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Review

Introduction

According to epidemiological studies, over 20% of adults 
globally suffer from chronic visceral pain, making it one of the 
leading reasons for seeking medical care. Visceral pain arises 
from nociception in the visceral organs of the thoracic or 
abdominal cavity and is distinct from somatic pain.1–3 It is 
commonly associated with conditions such as acute or chronic 
pancreatitis, gallstones, and gastrointestinal (GI) disorders. 
Pain related to GI issues like inflammatory bowel disease 
(IBD), irritable bowel syndrome (IBS), functional dyspepsia 
(FD), and other digestive disorders poses significant chal-
lenges for both patients and healthcare providers.4,5 The mech-
anisms behind chronic visceral pain remain largely unknown, 
with symptoms that are often difficult to localize and describe, 
complicating both diagnosis and treatment. Furthermore, indi-
viduals suffering from chronic visceral pain frequently experi-
ence comorbid emotional, sleep, and cognitive disturbances, 
including anxiety, depression, fear, insomnia, and cognitive 
impairment.6,7 These issues can heighten the perception of 

pain, creating a vicious cycle that drives up healthcare costs 
and severely impacts quality of life.7–10 For example, IBS 
alone accounts for more than $350 million in direct healthcare 
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Abstract
Chronic visceral pain stems from internal organs and is frequently associated with functional gastrointestinal disorders, like 
irritable bowel syndrome (IBS). Since the underlying mechanisms of visceral pain remain largely unclear, clinical management 
is often limited and ineffective. Comprehensive research into the pathogenesis of visceral pain, along with the development of 
personalized therapeutic strategies, is crucial for advancing treatment options. Studies suggest that imbalances in purinergic 
receptors and neural circuit function are closely linked to the onset of visceral pain. In this review, we will explore the etiology 
and pathological mechanisms underlying visceral pain, with a focus on ion channels, epigenetic factors, and neural circuits, 
using functional gastrointestinal disorders as case studies. Finally, we will summarize and evaluate emerging treatments and 
potential initiatives aimed at managing visceral pain.
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expenses annually in the United States.11 The current treat-
ment for visceral pain mainly involves traditional medications 
like non-steroidal anti-inflammatory drugs (NSAIDs) and opi-
oids.12 However, the ongoing opioid crisis further complicates 
pain management.13 Therefore, there is an urgent demand to 
investigate the underlying mechanisms of visceral pain and 
develop novel analgesic drugs and treatment strategies.

The pathological mechanisms of chronic visceral pain are 
highly diverse, involving multiple processes in both the 
peripheral and central nervous systems.2 For instance, the 
upregulation of P2X3R expression in the dorsal root gan-
glion (DRG) and 5-HT2B expression in the thalamic nucleus 
reuniens (Re) has been shown to contribute to visceral pain 
behavior.14,15 In this review, we will summarize recent 
advances in understanding chronic visceral pain, focusing on 
ion channels, epigenetic factors, and neural circuits. We will 
also explore potential clinical diagnostic and therapeutic 
strategies, with the goal of offering new insights into drug 
development and treatments for chronic visceral pain.

Ion channels in chronic visceral pain

Ion channels are crucial in the development and persistence 
of chronic visceral pain, they modulate pain perception by 
regulating neuronal excitability and signal transmission. Key 
ion channels involved in chronic visceral pain include ligand-
gated ion channels, transient receptor potential (TRP) chan-
nels, potassium channels, and various regulatory mechanisms 
governing these channels.

Purine and pyrimidine receptors (P receptors) are classi-
fied into two main categories: P1 and P2 receptors.16,17 P1 
receptors, also known as adenosine receptors, are G-protein-
coupled receptors, while P2 receptors are divided into two 
subgroups: P2X and P2Y receptors. P2X receptors function 
as ligand-gated ion channels, whereas P2Y receptors are also 
G-protein-coupled. ATP plays a significant role in chronic 
visceral pain pathophysiology.14,18,19 Burnstock20 proposed 
that epithelial cells in tubular and sac-like organs release ATP 
in response to distension, which activates P2X3 receptors in 
the submucosal nerve plexus, transmitting pain signals to the 
central nervous system. Galligan and Bertrand21 demon-
strated that ATP induces synaptic potentials in enteric neu-
rons, while Ferguson et al.22 showed that increased bladder 
hydrostatic pressure enhances ATP release from bladder epi-
thelial cells. This effect is inhibited by the P2 receptor antag-
onist suramin, further supporting ATP’s involvement in 
visceral pain signaling. Immunoreactivity of the P2X3 recep-
tor has been observed in rat pelvic ganglion neurons, and 
P2X2 and P2X3 receptor immunoreactivities have been 
detected in guinea pig pelvic ganglion neurons.23 Among 
P2X receptor subtypes, P2X4 homomers and P2X2/3 het-
eromers are thought to play a dominant role in chronic vis-
ceral pain.24,25 Moreover, celiac ganglion neurons, which 
contain vagal afferent cell bodies, express functional P2X2 
and P2X2/3 receptors, contributing to cardiovascular regula-
tion and the transmission of angina.23

