travel-to-victim time and transportation bybicycle. In gen-
eral, an AED retrieved by a volunteer only provides value if
it is connected before EMS arrives. Therefore, to determine
a time interval in which the volunteer could add value, we
refer to the median EMS shock time of 10:39 minutes [16]
as the time at which coverage would be 0. Table 2 shows
the travel speeds, the time intervals, and the corresponding
Euclidean cutoff distances for each mode of transportation,
rounded up to the nearest 10m.

4.2.3 Shape

We used a linear coverage decay function for each of the
modes of transportation. Our timeline indicates that the ear-
liest time-to-shock would be 6:51 (t = bicycle, with zero
travel-to-victim time). Although our timeline was based on
averages, in practice, only a small minority of cardiac arrests
receive a shock within 6 minutes, even after introduction of
a volunteer responder system ([15, 54]). The survival curve
of Waalewijn et al. [55] shows that the slight curve between
6:51 and 10:39 minutes (median EMS shock time) can be

Table 2 Parameters used to determine the cutoff points rt for the cov-
erage functions

Mode of travel t st Time interval rt

Foot 8.0 km/h 3:07 minutes 310 meters

Bicycle 16.9 km/h 3:48 minutes 710 meters

Car 16.4 km/h 3:22 minutes 470 meters

well approximated by a linear function. Previous research
by Chan et al. [20] used exponential coverage decay, mim-
icking the exponential decrease in survival as a function of
time. Their assumptions are based on the whole survival
curve, which starts at 0 minutes and may go well beyond
15 minutes. Instead, we focus on the time segment in which
volunteer defibrillation realistically could occur, given the
inherent delays in volunteer response and EMS arrival.

Using the cutoff points rt determined in Table 2, Fig. 2
shows the coverage function for each mode of transporta-

Fig. 2 The piecewise linear coverage function (solid line) obtained by
taking a weighted combination of the coverage functions for each mode
of transportation
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tion and the resulting weighted coverage function f (d) =∑
t∈T wt max{1 − d

rt
, 0}. This function is piecewise linear

with breakpoints at the cutoff distances rt .

4.3 Generating cardiac arrest locations

We transformed historic cardiac arrest locations into a spatial
distribution of cardiac arrest risk by applying bivariate Ker-
nel Density Estimation (KDE) with Gaussian kernels. The
nonparametric method of Botev et al. [56] was used to deter-
mine an appropriate bandwidth. The application of KDE in
AED optimization is validated in the Appendix A. Figure 3
shows the KDE of the municipality of Zaanstad.

After obtaining this spatial distribution of cardiac arrest
risk, we can sample new locations accordingly. To properly
assess the performance of our solutions, we sample a large
training set of cardiac arrest I train and a larger evaluation
set of cardiac arrest Ieval

k . The training set will be input to
the methods, while afterwards the evaluation set is used to
assess ‘out-of-sample’ performance of the chosen locations
to deploy AEDs.

Most studies focusing on modeling spatial risk of out-of-
hospital cardiac arrest (OHCA) employed models that con-
solidated data into spatial cells [42, 57–64]. Spatial analysis
techniques, such as Getis-Ord Gi* statistic, were employed
to identify high-risk census tracts [57–59]. Another strategy
involved the utilization of a Bayesian model incorporating
parameters for spatial (and temporal) heterogeneity, space-
time interactions, and demographic covariates [42, 60–62].
However, usage of discrete models, by assuming uniform
incidence across spatial cells, may lead to abrupt transitions
in incidence rates, both within and around the borders of
these cells. It is evident that the definition of spatial cells
significantly influences the analyses and subsequent results.

KDE offers a notable advantage in that it provides a con-
tinuous estimate without necessitating the delineation of the
study region into predefined spatial cells. Consequently, the
outcomes are not influenced by the boundaries of these spa-
tial cells or administrative areas. KDE applies a continuous
density function at each observed data point with a specified
bandwidth, which is proportional to the standard deviation
of the density function, resulting in an aggregated density

Fig. 3 KDE of the municipality of Zaanstad (Background: c©OpenStreetMap contributors, CC BY-SA)
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function [65]. KDE has been used to estimate the spatial dis-
tribution of cardiac arrest risk before [20, 50, 66–68].

5 Experimental design & results

In this section, we show the results from applying our models
across 29 municipalities. First, Section 5.1 explains the val-
ues chosen for theGRASPparameterα and the determination
of the evaluation set size. Section 5.2 examines how the size
of the problem instance impacts the results, and compares the
performance of BIP, GRASP, and the Greedy algorithm on a
large problem instance. Section 5.3 shows the performance
of GRASP on the relocation problem and Section 5.4 shows
the effect of deploying additional AEDs in addition to the
existing AED locations. Lastly, Section 5.5 explores varia-
tions in the assumed shape of the coverage decay function
by comparing different coverage functions.

