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Abstract 

Ovarian cancer (OC) remains one of the most lethal gynecological malignancies globally. Despite the implementation 
of various medical imaging approaches for OC screening, achieving accurate differential diagnosis of ovarian tumors 
continues to pose significant challenges due to variability in image performance, resulting in a lack of objectivity 
that relies heavily on the expertise of medical professionals. This challenge can be addressed through the emergence 
and advancement of radiomics, which enables high-throughput extraction of valuable information from conventional 
medical images. Furthermore, radiomics can integrate with genomics, a novel approach termed radiogenomics, 
which allows for a more comprehensive, precise, and personalized assessment of tumor biological features. In this 
review, we present an extensive overview of the application of radiomics and radiogenomics in diagnosing and pre‑
dicting ovarian tumors. The findings indicate that artificial intelligence methods based on imaging can accurately dif‑
ferentiate between benign and malignant ovarian tumors, as well as classify their subtypes. Moreover, these methods 
are effective in forecasting survival rates, treatment outcomes, metastasis risk, and recurrence for patients with OC. It 
is anticipated that these advancements will function as decision-support tools for managing OC while contributing 
to the advancement of precision medicine.
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Background
Ovarian cancer (OC) ranks as the eighth most prevalent 
and fifth most lethal malignancy among women world-
wide. Over 300,000 women are diagnosed with OC annu-
ally, resulting in approximately 152,000 fatalities OC 
each year, highlighting the significant threat this illness 
poses to the health and lives of women [1]. OC is not a 
single disease; it can be categorized into at least 6 dis-
tinct histological subtypes according to the World Health 

Organization (WHO) 2020 classification of female repro-
ductive organ malignancies. The majority of these fall 
under epithelial-mesenchymal tumors, including serous 
tumors, mucinous tumors, endometrioid tumors, clear 
cell tumors, seromucinous tumors, and Brenner tumors 
[2]. Among these types, high-grade serous ovarian car-
cinoma (HGSOC) is the most common histological sub-
type, accounting for approximately 90% of OC, and has 
the poorest prognosis compared to its counterpart low-
grade serous ovarian carcinoma (LGSOC) [3]. Standard 
treatments for newly diagnosed OC typically involve 
cytoreductive surgery followed by platinum-based chem-
otherapy; however, prognostic outcomes remain unsat-
isfactory [4]. This lack of improvement is attributed to 
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intertumoral and intratumoral heterogeneities within OC 
that hinder comprehensive research on tumor behavior 
and result in imprecise diagnosis and inadequate predic-
tions regarding disease progression [5, 6]. Furthermore, 
a study has revealed significant disparities in early versus 
late survival rates for OC [7], underscoring the critical 
importance of developing effective early diagnosis and 
prognosis prediction methods.

Imaging plays a pivotal role in the assessment and man-
agement of OC [8]. Traditional imaging methods, such as 
ultrasound, computed tomography (CT), positron emis-
sion tomography/CT (PET/CT), and magnetic resonance 
imaging (MRI), have been extensively employed for the 
diagnosis and evaluation of ovarian tumors due to their 
convenience and non-invasive nature [8–11]. Further-
more, serum biomarkers offer a cost-effective approach 
to predicting OC. Currently, the most thoroughly inves-
tigated and widely utilized serum biomarker for OC 
diagnosis is cancer antigen 125 (CA125) [9]. Other bio-
markers, such as human epididymis protein 4 (HE4), 
have shown enhanced diagnostic performance compared 
to CA125 alone [10]. However, the sensitivity and speci-
ficity of these methods are insufficient. Additionally, 
existing imaging techniques fail to adequately address 
intertumoral or intratumoral heterogeneities and are 
overly reliant on the subjective judgment of radiologists.