TRP channels are a class of non-selective cation channels 
located on cell and intracellular organelle membranes.26–30 The 
TRP channel family is a superfamily, and current research 
identifies seven subtypes. The TRP channel family is a large 
superfamily, with seven identified subtypes. These channels 
are involved in a variety of signaling functions, including 
maintaining ionic balance, regulating intracellular organelles 
and stroke, and modulating sensory transmission related to 
pain, itch, temperature, taste, and vision.29,31–39 Subfamilies of 
TRP channels, such as TRPV, TRPA, TRPC, and TRPM, have 
been shown to contribute to visceral pain signaling.40 In line 
with spinal afferent-mediated pain, most TRP channels are 
associated with pain perception. Approximately 75% of 
chronic visceral afferent fibers express TRPV1, which is acti-
vated by capsaicin, suggesting that TRPV1 plays a dominant 
role in visceral afferent signaling and chronic visceral pain.41 
TRPA1 and TRPV1 channels coexist within visceral nocicep-
tive fibers, working together to activate and modulate pain 
pathways. It has been confirmed that intestinal sensory neu-
rons express multiple TRP channels. Research indicates that 
TRPA1, TRPV1, TRPV4, and TRPM8 may be co-expressed 
in the same neurons, acting synergistically in the nociceptive 
response. For example, in TRPA1 knockout mice, capsaicin 
no longer desensitizes colonic afferents, implying that TRPA1 
channels are involved in the mechanical sensitivity mediated 
by TRPV1.42 Furthermore, studies show that nociceptor acti-
vation and chronic pancreatitis pain are driven by nerve growth 
factor, which upregulates TRPV1 channels.43 Neurons 
expressing TRPV1 can exacerbate experimental pancreatitis 
induced by various stimuli.44 However, TRPV1 knockout 
mice are still affected, suggesting that overlapping mecha-
nisms exist within these neurons and other TRP channels may 
also play significant roles. Encouragingly, drugs targeting 
TRPV1 such as capsaicin patch (8%) and capsaicin creams 
have been successfully used in the clinic with promising anal-
gesic results.45,46 Interestingly, the antagonist of TRPV1, PAC-
14028, was found to have favorable therapeutic effects on 
itch,47,48 suggesting that TRPV1-related drugs have great 
translational potential for both pain and itch.

Acid-sensing ion channels (ASICs) are trimeric protein 
complexes consisting of combinations of different subunits 
and are non-selective cation channels that are mainly 
expressed in the peripheral and central nervous systems.49,50 
Previous studies have shown that ASIC1 is expressed at high 
levels in the spinal cord dorsal horn in visceral pain rats, and 
inhibition of ASIC1 significantly alleviated visceral pain 
behaviors, suggesting that ASIC1 mediates the development 
of visceral pain.51,52 Increasing evidence confirms that Piezo2 
is dominantly expressed in DRG neurons and produces 
somatic mechanical allodynia in the context of tissue inflam-
mation and nerve injury.53,54 Recent study has shown that 
ablation of Piezo2 relieves visceral pain responses, suggest-
ing that Piezo2 plays a key regulatory role in visceral pain 
and is a potential therapeutic target.55 Additionally, many 
other ion channels such as Kv7.2, Hv1 and BK are involved 
in pain regulation.56–60 Gaining a better understanding of 
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these mechanisms could support the development of novel 
treatments, such as drugs that target specific ion channels, 
offering more effective pain relief for patients.