Firstwe define howperformance ofAED locations ismea-
sured on the evaluation set of cardiac arrests. Recall that Y j is
1 if location j ∈ J is opened and 0 otherwise. LetY ∗

j indicate
if location j ∈ J is opened in the solution obtained using one
of the solution methods, then J ∗ = { j ∈ J |Y ∗

j = 1} is the
set of locations with an AED. Note that since J = J e ∪ J c,
J ∗ includes existing AEDs if J e 
= ∅. Then we define the
performance measure

zm = 100%

|I evalk |
∑

k∈{1,...,K }

∑

i∈I evalk

max
j∈J∗

∑

t∈T
wt f

t (di j ) (3)

to be the average coverage across allOHCAs in the evaluation
set I evalk , for a municipality m. We multiply the coverage
values by 100% to make results easier to read. The average
performance across allmunicipalities in the data is calculated
by weighting the results of each municipality by its number
of historic cardiac arrests μm

z = 100%
∑

m∈M μm

∑

m∈M
μmzm (4)

The heuristics are implemented in Python 3.9.7 and com-
piled by Numba 0.56.0 (a high performance compiler). The
BIP problem is solved with Gurobi version 9.5.0. The exper-
iments are executed on a Windows laptop with a 1.90 GHz
i7-8665U quad-core processor and 16 GB of RAM. Random
number seeds are fixed for the sake of reproducibility.

5.1 Parameters

5.1.1 GRASP parameters

GRASP requires specifying values for the parameter α for
the restricted candidate list in the construction phase and the

stopping criterion ε for the local search procedure. We take
a sufficiently small ε = 5e−6.

For α, a possible strategy is to use multiple values to find
a greater diversity of solutions and to rely less on parameter
tuning [44]. We aim to use a general scheme that allows for
exploration of the solution space for all our different munici-
palities and problem sizes. Therefore, we initialize α = 0.95
and decrease α by 0.01 at the end of each iteration (until
α = 0), to gradually open up the solution space.

5.1.2 Evaluation set

After finding a solution using the training data, we assess
its performance on an evaluation set of cardiac arrests, rep-
resenting unseen data. The size of the evaluation set is
expressed in years of expected number of cardiac arrests
in that municipality, i.e.

⌈
μm
11

⌉
cardiac arrests per year. By

increasing the size of the evaluation set, we aim to better
approximate the KDE.

Figure 4 shows that as the size of the evaluation set
increases, the cumulative average coverage stabilizes. Cover-
age calculations were performed for existing AED locations
in the municipality of Zaanstad. Given that sampling new
locations and assessing coverage is relatively quick, we con-
servatively set the size of the evaluation set to represent 50000
years of cardiac arrests for all municipalities.

5.2 Problem size

Agranular set of candidate locations allows for finding better
performing solutions. We determined that a 100m distance
between neighboring candidate locations is suitable for prac-
tical applications.A smaller distancemight be overly precise,
given the improbability that an AED can be deployed exactly
at the specified location. We also pre-eliminate candidate
locations that offer no coverage to any historical OHCA inci-
dents.

Since the KDE is approximated by the simulated training
set of locations, it is important to maximize the number of
demand points while keeping the problem tractable. Insuf-
ficient sampling can lead to an inaccurate representation of
the spatial distribution, potentially degrading performance
on the evaluation set.

Table 3 presents the characteristics of the 29 municipal-
ities. The OHCA-to-AED ratio ranges between 1.2 and 50
(IQR: 2.2-6.6), reflecting a diverse set of baseline scenarios.
The number of candidate locations also vary widely, influ-
enced by the municipality’s size and the spatial distribution
of OHCA.
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Fig. 4 Cumulative average
coverage for the size of the
evaluation set (expressed in
years of expected number of
cardiac arrests), calculated
based on existing AEDs in the
municipality of Zaanstad

Table 3 Description of the municipalities

Municipality Existing AEDs Number of OHCAs μm OHCA-to-AED ratio Candidate locations

Aalsmeer 3 99 33.0 5600

Alkmaar 118 392 3.3 14452

Beemster 28 34 1.2 7793

Bergen 42 171 4.1 10010

Castricum 49 150 3.1 6328

Den Helder 50 253 5.1 6351

Diemen 2 100 50.0 2183

Drechterland 26 55 2.1 8047

Edam-Volendam 84 146 1.7 7819

Enkhuizen 24 76 3.2 2381

Heerhugowaard 39 181 4.6 5525

Heiloo 16 97 6.1 4103

Hollands Kroon 80 199 2.5 30387

Hoorn 84 222 2.6 4595

Koggenland 56 77 1.4 9680

Landsmeer 5 32 6.4 3293

Langedijk 23 65 2.8 5915

Medemblik 80 167 2.1 16188

Oostzaan 1 40 40.0 2195

Opmeer 26 49 1.9 6582

Ouder-Amstel 2 62 31.0 5211

Purmerend 47 312 6.6 4237

Schagen 91 209 2.3 21602

Stede Broec 16 62 3.9 2276

Texel 65 108 1.7 16603

Uithoorn 7 105 15.0 3601

Waterland 35 76 2.2 8571

Wormerland 6 74 12.3 5749

Zaanstad 44 616 14.0 11989

Candidate locations are based on a 100m uniform grid. Number of OHCAs are from 2006 to 2016
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5.2.1 Heuristics compared to exact method

To compare the heuristicswith theBIP,we first solve the relo-
cation problem for the municipality with the largest number
of candidate locations, which according to Table 3 is Hol-
lands Kroon. In addition, our aim was to determine at what
point the memory requirements for solving the BIP problem
exceed the available computer memory limits. We apply the
heuristics and solve the BIP problem for identical problem
instances. Only the best solution GRASP found for the train-
ing set is evaluated on the evaluation set.