Radiomics, as a rising and dynamic field of research, 
has recently emerged as a promising solution to address 
these issues challenges by quantitatively evaluating 
the characteristics of lesions and extracting potential 
information through high-throughput analysis of high-
dimensional quantitative features collected from multiple 
medical images [11], particularly in the field of oncology. 
Furthermore, the integration of radiomics with genomics 
has led to the development of a novel technique known as 
radiogenomics. This innovative approach can be utilized 
to predict or elucidate concealed genetic and molecu-
lar attributes, thereby enabling a more comprehensive, 
precise, and personalized evaluation of tumor biological 
characteristics. With the rapid advancement and imple-
mentation of artificial intelligence (AI) techniques, both 
radiomics and radiogenomics have significantly evolved 
in their clinical application for ovarian tumors in recent 
years, thus facilitating the resolution of more intricate 
decision-making tasks, such as tumor classification 
and subtyping, prognosis prediction, disease progres-
sion assessment, and identification of abnormal genetic 
alterations.

Although prior reviews on radiomics and radiogenom-
ics of OC have been conducted [5, 6, 12], the articles 
included were not sufficiently comprehensive, and the 
summaries lacked detail. In the initial review of radiomics 
in OC, Nougaret et al. [6] introduced the role of texture 

analysis, a method of radiomics in prognostic predic-
tion for OC. Subsequently, Nougaret et al. [12] published 
another review addressing both radiomics and radiog-
enomics in OC, but the number of articles included was 
limited and presented chronologically. In a recent study 
of this field, Panico et  al. [5] focused solely on predict-
ing metastasis, gene mutation, recurrence and chemo-
therapy response in OC while neglecting to address the 
application of radiomics for classifying and subtyping 
benign versus malignant ovarian tumors. Unlike previ-
ous research efforts, this review synthesizes the latest lit-
erature and organizes our findings based on the role of 
radiomics and radiogenomics in diagnosing and predict-
ing ovarian tumors, thereby presenting a more coherent 
framework. For a better understanding of the applica-
tion of radiomics and radiogenomics, we describe their 
development and workflow in detail. Furthermore, we 
provide a thorough summary of their applications in OC 
to enhance comprehensiveness. Finally, we conclude with 
an exploration of current challenges alongside poten-
tial solutions while offering recommendations aimed at 
advancing clinical practice as well as discussing future 
directions in this field.

Development and workflow of radiomics 
and radiogenomics
Radiomics was first introduced by Lambin et al. in 2012 
[13], broadly referring to the high-throughput extraction 
of image features from radiographic images. In the same 
year, Kumar et al. [14] further elaborated on this concept 
by emphasizing the high-throughput extraction and 
analysis of numerous advanced quantitative imaging 
features derived from various medical imaging images 
such as CT, PET, or MRI. In 2014, radiomics was applied 
for the first time in clinical practice [15]. Subsequently, 
Gillies et al. [16] advanced the concept by incorporating 
not only imaging features but also clinical and genetic 
information into quantitative analyses. Furthermore, 
deep learning (DL) methods were incorporated into 
radiomics in 2016. In recent years, there has been a 
growing body of literature focused on standardizing 
radiomics research while exploring its biological 
significance [17, 18] (Fig.  1). Radiomics utilizes cutting-
edge AI algorithms to transform images into analyzable 
data, which can be subsequently examined with the aim 
of enhancing diagnostic and prognostic accuracy while 
providing personalized treatment options for patients 
[19]. In this context, machine learning (ML) and DL are 
both subsets of AI, with DL being a further subset of ML. 
ML constructs models by transforming medical images 
into features and subsequently applying algorithms to 
map these features to corresponding labels, while DL 
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refers to the method that utilizes multi-layer neural 
networks for learning [20] (Table 1).

A standard radiomics method typically begins with 
a radiologist identifying qualitative factors in medical 
images and culminates in an automated assessment 
of microscopic structures [21]. This process adheres 
to a well-established radiomics pipeline, which ML 

consists of the following steps: (i) image acquisition; 
(ii) tumor segmentation; (iii) feature extraction; (iv) 
feature selection; (v) model construction and validation. 
And convolutional neural network (CNN) as the basic 
framework of DL, includes the following processes: (i) 
data preprocessing; (ii) convolution layer; (iii) activation 
layer; (iv) pooling; (v) fully connected layer (Fig.  2). 