Epigenetics related to chronic visceral pain

Epigenetics refers to stable, heritable changes in gene func-
tion that occur without changes to the DNA sequence. These 
changes include DNA methylation, chromatin remodeling, 
and the actions of non-coding RNAs (ncRNAs).61–63 Recent 
research on epigenetic mechanisms in chronic visceral pain 
has primarily focused on histone acetylation and DNA meth-
ylation, providing new insights into gene expression regula-
tion related chronic visceral pain.

There is growing body of evidence that both DNA meth-
ylation and demethylation play significant roles in 

modulating pain sensation in both the peripheral and central 
nervous systems.64 DNA methylation is controlled by sev-
eral enzymes, including DNA methyltransferases like 
DNMT1, DNMT3a, and DNMT3b, as well as DNMT2 and 
DNMT3L family members.65 Other studies indicate that 
promoting interactions between transcription factors and 
demethylated gene promoters in the peripheral nervous sys-
tem may impact neuropathic pain and gastric hypersensitiv-
ity.66–68 Research also indicates that GATA binding protein 1 
(GATA1)-mediated DNA demethylation at the P2X7 recep-
tor (P2X7R) locus could play a key role in the development 
of chronic visceral pain, as observed in neonatal colonic 
inflammation (NCI) model rats.69 This process may involve 
a direct interaction with the Ten-eleven translocation 3 
(TET3) demethylase (see Figure 1). Furthermore, a repeated 
water avoidance stress (WAS) regimen in female rats has 

Figure 1. Schematic representation of DNA methylation and demethylation processes in physiological and pathological conditions.



4 Molecular Pain 00(0)

been shown to induce visceral pain hypersensitivity. This 
response is associated with increased acetylation of histone 
H3 in the spinal cord and an upregulation of mGlu2/3 recep-
tor expression.70

Notably, the intrathecal administration of the histone 
deacetylase (HDAC) inhibitor SHA has been shown to 
reverse stress-induced visceral pain hypersensitivity.71 
Recent research also suggests that irritable bowel syndrome 
may have a heritable component due to epigenetic mecha-
nisms. Specifically, the epigenetic regulation of pain-
related genes in an adult IBS model is influenced by chronic 
stress experienced early in life. Pregnant rats subjected to 
intermittent heterotypic stress passed on heightened and 
persistent visceral pain sensitivity to their adult offspring 
when exposed to similar stress conditions.72 Brain-derived 
neurotrophic factor (BDNF) has been identified as a key 
pain mediator, with elevated BDNF levels in the lumbar 
spinal dorsal horn strongly correlating with increased pain 
sensitivity compared to control groups.73 Blocking the 
BDNF receptor TrkB or administering BDNF-siRNA, 
which inhibits BDNF expression, reduced visceral pain 
hypersensitivity in offspring rats.74,75 These changes in 
BDNF expression were linked to an mRNA isoform origi-
nating from the first exon of the ninth core promoter, which 
showed increased binding sites for RNA polymerase II and 
acetylated histone H3, while showing decreased binding 
sites for HDAC1. In adult rats, daily administration of HAT 
inhibitors like curcumin or ACA reversed BDNF upregula-
tion and the associated visceral pain behaviors. This finding 
suggests that histone acetylation plays a significant role in 
stress-induced visceral pain hypersensitivity passed down 
to offspring.76 Tran et al. also utilized the WAS-induced 
visceral pain model to investigate the role of epigenetic 
modifications in stress-induced IBS visceral pain. They 
discovered that a 7-day intraventricular injection of the 
HDAC inhibitor TSA effectively reduced stress-induced 
visceral pain hypersensitivity.70

Additionally, there is increasing interest in the role of 
non-coding RNAs in the modulation of chronic pain, 
especially miRNAs.77 Previous study has shown that miR-
199 expression was significantly reduced in visceral pain 
model, whereas intraperitoneal injection of lenti-miR-
199a precursors significantly alleviated visceral pain.78 
Similarly, miR-485 expression was significantly decreased 
in a rat model of visceral pain, and application of its cor-
responding agomir significantly alleviated visceral pain,52 
suggesting that different miRNAs regulate visceral pain 
with some degree of resemblance. Therefore, targeted 
modulation of miRNAs expression is an effective poten-
tial therapy for visceral pain. Interestingly, miRNAs are 
capable of acting on ion channels thereby modulating vis-
ceral pain. Previous study has identified miR-1306-3P as 
a potential endogenous ligand for P2X3R, which modu-
lates visceral pain by altering P2X3R activity.18 miR-485 