For each problem instance, a time limit of 24 hours
(wall-clock time) was imposed for solving the BIP problem.
GRASP was allotted 2 hours for smaller instances (5000,
10000, 20000) and 6 hours for larger ones (30000, 40000,
50000). Gurobi was able to solve the BIP problem for an
instance of 30000 demand points before running into mem-
ory errors, but with a 0.21% optimality gap (Table 4). Even
with more computer memory, it is reasonable to assume
that computation time would explode for even larger prob-
lem instances, as CPU time was nearly 42 hours for 30000
demand points.

We observe that the performance of the solutions found
using GRASP is very similar to those found using the BIP,
on both the training and evaluation set (Table 4). GRASP’s
optimality gaps ( objBIP−objGRASP

objBIP
%) on the training sets were

0.16%, 0.19%, 0.26%, and 0.18% for 5000, 10000, 20000,
and 30000 demand points, respectively. For the largest prob-
lem sizeGurobi was able to solve the BIP problem, i.e. 30000
demand points, GRASP found a solutionwith evaluation per-

formance of 45.31% compared to 45.34% obtained from the
BIP problem.

The results illustrate that increasing the number of demand
points is important. The difference between evaluation set
coverage of 10000 points (45.07%, BIP) and 50000 points
(45.41%, GRASP) is substantial (Table 4). We stopped
increasing demand points after 50000 because improvements
in the evaluation performance became sufficiently small and
the iterations of GRASP become slower. Also, we already
surpassed the largest problem instance for which Gurobi
was able to solve the BIP problem. Note that average train-
ing set coverage tends to decrease as the training set size
increases, because there are more demand points to consider
in optimizing the locations. As the number of demand points
increases, the gap between training and evaluation perfor-
mance decreases.

While the BIP andGRASP led to substantially better solu-
tions thanGreedy, Greedy’s performance was remarkable for
a simple and very fast heuristic. Even the largest problem
instance with 50000 demand points took less than 5 seconds
of CPU time. In addition, Greedy’s performance gives per-
spective to the improvement GRASP makes.

In Sections 5.3 and 5.4we analyze the relocation and addi-
tion of AEDs for the 29 municipalities with solutions found
using GRASP. We use GRASP because the results in Table 4
show that GRASP can consistently find solutions that are
very close to the BIP problems’ solutions, in much less time.
In addition we were able to solve a larger problem instance,
increasing the potential of solutions, thus from now on we
use 50000 demand points for each municipality.

Table 4 Comparison of the
performance of BIP, GRASP,
and Greedy in problem instances
with 30387 candidate locations
and varying number of demand
points (Hollands Kroon)

Method Demand points Training set Evaluation set CPU time (hr) Optimality gap

BIP 5000 47.34% 44.77% 0.51 <0.01%

10000 46.86% 45.07% 2.93 <0.01%

20000 46.30% 45.28% 28.07 <0.01%

30000 46.05% 45.34% 41.81 0.21%

40000 Memory error

50000 Memory error

GRASP 5000 47.27% 44.73% 1.96

10000 46.77% 45.05% 2.00

20000 46.18% 45.30% 2.00

30000 45.96% 45.31% 1.90

40000 46.04% 45.39% 1.88

50000 45.78% 45.41% 1.82

Greedy 5000 46.19% 43.93% 6.42e-4

10000 46.08% 44.47% 2.21e-4

20000 45.34% 44.68% 4.99e-4

30000 45.29% 44.74% 7.55e-4

40000 45.31% 44.77% 9.90e-4

50000 45.07% 44.79% 1.25e-3
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5.3 Relocating existing AEDs

In this section we analyze the relocation problem using
GRASP (Table 5). For each municipality, we generated
a problem instance with 50000 cardiac arrests and 100m
between neighboring candidate locations. GRASP was run
for 2 hours. Current performance, relocation performance,
and coverage per year in Table 5 are all measured on the
evaluation set. Coverage per year is calculated by sampling
50000new sets of cardiac arrestswith their size sampled from
the empirical distribution of the number of cardiac arrests in
a year.

From Table 5 we observe that the performance of the
existing AED locations vary greatly across municipalities.
Current coverage ranges from as low as 6.27% (Aalsmeer, 3
AEDs) to as high as 59.63% (Edam-Volendam, 84 AEDs),

largely attributable to the number of AEDs. Interestingly,
municipalities with comparable numbers of AEDs and
OHCAs can exhibit significant differences in performance.
For instance, Edam-Volendam and Medemblik have cov-
erage of 59.63% and 40.05%, respectively, despite similar
OHCA-to-AED ratios of 1.7 and 2.1.