Fig. 1  The development and workflow of radiomics and radiogenomics

Table 1  The relationship and difference between machine learning (ML) and deep learning (DL)

Characteristics ML DL

Data dependency It can work with less data It requires a large amount of data input to achieve good 
performance

Type of data Only structured data can be processed Both structured and unstructured data can be processed

Image segmentation Manual Automatic

Feature extraction Experts are required to perform feature extraction 
before proceeding further

There is no need to develop a feature extractor for every prob‑
lem; instead, it tries to extract features from the data on its own

Feature categories Typically predefined Allow the creation of new features

Model construction Models incorporating radiomics features are trained 
through algorithms

Simultaneously train model when learning features

Approach of operation The problem is broken down into subparts and a result 
is produced after solving each part

Take input from a given problem and produce the result. 
Therefore, it follows an end-to-end approach

Execution time Requires less time than DL to train models but a long time 
to test them

Requires a long time to train the model, but less time to test 
the model

Interpretation of results Interpretation of the results for a given question is relatively 
easy

Interpreting the results for a given problem is very difficult 
because of the cryptic reasoning processes involved

Problem solved Suitable for solving simple problems Suitable for solving complex problems

Hardware dependency Because ML models do not require large amounts of data, 
they can be run on low-end machines

Large amounts of data are required to work effectively, hence 
the need for high-end machines

Cost Low High
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The first step in radiomics involves the acquisition of 
standardized and high-quality images [13], and then 
delineate the regions of interest (ROI) for further analysis. 
Segmentation can usually be performed in manual, 
semi-automatic, or fully automatic ways [19]. Unless 
lesions exhibit complex appearances, manual expert 
segmentation remains the most effective option [22–25]. 
From the ROIs, various types of radiomic features can be 
extracted. These features are primarily categorized into 
two main types: manually defined features and DL-based 
features, which are outputs generated by algorithms 
utilizing a stacked neural network structure [26]. The 
former can further be classified as shape features, texture 
features, and intensity features [27–29]. Due to the large 
number and complexity of extracted features, overfitting 
and low generalization may occur; thus, it is necessary 
to filter out the most meaningful attributes. Commonly 
employed techniques include least absolute shrinkage 
and selection operator (LASSO) regression, recursive 
feature elimination (RFE), principal component analysis 
(PCA), and independent component analysis (ICA) [11]. 
The final step and ultimate goal of the radiomics process 
is model construction. Consequently, validating model 
performance is crucial to demonstrate its potential for 
clinical application.

Radiogenomics was initially proposed to investigate the 
relationship between genetic factors and radiation therapy 
[30]. Subsequently, it evolved to encompass radiomics 
and gene expression analysis [31]. The current definition 
of imaging genomics now integrates multi-omics data 
generated by next-generation sequencing (NGS) with 
multimodal imaging data obtained during clinical practice 
[32] (Fig.  1). Radiogenomics involves three key steps: (i) 
extraction of imaging feature; (ii) extraction of multi-omics 
feature; and (iii) association or integration of imaging 
and multi-omics data. Imaging features are extracted 

from radiological and histopathological images using 
methodologies similar to those employed in radiomics. 
Conversely, multi-omics features are derived from various 
biological sources, including genes, transcriptomes, 
and proteins, among others. The fusion of imaging and 
multi-omics data necessitates the application of advanced 
analytical methods such as canonical correlation analysis 
(CCA), which can uncover hidden associations between 
the two datasets. Additionally, integration-based models 
are employed to combine these datasets effectively for 
predicting patient outcomes [33]. With algorithmic 
advancements and the increasing accessibility of acquiring 
and exchanging genetic material, radiogenomics is poised 
to reach its full potential.