also modulates visceral pain behavior by altering ASIC1 
expression levels.52

Excitingly, recent studies have revealed that epigenetic 
modifications – such as histone methylation, 
N6-methyladenosine (m6A) modification of RNA, and his-
tone deacetylation – are critical in trigeminal neuropathic 
pain.79–81 This highlights potential new therapeutic targets 
for treating neuropathic pain. However, it remains unclear 
whether similar epigenetic changes also influence visceral 
pain, which necessitates further investigation. While epi-
genetics offers exciting potential for studying chronic vis-
ceral pain, it also presents challenges. The complexity of 
epigenetic mechanisms requires the development of more 
precise experimental techniques to detect and explain rele-
vant changes. Nevertheless, epigenetics provides new per-
spectives and tools for understanding chronic visceral pain. 
Future research is expected to uncover more detailed mecha-
nisms, paving the way for personalized treatments and preci-
sion medicine in this field.

Neural circuits related to chronic visceral pain

Recent advances have greatly improved our understanding 
of the neural circuits and molecular mechanisms involved in 
chronic pain.82–88 Multiple brain regions form neural circuits 
involved in the processing of pain signals.89–91 However, the 
neural circuit mechanisms of chronic visceral pain remain 
largely unelucidated. Therefore, investigating the specific 
neural circuit mechanisms of visceral pain will hopefully 
provide suitable targets for the clinical treatment of chronic 
visceral pain.

Recent study evidenced that ventral part of lateral sep-
tum (LSV) was activated specifically by visceral pain 
stimulation and that optogenetic modulation of LSV glu-
tamatergic neurons significantly altered visceral pain 
behavior in mice. This suggests that the LSV acts as a key 
regulatory center for visceral pain. Through viral tracing, 
it was found that the LSV forms a neural circuit with the 
paraventricular hypothalamus (PVH), and modulating this 
PVH-LSV circuit also affected visceral pain behaviors.92 
Recent study has demonstrated that P2X3R plays a deci-
sive role in the modulatory effects of the PVH-LSV circuit 
on visceral pain, and that this pathway loses its function in 
modulating visceral pain after knockdown of P2X3Rs.93 
Moreover, the PVH-ventral tegmental area (VTA) neural 
circuit plays a significant role in controlling chronic vis-
ceral pain. When corticotropin-releasing hormone (CRH) 
neurons in the PVH were inhibited, it blocked the produc-
tion of tyrosine hydroxylase in the VTA, which had been 
triggered by colorectal distension.94 Evidence shows that 
CRH neurons in the PVH receive inputs from both gluta-
matergic and gamma-aminobutyric acid (GABA) neurons 
in the anterior ventral part of the bed nucleus of the stria 
terminalis (avBNST), and these inputs together regulate 
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visceral pain behaviors. Inhibiting the GABAergic neu-
rons projecting from the BNST to the PVH worsened vis-
ceral pain, while activating this pathway alleviated it. 
Additionally, glutamatergic neurons in the avBNST send 
inputs to PVH CRH neurons.95,96 Disruptions in the bal-
ance of excitatory and inhibitory inputs in the avBNST led 
to the overexcitation of PVH CRH neurons, which resulted 
in visceral pain behavior. Chemogenetic techniques were 
used to activate GABAergic neurons or inhibit glutama-
tergic neurons in the avBNST-PVH pathway, which 
reduced visceral pain in mice.97 These studies highlight 
the importance of the PVH in developing and regulating 
visceral pain behavior, making it a key central hub for 
visceral pain regulation.

Previous studies have found that altered molecular 
expression in the anterior cingulate cortex (ACC) plays an 
important role in the processing of visceral pain, but the 
underlying neural circuitry mechanisms remain 
unclear.8,98,99 However, accumulating evidence suggests 
that the ACC plays a dominant role in the neural circuits 
associated with visceral pain.100–102 For instance, studies 
have demonstrated that the ACC responds more dramati-
cally to colorectal distension stimulation in rats suffering 
from visceral pain, and functional magnetic resonance 
imaging (fMRI) data similarly show significant activation 
of the ACC in patients with irritable bowel syn-
drome.100,103,104 The ACC receives a wide range 