When relocating all the AEDs within a municipality,
the weighted average performance across municipalities
increased from 36.14% to 49.53%. The extent of improve-
ment varied depending on the quality of the existing loca-
tions, the number of AEDs, and the spatial distribution of
cardiac arrests. It is important to contextualize these gains,
particularly in areas where baseline performancewas already
high, making significant improvements more challenging.

The greatest relative improvements were observed in
Zaanstad (175.5%, 44 AEDs), Uithoorn (136.6%, 7 AEDs),

Table 5 Current and relocation performance for each municipality on the evaluation set

Municipality Current Relocation Relative CPU time Coverage per year percentile
performance performance improvement (hr) 10th 25th 50th 75th 90th

Aalsmeer 6.27% 13.49% 115.0% 2.04 3.98% 7.85% 12.71% 18.18% 23.69%

Alkmaar 51.17% 60.80% 18.8% 1.36 56.20% 58.45% 60.90% 63.26% 65.30%

Beemster 34.63% 49.35% 42.5% 1.96 28.27% 39.47% 50.11% 60.28% 69.57%

Bergen 41.14% 49.31% 19.9% 2.06 40.91% 45.00% 49.39% 53.75% 57.60%

Castricum 49.21% 59.36% 20.6% 1.94 51.91% 55.66% 59.57% 63.34% 66.66%

Den Helder 43.54% 55.05% 26.5% 2.08 48.83% 51.89% 55.15% 58.24% 60.99%

Diemen 16.08% 23.18% 44.1% 2.04 12.04% 16.94% 22.68% 28.86% 34.74%

Drechterland 38.92% 54.01% 38.8% 1.99 39.32% 46.87% 54.47% 61.84% 68.51%

Edam-Volendam 59.63% 70.33% 17.9% 2.10 64.10% 67.34% 70.66% 73.73% 76.34%

Enkhuizen 51.71% 60.96% 17.9% 1.95 49.77% 55.72% 61.49% 66.77% 71.42%

Heerhugowaard 38.15% 51.42% 34.8% 1.75 43.88% 47.51% 51.50% 55.38% 58.77%

Heiloo 35.99% 43.98% 22.2% 1.94 31.72% 37.82% 44.12% 50.29% 56.07%

Hollands Kroon 32.65% 45.41% 39.1% 1.81 36.75% 40.92% 45.46% 49.96% 53.96%

Hoorn 53.69% 65.00% 21.1% 2.14 60.05% 62.49% 65.13% 67.60% 69.78%

Koggenland 40.88% 63.00% 54.1% 2.00 52.47% 57.82% 63.46% 68.72% 73.20%

Landsmeer 22.41% 31.32% 39.8% 2.03 10.06% 20.28% 30.74% 41.70% 52.19%

Langedijk 38.13% 48.01% 25.9% 2.01 33.21% 40.63% 48.36% 55.77% 62.81%

Medemblik 40.05% 53.75% 34.2% 2.03 45.47% 49.61% 53.95% 58.18% 62.01%

Oostzaan 16.57% 16.76% 1.2% 2.04 2.06% 6.47% 14.67% 24.25% 33.90%

Opmeer 42.13% 51.38% 22.0% 2.03 34.10% 43.32% 51.98% 60.28% 68.45%

Ouder-Amstel 8.02% 15.93% 98.6% 2.03 3.08% 8.05% 14.62% 22.13% 29.74%

Purmerend 47.31% 55.97% 18.3% 2.05 50.92% 53.36% 55.99% 58.63% 60.96%

Schagen 38.27% 47.57% 24.3% 2.01 39.08% 43.21% 47.69% 52.09% 55.98%

Stede Broec 36.77% 49.48% 34.6% 1.99 35.90% 42.82% 49.74% 56.42% 62.66%

Texel 38.39% 50.99% 32.8% 2.06 39.96% 45.43% 51.17% 56.80% 61.92%

Uithoorn 15.47% 36.60% 136.6% 2.04 25.02% 30.52% 36.59% 42.62% 48.31%

Waterland 38.61% 54.83% 42.0% 1.91 42.77% 48.96% 55.13% 61.10% 66.73%

Wormerland 14.74% 32.11% 117.8% 2.04 16.87% 24.13% 31.83% 39.92% 47.62%

Zaanstad 15.02% 41.38% 175.5% 1.80 36.95% 39.06% 41.40% 43.70% 45.78%

Results are obtained using GRASP with 50000 demand points and 100m candidate location grid, with a wall time limit of 2 hours
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Fig. 5 Existing AEDs (A) and relocated AEDs using GRASP (B) for the municipality of Zaanstad (Background: c©OpenStreetMap contributors,
CC BY-SA)

andWormerland (117.8%, 6AEDs). InZaanstad, the existing
AED placements did not align well with OHCA occurrences
(Fig. 5). Relocated AEDs provided better coverage, espe-
cially in hotspots, and were more evenly distributed across
themunicipality (Fig. 5).Additionally, the relocation dramat-
ically improved the proximity of AEDs to OHCAs. Initially,
many OHCAs were over 1 km away from an AED, but after
relocation, over half were within 400m (Fig. 6).