Clinical applications of radiomics 
and radiogenomics in OC
Radiomics and radiogenomics provide a diverse array of 
potential applications in the field of oncology, offering 
objective and quantitative methodologies for evaluating 
tumor phenotypes and predicting clinical outcomes. 
This review will explore the prospective applications 
of radiomics and radiogenomics in OC. For radiomics, 
two main applications are summarized: the diagnosis 
and prediction field of OC, which involves both the 
classification and subtyping of OC, as well as forecasting 
disease prognosis and progression which the former 
includes survival rates and treatment outcome, while 
the latter addresses metastasis and recurrence. In terms 
of radiogenomics, two key implications are highlighted: 
detecting abnormal changes in known genes, along 
predicting clinical outcomes by integrating genetic factors 
with imaging features (Fig. 3).

Fig. 2  General framework of radiomics. The process for radiomic research applying the machine learning (ML) method includes image acquisition, 
regions of interest (ROI) segmentation, feature extraction, feature selection, model training, and validation, whereas the deep learning (DL) method 
includes data preprocessing, convolution, activation, pooling, and full connection
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Radiomics‑based diagnosis of OC
Classification of OC
Precise classification of ovarian masses is essential for the 
development of optimal treatment strategies that pre-
serve fertility in benign lesions and improve prognosis for 
patients with ovarian malignancies. Benign masses may 
be managed conservatively or removed through mini-
mally invasive surgical techniques [34], while patients 
with suspected malignant masses should be transferred 
to a tertiary care facility specializing in OC cases [35]. 
Given the morphological overlap between benign and 
malignant ovarian masses, traditional imaging techniques 
often face challenges in accurately identifying malignant 
tumors and providing appropriate treatment, resulting 
in poor prognosis of OC patients [36, 37]. Therefore, 
numerous studies have investigated the application of 
radiomics methods for classifying ovarian tumors.

In 2013, Faschingbauer et  al. [38] extracted texture 
features from ultrasound images of 105 ovarian lesions, 
classified the tumors using a support vector machine 
(SVM) approach and compared their performance with 
the subjective evaluations of examiners possessing 
varying levels of ultrasonography experience. The 
texture analysis demonstrated significantly superior 
diagnostic performance compared to physicians with 
low or medium levels of experience. Subsequently, 
Aramendía-Vidaurreta et  al. [39] developed a DL 

model to differentiate between benign and malignant 
ovarian tumors based on ultrasound images, achieving 
satisfactory results with an area under the receiver 
operating characteristic (ROC) curve (AUC) of 0.997. 
In contrast to the studies that used a limited number 
of radiomics features, Zhang et  al. [40] obtained 1714 
features from 4 MRI protocols for each lesion and 
constructed a more robust model yielding an AUC 
of 0.975 in the cross-validation cohort. To assess the 
accuracy in classifying benign and malignant ovarian 
tumors using contrast-enhanced (CE)-CT radiomics 
analysis based on ML, Li et al. [41] developed 2 models, 
a radiomics model and a mixed model incorporating 
3 clinical predictors of HE-4, ascites, and margin, 
demonstrating strong performance in the validation 
cohort with AUCs of 0.91 and 0.96 respectively. These 
studies collectively illustrate that AI-based imaging 
methods exhibit robust diagnostic capabilities in 
distinguishing between benign and malignant ovarian 
tumors.

In recent years, borderline ovarian tumors (BOTs) 
have been recognized as distinct lesions from benign 
and malignant ovarian tumors due to their diverse 
morphological characteristics [42]. Therefore, some 
researchers have focused on differentiating BOTs 
from benign or malignant ovarian tumors. Liu 
et  al. [43] created 4 models, two-dimensional (2D)/