of projections from other brain regions, forming neural 
circuits crucial for the modulation of chronic pain, includ-
ing visceral pain.84,100,105,106 Recent findings have revealed 
that glutamatergic neurons in the claustrum (CL) project 
to the ACC and mediate visceral pain behavior, although 
these neurons may not regulate inflammatory pain.100,107 
Xu et al.100 identified positive responses from glutamater-
gic neurons in both the CL and ACC to visceral pain, and 
viral tracing confirmed anatomical connections between 
the two regions. Manipulation of the CL-ACC pathway 
significantly altered visceral but not somatic pain in mice, 
suggesting that this circuit is specifically associated with 
visceral pain.100

In addition to the PVH and ACC-related circuits, other 
brain regions such as the insular cortex, paraventricular 
thalamus, and reuniens (Re) have also been found to play 
important roles in the development of visceral pain behav-
ior (see Figure 2).12,15,108,109 Therefore, investigating the 
neural circuit mechanisms of visceral pain and developing 
therapeutic strategies based on these circuits may offer 
promising approaches for clinical treatment of visceral 
pain.

Analgesics associated with chronic visceral pain

Non-opioid analgesics. Acetaminophen has been widely used 
in the treatment of chronic pain, including chronic visceral 

Figure 2. Summary schematic of neural circuits associated with visceral pain.
ACC: anterior cingulate cortex; BLA: basal lateral amygdala; BNST: bed nucleus of the stria terminalis; CeA: central amygdala; CL: claustrum; HPC: 
hippocampus; IC: insular cortex; LC: locus coeruleus; LSV: ventral part of lateral septum; NTS: nucleus of the solitary tract; PAG: periaqueductal gray; 
PBN: parabrachial nucleus; PFC: prefrontal cortex; PVH: paraventricular hypothalamus; Re: reuniens; RVM: rostral ventromedial medulla; VTA: ventral 
tegmental area.



6 Molecular Pain 00(0)

pain, primarily due to its antipyretic and analgesic proper-
ties. These effects occur through central and peripheral non-
opioid mechanisms. Acetaminophen is the preferred class I 
analgesic for mild to moderate pain, according to the World 
Health Organization (WHO) pain ladder. It is a well-toler-
ated painkiller that is considered safe for managing mild to 
moderate visceral pain. However, it is crucial to adhere to 
dosage guidelines to avoid the risk of liver damage from 
excessive intake. Unlike nonsteroidal anti-inflammatory 
drugs (NSAIDs), acetaminophen lacks anti-inflammatory 
effects.110 NSAIDs have been reported to offer significant 
analgesic relief, especially in conditions like renal colic. 
However, due to their gastrointestinal side effects, including 
the potential for causing peptic ulcers and other lesions, 
NSAIDs are less commonly used for general visceral pain in 
clinical practice. In summary, acetaminophen is considered 
superior to NSAIDs for treating chronic visceral pain because 
it avoids the gastrointestinal side effects associated with 
NSAIDs, while maintaining a favorable safety profile. Acet-
aminophen can be used continuously when long-term anal-
gesia is required.

Opioid analgesics. Opioids are frequently prescribed for 
patients with moderate to severe pain who do not respond to 
non-opioid treatments. They are also used for chronic vis-
ceral pain. Research indicates that morphine can increase the 
threshold for esophageal mechanical pain. In experimental 
pain tests involving patients with chronic pancreatitis, oxy-
codone was found to be more effective than morphine, as it 
raised both mechanical and thermal pain thresholds.111 Addi-
tionally, current treatments can target peripheral kappa-opi-
oid receptors (KORs). For example, the peripherally selective 
KOR agonist acimalalindol has been shown to alleviate pain 
caused by colonic dilation in people with irritable bowel syn-
drome.112–114 Conversely, the loss of peripheral μ-opioid 
receptors (MORs) or the neurons expressing MORs reduces 
thermal tolerance, but does not affect the development or 
persistence of anti-allodynic tolerance or morphine-induced 
mechanical allodynia.115 While opioids are a valuable and 
cost-effective option for treating organic visceral pain, their 
role in managing functional visceral diseases remains 
unclear. Opioids are associated with several serious side 
effects, including respiratory depression, motor and cogni-
tive impairment, sedation, and the development of tolerance. 
Long-term use may also lead to opioid-induced hyperalgesia, 
where patients become more sensitive to pain. Additionally, 
chronic intractable pain can lead to changes in the central 
pain pathways, such as central sensitization, making opioid 
therapy less effective.116