Oostzaan saw the least improvement, primarily because it
only has one AED. Purmerend achieved a relative improve-
ment of 18.3%, with 47 AEDs, suggesting that its existing
AED locations are already quite effective compared to those
in other municipalities.

Additionally, the variation in coverage per year is consid-
erable, as indicated by the corresponding percentiles. While

Fig. 6 Distance distribution to nearest AED in Zaanstad for current
AED locations (left bars) and for relocated AEDs (right bars), calcu-
lated for OHCAs in the evaluation set

deploying more AEDs reduces this variability, the uncer-
tainty associated with the unpredictable locations of future
OHCAs remains a significant challenge.

5.4 Deploying additional AEDs

Relocating all existing AEDs provides an indication of
the effectiveness of current locations and establishes what
improvements are possiblewith existing resources.However,
since many AEDs are privately owned but made publicly
available, actual relocation is often not feasible. Conse-
quently, we explored the impact of deploying additional
AEDs while keeping the existing AEDs where they are. We
ranGRASP for half an hour to place 5 or 10 additional AEDs,
one hour for 20 AEDs, and two hours for 40 AEDs.

Strategic placement of just 5 or 10 additional AEDs can
significantly improve baseline coverage in most munici-
palities (see Table 6). For instance, Fig. 7 illustrates how
placing 10 additional AEDs in Zaanstad, in addition to
the 44 currently placed, effectively doubles the coverage.
In municipalities like Alkmaar or Edam-Volendam, where
coverage is already high, the relative improvement from
additional AEDs is smaller. Notably, while both Alkmaar
and Enkhuizen started with similar coverage levels, adding
40 AEDs increased their coverage to 61.46% and 73.65%,
respectively.

Figure 8 shows the marginal benefit curves for adding
AEDs in various municipalities, as determined by GRASP.
These curves illustrate that even when starting from a simi-
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Table 6 Performance of adding
AEDs in addition to existing
AEDs

Number of additional AEDs
Municipality 0 5 10 20 40

Aalsmeer 6.27% 23.43% 32.60% 43.69% 55.16%

Alkmaar 51.17% 53.62% 55.21% 57.74% 61.46%

Beemster 34.63% 41.72% 46.96% 54.03% 60.72%

Bergen 41.14% 46.21% 49.03% 53.44% 59.06%

Castricum 49.21% 53.98% 57.10% 61.41% 66.77%

Den Helder 43.54% 48.28% 51.21% 55.68% 61.63%

Diemen 16.08% 43.81% 53.55% 63.61% 72.54%

Drechterland 38.92% 46.23% 51.38% 59.85% 67.09%

Edam-Volendam 59.63% 62.96% 64.72% 67.72% 71.70%

Enkhuizen 51.71% 59.27% 62.96% 68.11% 73.65%

Heerhugowaard 38.15% 45.20% 49.09% 54.42% 61.11%

Heiloo 35.99% 45.22% 50.68% 57.28% 64.49%

Hollands Kroon 32.65% 36.26% 38.43% 41.82% 46.49%

Hoorn 53.69% 57.25% 59.55% 62.97% 67.26%

Koggenland 40.88% 46.41% 50.30% 56.27% 64.09%

Landsmeer 22.41% 38.81% 47.37% 57.02% 66.54%

Langedijk 38.13% 46.17% 50.29% 55.68% 63.05%

Medemblik 40.05% 44.45% 47.09% 50.62% 55.59%

Oostzaan 16.57% 46.07% 57.27% 67.21% 75.44%

Opmeer 42.13% 47.42% 51.60% 57.93% 64.49%

Ouder-Amstel 8.02% 30.90% 40.88% 51.67% 62.31%

Purmerend 47.31% 52.11% 55.15% 59.16% 64.76%

Schagen 38.27% 40.79% 42.53% 45.30% 49.52%

Stede Broec 36.77% 49.05% 54.86% 61.70% 69.14%

Texel 38.39% 41.80% 44.25% 48.01% 54.08%

Uithoorn 15.47% 36.75% 48.27% 57.77% 67.70%

Waterland 38.61% 46.39% 51.35% 57.18% 63.91%

Wormerland 14.74% 38.04% 48.02% 59.09% 69.62%

Zaanstad 15.02% 24.09% 30.06% 37.55% 47.18%

Overall 36.14% 43.69% 47.92% 53.31% 59.87%

Results were obtained using GRASP with 50000 demand points and 100m candidate location grid

lar level of performance, the impact of deploying the same
number of additional AEDs can vary significantly between
municipalities. The crosses on the curves represent the per-
formance achieved by relocating existing AEDs, indicating
the number of additional AEDs required to match this relo-
cation performance. Overall, approximately 428 additional
AEDs (representing a 37% increase) would be necessary
to achieve equivalent performance across all municipalities
through additions alone.