Fig. 3  The application of radiomics and radiogenomics in ovarian cancer (OC). The application of radiomics involves the diagnosis and prediction 
of OC, while the application of radiogenomics involves identifying abnormal genetic changes and predicting clinical outcomes in OC patients. 
CA125 cancer antigen 125, CT computed tomography, HE4 human epididymis protein 4, PET/CT positron emission tomography/CT, US ultrasound
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three-dimensional (3D) sagittal fat-suppressed (FS) 
T2-weighted imaging (T2WI), and 2D/3D coronal T2WI 
models, to distinguish between BOTs and cancers, 
concluding that the 3D sagittal T2WI model exhibited 
superior diagnostic ability with an AUC of 1.000 in 
the testing group. This study represents a pioneering 
effort to investigate the classification of ovarian tumors 
using MRI-based radiomics features through both 2D 
and 3D segmentation methods. The 3D model, which 
encompasses information from the entire lesion, provides 
a more accurate representation of tumor heterogeneity 
compared with its 2D counterpart. However, this 
model is limited by its predominantly focus on singular 
elements, thereby neglecting the impact of clinical 
indicators and traditional imaging features on diagnosis. 
Wei et al. [44] utilized FS-T2WI for modeling, providing 
additional evidence for the use of T2WI-based radiomics 
in BOTs. Their research indicated that a combined 
model integrating radiomics features with clinical data 
and conventional radiological characteristics could 
enhance diagnostic performance and generalizability 
(AUC = 0.86). Furthermore, their study included patients 
from multiple facilities and conducted both internal and 
external validation, thereby strengthening the robustness 
of their findings. However, it is important to note that 
this model exclusively incorporates FS-T2WI, which 
differs from the typical clinical reading scenario that 
generally includes T1-weighted imaging (T1WI), T2WI, 
and diffusion-weighted imaging (DWI). These studies 
have demonstrated significant advancements in utilizing 
MRI-based radiomics for the diagnosis of ovarian 
tumors. In the study conducted by Qi et al. [45], 3 types 
of ovarian neoplasms (benign, borderline, and malignant 
tumors) were categorized into two subgroups: benign 
versus borderline/malignant (task 1) and borderline 
versus malignant (task 2). Additionally, they compared 
the efficacy of various techniques in identifying these 
subgroups, including evaluations by senior sonographer, 
junior sonographer, radiomics model analysis, clinical 
model analysis, and a combined approach. Their 
findings indicated that the radiomics model performed 
satisfactorily when compared to assessments made by 
senior sonographers in both tasks (AUC = 0.79 for senior 
sonographers and 0.88 for radiomics models in task 1; 
AUC = 0.61 for senior sonographers and 0.84 for the 
radiomics model in task 2). Furthermore, a nomogram 
comprising CA125 levels, lesion location, ascites 
presence, and radiomics signatures yielded optimal 
performance (AUC = 0.91 in task 1; AUC = 0.89 in task 
2). The research is based in the ultrasound, currently 
regarded as the first-line imaging mode for diagnosing 
ovarian tumors, thereby demonstrating substantial 
clinical practicability.

The accumulated evidence from the studies indicates 
that radiomics analysis holds significant potential as 
a non-invasive diagnostic tool for OC. Specifically, it 
can enhance both accuracy and objectivity, thereby 
serving as an effective decision-making instrument 
to facilitate individualized treatment. However, most 
studies primarily categorize ovarian tumors into benign 
and malignant classifications, often including borderline 
tumors within these categories. BOTs exhibit pathological 
characteristics and biological behavior that lie between 
benign and malignant tumors. Accurate identification of 
BOT is essential for determining appropriate treatment 
strategies. Consequently, there is an urgent need for 
further exploration of radiomics methodologies aimed at 
simultaneously distinguishing among these three tumor 
types in future research endeavors.