Adjunctive analgesics. Many patients experience significant 
relief from standard analgesic interventions, but a consider-
able number continue to suffer from pain. To address this, 

incorporating adjunctive analgesics into a stepwise 
approach for managing chronic visceral pain is often effec-
tive. Introducing adjunctive analgesics early in the pain 
management process, especially when central sensitization 
manifests as hyperalgesia or touch-induced pain, can be 
crucial. At present, tricyclic antidepressants and GABA 
analogs are mostly utilized in clinical settings. Pregabalin 
and Gabapentin, two GABA analogs, have shown effective-
ness in preclinical models of visceral hypersensitivity.117–119 
Pregabalin and Gabapentin have been shown to reduce 
experimental pain in chronic pancreatitis and IBS.120 Addi-
tionally, other medications, such as tricyclic antidepres-
sants (TCAs), selective serotonergic reuptake inhibitors 
(SSRIs), and serotonin-norepinephrine reuptake inhibitors 
(SNRIs) are also employed in the treatment of chronic vis-
ceral pain,114 particularly for functional disorders. Adjunc-
tive analgesics play a crucial role in managing visceral 
pain. It is essential to begin treatment with these adjuvants 
as early as possible, particularly when central sensitization 
is present.

Unconventional drug therapies. New analgesic drugs may 
soon be developed based on the growing understanding of 
the pain mechanisms of functional and organic visceral pain 
disorders. TRPV1 is a non-selective ion channel that can be 
activated by capsaicin, low pH, and nociceptive thermal 
stimuli. It is an integrator of pain stimuli, and as a result, 
TRPV1 antagonists have received increasing attention as 
novel analgesic agents.121 Consequently, TRPV1 antagonists 
have gained significant attention as potential novel analge-
sics. The analgesic effects of TRPV1 antagonists have been 
demonstrated in several inflammatory diseases, including 
acute colitis and chronic pancreatitis (CP), where TRPV1 
receptor sensitization may enhance peripheral sensitiza-
tion.2,122,123 Linaclotide is a guanylate cyclase-C agonist pri-
marily used to treat constipation-type IBS.124 By activating 
guanylate cyclase-C, it promotes the secretion of chloride 
and bicarbonate into the intestinal lumen, leading to increased 
fluid secretion and enhanced intestinal peristalsis. In addition 
to its laxative effect, recent studies have shown that lina-
clotide also exerts analgesic effects by blocking colonic 
nociceptors—a mechanism primarily validated in animal and 
in vitro models. Phase III clinical trials have further con-
firmed linaclotide’s analgesic benefits in patients with con-
stipation-predominant IBS.125 Our previous study showed 
that P2X7R antagonists effectively suppressed chronic vis-
ceral pain behavior and inhibited spinal synaptic transmis-
sion.69 Moreover, studies found that the P2X3 receptor 
inhibitor, TNP-ATP, can block acetic acid-induced abdomi-
nal spasms in rats and reduce visceral hypersensitivity caused 
by neonatal colon inflammation. These findings suggest that 
P2X receptors may serve as promising targets for novel anal-
gesic therapies.126,127
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Non-invasive brain stimulation in chronic visceral 
pain