5.5 Sensitivity analysis of coverage decay function

Weassessed the impact of different coverage function shapes,
including a binary, a weighted exponential, and a weighted
sigmoid function, alongside the piecewise linear function
detailed in Section 4 (see Fig. 9). For the binary func-

tion, we used a cutoff distance of 310m (from Table 2),
because previous studies often only considered pedestrians
for binary coverage. We defined the exponential coverage
function for each mode of transportation to be e−βtd, with
d being the distance in meters. The coefficients βwalking =
0.02, βcycling = 0.0085, and βdriving = 0.0012 are cho-
sen so that the coverage is close to 0 at the cutoff distance
rt . The weighted exponential coverage function is then
fexponential(d) = ∑

t∈T wte−βtd. The sigmoid function for
each mode of transportation t is defined as 1

1+exp(12rt−6)
and the weighted sigmoid coverage function fsigmoid(d) =∑

t∈T
wt

1+exp(12rt−6) .
For each coverage function, GRASP was run for 2 hours

to obtain relocated AED locations in Zaanstad. Afterwards,
the performance of these AED locations was evaluated on
the evaluation set. Table 7 presents the results when each
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Fig. 7 Locations of existing
AEDs and proposed locations of
10 additional AEDs (GRASP)
visualized on top of the KDE of
the municipality of Zaanstad
(Background: c©OpenStreetMap
contributors, CC BY-SA)

Fig. 8 The benefits of deploying additionalAEDs in variousmunicipalities. The solid line indicates theweighted average across all 29municipalities.
The crosses indicate how many additional AEDs are necessary to match performance of relocating all existing ones
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Fig. 9 Coverage functions used for sensitivity analysis. Piecewise
linear: fpl(d) = ∑

t∈T wt max{1 − d
rt

, 0}. Sigmoid: fsigmoid(d) =
∑

t∈T
wt

1+exp(12rt−6) . Binary: 1 between 0m and 310m, 0 other-

wise. Exponential: fexponential(d) = ∑
t∈T wte−βtd with coefficients

βwalking = 0.02, βcycling = 0.0085, and βdriving = 0.0012

coverage function is assumed to be correct, versus the actual
performancewhen a different function represents reality.Val-
ues along the diagonal represent scenarioswhere the assumed
coverage functionmatches the true underlying shape, serving
as reference points for comparison.

We based our assumption of linear coverage functions on
the segment of the OHCA survival curve where volunteer
defibrillation is most likely. If any of the four coverage func-
tions could be true however, the sigmoid shape emerges as the
most robust choice, performing well across all other cover-
age scenarios, though its advantage over the piecewise linear
function is minimal. The exponential function, characterized
by a rapid decay in coverage values, yields significantly lower
average coverage in comparison.

6 Discussion

We modeled an AED location problem with volunteer
responders utilizing different modes of transportation as an

MCLPwithmultiple decaying coverage functions.A realistic
coverage function was developed for each mode of trans-
portation. The BIP model was compared with two heuristics,
Greedy and GRASP. The results showed that GRASP can
obtain solutionswith performance close to the BIP problem’s
solution, in significantly less time. For the largest problem
instance Gurobi could solve the BIP problem, the heuristics
obtained a solution that performs within 0.18% of BIP prob-
lem’s solution in 88% less time. While Gurobi would run
into computer memory issues for larger problem instances,
GRASP was able to solve them.

The methodology was applied across 29 different munici-
palities in theNetherlands, encompassing large problemsizes
with up to 50000 demand points and between 2183 and 30387
potential installation sites. Results showed that both baseline
performance of existing AEDs and relocation potential differ
widely. Relative improvements ranged from1.2% to 175.5%.
Moreover, by deploying just 5 to 10 additional AEDs sub-
stantial improvements in coverage can already be obtained.

6.1 Heuristics

Although the Greedy algorithm already has given good solu-
tions that may serve as a lower bound, GRASP and the BIP
formulation led to solutions that were substantially better,
justifying the additional complexity. On both the training
and evaluation set, the performance of the BIP formulation’s
and GRASP’s solution was similar and in practice indistin-
guishable. Despite GRASP not guaranteeing (near-)optimal
solutions, it consistently achieved results very close to opti-
mal across the tested instances.

GRASP requires specification of the parameterα. Cycling
through a set of α values is one approach; another is using
reactive GRASP, which adapts α based on past performance.
However, since the number of iterations may be low for large
problem instances, we opted not to use reactive GRASP.

The performance of GRASP is influenced by several fac-
tors. The computation time of the local search procedure
(steepest ascent) scales with the number of AEDs. Truncated
coverage functions can improve GRASP’s performance, as
fewer values need to be updated following a swap during the
local search.