Non-invasive brain stimulation (NIBS) has made significant 
strides in the treatment of chronic visceral pain.128 Traditional 
treatment methods always have limited effectiveness and 
come with a higher risk of side effects, making NIBS an 
appealing alternative. As an emerging treatment modality, 
NIBS has garnered considerable attention. Studies have 
shown that both transcranial magnetic stimulation (TMS) 
and transcranial direct current stimulation (tDCS) hold great 
promise for treating chronic visceral pain.129 TMS generates 
magnetic fields in specific brain areas to modulate neuronal 
activity, thereby alleviating pain.128,130,131 tDCS, on the other 
hand, alters the excitability of the cerebral cortex by apply-
ing a weak direct current to the scalp, aiming to relieve 
pain.132 A recent clinical trial revealed that patients treated 
with TMS reported significant improvements in pain scores 
and quality of life.133 Researchers have found that by pre-
cisely targeting specific brain regions associated with vis-
ceral pain, the regulation of pain activity can be more 
effective. Similarly, tDCS has shown positive effects in man-
aging visceral pain caused by chronic pancreatitis, with 
patients reporting significant reductions in pain levels with-
out notable side effects.134 Beyond TMS and tDCS, other 
NIBS technologies are being continuously developed. For 
instance, transcranial random noise stimulation (tRNS) and 
transcranial alternating current stimulation (tACS) are 
emerging approaches that are gradually being applied to the 
treatment of chronic visceral pain.135 Interestingly, Zhou 
et al.136 demonstrated that sound induces analgesia through 
corticothalamic pathway and found that the analgesic effects 
of sound depended on a low (5-decibel) signal-to-noise ratio 
relative to ambient noise. Although the applicability of sound 
analgesia to visceral pain remains unclear, this provides an 
essential insight into the development of non-invasive brain 
stimulation for the treatment of visceral pain. These tech-
niques modulate brain activity through different mecha-
nisms, offering patients a wider range of treatment options. 
Additionally, accumulating evidence suggests that non-phar-
macological therapies such as psychotherapy and dietary 
adjustment show considerable potential in the treatment of 
chronic visceral pain.137–139 Previous study has demonstrated 
that the combined employment of psychotherapy and drugs 
is significantly more effective in the treatment of IBS than 
drugs alone,137 suggesting that psychotherapy may be a cata-
lyst for the conventional pharmacological treatment of IBS. 
As an essential regulator of normal gut function, the gut 
microbiota is considered a key peripheral factor in the patho-
physiology of chronic visceral pain. As diet is a major deter-
minant of the configuration of the gut microbiota, it is 
increasingly recognized that the interaction between diet and 
microbiota plays an essential role in the development of vis-
ceral pain, and that dietary adjustment is an effective way to 

alleviate visceral pain.140 In addition, it has been shown that 
gastrointestinal hypersensitivity is also caused by the activa-
tion of enterochromaffin (EC) cells, which are rare excitable, 
serotonergic neuroendocrine cells in the gut epithelium.141,142 
Additionally, perturbing EC cell activity promoted anxiety-
like behaviors which normalized after blockade of serotoner-
gic signaling,7 suggesting that anxiety relief by targeting 
serotonergic signaling pathways is a potential modality for 
the treatment of visceral pain. The combination of non-inva-
sive brain stimulation technologies with non-pharmacologi-
cal therapies contributes to a multi-dimensional pain 
management framework.

Despite the promising potential of NIBS technologies, 
several challenges remain. Determining optimal stimulation 
parameters, improving individualized treatment approaches, 
and validating long-term efficacy are areas that need further 
research. Addressing these challenges will be crucial for the 
broader application of NIBS in chronic visceral pain treat-
ment. In conclusion, NIBS technologies bring new hope for 
the management of chronic visceral pain. With ongoing 
research and technological advancements, these techniques 
hold great potential to deliver significant clinical benefits, 
improving the quality of life for more patients.

Conclusions

The pathology of visceral pain is highly complex, and its 
exact mechanisms have not yet been fully elucidated. In 
this review, we analyze the intrinsic mechanisms of visceral 
pain from various perspectives, including ion channels, epi-
genetics, neural circuits, analgesics and non-invasive brain 
stimulation with the goal of offering new insights into 
potential treatments (see Figure 3). Historically, much 
research on the signaling and regulatory mechanisms of 
visceral pain has focused on the peripheral and spinal cord 
levels. However, the rapid advancements in neural circuit 
studies have provided fresh perspectives on the brain’s role 
in visceral pain. Despite this progress, the specific molecu-
lar targets and neural circuits related to visceral pain remain 
incompletely understood, presenting significant challenges 
for developing targeted treatments. Encouragingly, the 
rapid development of modern neuroscience techniques has 
made function-dependent labeling and modulation tools 
increasingly precise. For example, the “targeted recombi-
nation in active populations” (TRAP) labeling system and 
the “Tet-off” viral labeling system enable the specific 
manipulation of neurons activated by visceral pain.93 These 
tools hold great promise for future studies aimed at identi-
fying molecular targets and neural circuits directly associ-
ated with visceral pain. In conclusion, significant progress 
has been made in the development of therapeutic drugs and 
approaches for visceral pain. However, limitations and 
challenges remain, underscoring the need for further 
research and exploration in this field.
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