Table 7 Performance of AED locations obtained by an assumed coverage function, measured by the true coverage function

Coverage function True
Piecewise linear Sigmoid Binary Exponential

Assumed Piecewise linear 41.34% (100.00%) 43.03% (99.23%) 59.56% (98.42%) 9.90% (95.70%)

Sigmoid 41.11% (99.46%) 43.36% (100.00%) 59.68% (98.62%) 10.14% (98.05%)

Binary 40.59% (98.20%) 42.53% (98.09%) 60.52% (100.00%) 9.70% (93.76%)

Exponential 38.99% (94.32%) 41.80% (96.39%) 55.16% (91.15%) 10.35% (100.00%)

The percentages in parentheses indicate the objective value of the assumed coverage function relative to the objective value when the assumed and
true coverage functions are the same
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6.2 Distancemetric &mode of transportation

Our chosen distance measure is an approximation, which
may have a large error compared to the actual distance.
Measuring actual distances for each mode of transportation
ourselves is infeasible, and using distance approximations
from services like Google maps would be expensive. How-
ever, even aftermultiplying Euclidean distances, the absolute
error compared to the actual distance remained large. It may
thus be worthwhile to invest in better distance approxima-
tions or to seek other GIS solutions to obtain more realistic
results. Our methodology can accommodate either of these
methods.

Although still an approximation, Euclidean distance
multipliers performed better than the Minkowski distance
(
∑n

i=1 |xi − yi |)1/p for any p ≥ 1 with regard to errors.
However, the distance multipliers are context-specific. For
instance, our case study demonstrated cycling as the most
effective mode of transport for volunteers in the Netherlands,
which may not be the case in countries with less developed
bicycle infrastructure. The Dutch VRS HartslagNu recom-
mends retrieving an AED either on foot or by bike.

In practice, choice of mode of transportation may depend
on total distance and on the location of the OHCA/AED/
volunteer. With a small data set of volunteers, we investi-
gated the relationship between distance and chosen mode of
transportation, but results remained largely inconclusive.

We note that our model is general and could incorporate
the likelihood of different transportation modes based on the
location of the OHCA and the AED candidate location. To
illustrate, we could use ci j = ∑

t∈T wt
i j f

t (di j ), where wt
i j

represents the probability of choosing mode of transporta-
tion, depending on the location of OHCA i and an AED at
location j. To calculate wti j , one could use a multinomial
logit model, a type of discrete choice model used to predict
selections fromamongdiscrete alternatives [69]. In our appli-
cation, the choice set would be {walking, cycling, driving}.
A simple model could try to infer the relationship between
the transportation choice and the distance between OHCA i
and AED location j. Revealed preferences from volunteers
could be obtained from questionnaire and location data.

6.3 Coverage function

Previous studies used 100mor 176.25mbinary coverage [22–
24, 41, 49], or used an exponential coverage decay function
[20]. These studies only considered unguided bystanders,
who are often unsuccessful in defibrillation [14] due to the
unavailability of nearby AEDs. Our model enhances realism
by using a coverage function based on the timeline of events
in a volunteer response, leveraging the fact that volunteers
have received basic life support training and are informed

about both the AEDs’ and the cardiac arrest’s locations,
enabling them to cover greater distances.

While the the coverage decay function’s shape can take
different forms, our sensitivity analysis revealed that a linear
function provides solutions that also perform well on other
function shapes. We based our choice of linear shape on the
shape of survival functions in the time interval that volun-
teers will likely arrive with an AED. Otherwise, the sigmoid
function emerges as the most robust option, closely followed
by the linear function.

Interpreting coverage values can be challenging due to the
dependency on the chosen function. An exponential function
typically results in low average coverage, making it diffi-
cult to achieve perceived high coverage levels. Establishing
a coverage target or standard thus becomes a complex task.
Decisions on the number of AEDs to deploy can be guided
by evaluating their marginal benefit (Fig. 8) or by examining
the distribution of distances to the nearest AED (Fig. 6).

6.4 Application to practice

In practice, optimizing AED locations presents substantial
challenges, particularly in the absence of a central authority
or decision maker regarding AED management and fund-
ing. In the Netherlands, HartslagNu partners, which are
volunteer-run local foundations, play a crucial role. These
partners not only offer resuscitation training but also work
to raise public awareness and raise funds to purchase AEDs.
Our model and heuristics could assist these organizations in
assessing the quality of existing AED placements and iden-
tifying locations for new AEDs.

Relocating AEDs is often impractical due to private
ownership. Nonetheless, it seems financially worthwhile to
identify which AEDs could be relocated, if there are any at
all. Additionally, since AEDs are generally not moved once
placed at a location, it would be more efficient to deploy
AEDs in larger batches. If placed only one at a time, the
Greedy algorithm gives the optimal location.

The locations chosen to deploy AEDs from the candi-
date locations may be infeasible in reality. However, minor
adjustments to nearby feasible locations are generally accept-
able. An alternative strategy is to compile a list of all public
and residential buildings, as done by Tierney et al. [22], and
align our candidate locationswith the nearest viable building.
Regardless of themethod, ensuring the visibility and accessi-
bility of AEDs, including proper signage [70], is crucial and
takes precedence over strict adherence to the exact location
suggested by the model.

Annual coverage may fluctuate due to stochastic locations
of the OHCA (Table 4). This has implications for the eval-
uation of the impact of AED locations. To obtain reliable
measurements, several years of data may be needed.
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6.5 Limitations

Wemodeled cardiac arrest risk using Kernel Density Estima-
tion (KDE) to approximate its unknown spatial probability
distribution. Supported by existing literature, we assumed
that this risk remains stable over both space and time.

Our analysis included only AEDs registered in the Hart-
slagNu database.While more AEDs, especially on-site units,
likely exist, their typically low usage rates suggest that
excluding them does not significantly impact the effective-
ness of optimizing additional AED locations. This implies
that actual AED coverage may be more extensive than rep-
resented in our study.

The temporal availability of AEDs was not factored into
ourmodel due to the lack of reliable data.AEDswithin shops,
buildings, or private properties may be inaccessible after or
before a certain time. We assume any additional AEDs will
be placed in outdoor cabinets to provide 24/7 accessibility.

6.6 Future directions

The locations models can be expanded by incorporating
the location and behavior of volunteer responders in the
response to an emergency. The extended models can iden-
tify areas lacking sufficient volunteer coverage, especially
in regions with high cardiac arrest risk, and help quantify
potential improvements. Data on volunteer responses from
a VRS can be used to predict response rates and modes of
transportation. Furthermore, the duration of activities in the
timeline of a volunteer’s response could be modelled as ran-
dom variables. Moreover, optimizing for health outcomes
like quality-adjusted life years would be preferred over opti-
mizing coverage.

7 Conclusion

This study proposes an MCLP model for optimizing AED
locations, incorporating volunteer responders, various trans-
portation modes, and multiple decaying coverage functions.
Real data from 29 municipalities in the Netherlands are used
to demonstrate the effectiveness of the proposed method.
Results shows that existing AED locations are suboptimal,
and strategically placing a small of number of additional
AEDs can substantially improve coverage. Strategic place-
ment of AEDs will both reduce the time to AED connection
and increase the number of emergencies that have at least
one AED in range. With the results of this research, we hope
to increase the overall effectiveness of VRS.

Appendix A: Validation of KDE

This appendix describes an additional experiment to provide
validation for the application of KDE in AED optimiza-
tion. In repeated 10-fold cross-validation (CV), the training
data was used to find an AED solution and the unseen data
fold was used to evaluate the respective solution. Then, two
approaches were compared:

1. Historic data approach, where the training data was used
as direct input to the optimization model

2. KDE approach, where KDE was performed on the train-
ing data and then a large sample from the KDEwas taken
as input to the optimization model (i.e. the approach in
this paper)

We aimed to compare both approaches fairly and there-
fore used the BIP formulation instead of the heuristics to
guarantee optimal solutions. Let R denote the number of
repetitions of K-fold cross-validation, I denote the set of
all OHCAs and Vrk ⊂ I denote the subset of OHCAs in
test fold k ∈ [K ] of repetition r ∈ [R]. Let Yrk be the
vector of AED locations obtained from the solution of the
BIP without any knowledge of OHCAs Vrk . OHCAs I \ Vrk
were used as input to the BIP directly or used to perform
KDE on. The average test set coverage is then defined as
ζrk = 100%

|Vrk |
∑

i∈Vrk max j∈Yrk ci j , where ci j are the coverage
values as defined in Sections 3 and 4. The overall outcome of
this experiment is calculated as the average coverage across
all test folds: ζ = 1

RK

∑
r∈|R|

∑
k∈|K | ζrk .

In this experiment, 50 repetitions of 10-fold CV were per-
formed and a grid of 200m between candidate locations was
used. 20,000 OHCAs locations were sampled each time for
the KDE approach. Lastly, a permutation test was used to test
whether the difference in performance of the two approaches
was statistically significant.

While we presented 29 real-life problem instances in
this study, conducting KDE validation for all instances was
computationally infeasible. Therefore, we selected a repre-
sentative sample of five municipalities.

Table 8 shows that for Zaanstad, Den Helder, and Hol-
lands Kroon the KDE approach led to substantially higher
coverage than the historic data approach and we reject the
null hypothesis that the mean difference is equal to 0 at a
significance level of 0.05. While for Texel and Drechterland
the KDE approach seems to perform worse and better than
the historic data approach, respectively, there is no evidence
that the two approaches are not equal (p-values 0.193 and
0.591, respectively).
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Table 8 Comparison of using historic data and KDE as input to AED optimization in cross-validation

Municipality Mean coverage ζ on test folds:
Historic data approach

Mean coverage ζ on test folds:
KDE approach

Mean difference (KDE -
historic)

p-value

Zaanstad 42.08% 42.50% 0.42% 0.036

Den Helder 55.32% 57.01% 1.69% p<0.001

Hollands Kroon 43.10% 45.40% 2.30% p<0.001

Texel 46.44% 45.73% -0.71% 0.193

Drechterland 43.67% 44.09% 0.42% 0.591
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