Subtyping of OC
Neoadjuvant chemotherapy (NAC) may be consid-
ered for the treatment of Federation of International of 
Gynecologists and Obstetricians (FIGO) stage III or IV 
epithelial ovarian cancer (EOC), particularly HGSOC 
when complete debulking is unlikely to be achieved 
through primary cytoreductive surgery. Conversely, in 
cases of carcinoma resistance to conventional taxane or 
platinum-based chemotherapy, such as ovarian clear cell 
carcinoma (OCCC), primary cytoreductive surgery is 
recommended [35]. In clinical practice, histological diag-
nosis is typically established via surgery intervention or 
tissue biopsy; however, this approach may result in mis-
diagnosis due to intratumoral heterogeneity. Even though 
intraoperative frozen sections facilitate histological clas-
sification, the invasive nature of this procedure and the 
associated increase in intraoperative duration adversely 
affect patient prognosis [46]. According to the literature 
listed in this review, radiomics has demonstrated supe-
rior accuracy in tumor evaluation compared to tradi-
tional imaging semantic indicators for subtyping of OC.

Previous studies have supported a dualistic model of 
carcinogenesis that categorizes EOC into two distinct 
types based on clinicopathological and molecular 
characteristics [47, 48]. Type I EOC encompass 
LGSOC, endometrioid carcinomas, OCCC, mucinous 
carcinomas, and malignant Brenner tumors, while 
type II EOC include HGSOC, carcinosarcomas, 
and undifferentiated carcinomas [49]. Type I EOC 
typically exhibit an indolent clinical course with limited 
progression; ipsilateral oophorectomy may be beneficial 
in the early stages, but most metastatic type I tumors 
are chemoresistant. In contrast, type II cancers are 
comparatively aggressive and are usually diagnosed 
at advanced stages requiring more invasive surgical 
interventions; however, standard platinum-based 



Page 7 of 18Zeng et al. Military Medical Research           (2024) 11:77 	

chemotherapy is generally effective in most cases [50]. 
Therefore, some articles emphasize differentiating 
type I and type II EOC subtypes prior to therapy to 
facilitate improved management strategy selection and 
prognostic evaluation. Qian et  al. [51] demonstrated 
that through MRI radiomics analysis, a mixed model 
incorporating combined radiomics features performed 
comparably to the conventional model (AUC = 0.97 for 
the mixed model versus AUC = 0.96 for the conventional 
model). Although not statistically significant, the 
radiomics model showed potential utility. However, their 
study is limited by the absence of a validation group. 
Subsequently, Jian et al. [52] extracted radiomics features 
from multiparametric MRI, including FS-T2WI, DWI, 
apparent diffusion coefficient (ADC) maps, and contrast-
enhanced T1-weighted imaging (CE-T1WI), developing a 
composite model that demonstrated strong performance 
with an AUC of 0.85 during external validation. The 
study was externally validated and collected patient 
data from multiple centers to enhance the reliability of 
the findings. However, incorporating clinical data may 
further improve the model. To explore the potential of 
using radiomics signatures based on DWI and ADC maps 
for identifying EOC, Xu et al. [53] extracted 390 features 
to establish the radiomics model. They subsequently 
created a combined model by integrating these radiomics 
features with clinical characteristics. The results revealed 
that the radiomics model outperformed the clinical 
model in diagnosing early-stage type I and type II EOC 
(AUC = 0.91 vs. 0.74). The diagnostic accuracy of the 
nomogram was equivalent to that of the radiomics 
model, yielding a networked readiness index (NRI) value 
of  -0.1591. Yao et al. [54], for instance, were among the 
first to apply ultrasound radiomics for subtyping type I 
and type II EOC and constructed a nomogram exhibiting 
superior performance compared to both the clinical and 
radiomics models (AUC = 0.82 vs. 0.73 vs. 0.74). Similarly 
employing the ultrasound method as their foundation, 
Tang et  al. [55] utilized 6 ML methods to identify an 
optimal approach before constructing a nomogram 
combining radiomics and clinical factors which displayed 
robust performance with an AUC of 0.89 in the validation 
set. In a recent study conducted by Li et al. [56], CE-CT 
was used for subtyping EOC, during which they 
compared 6 modeling methods and ultimately selected 
logistic regression method. Then, they integrated clinical 
factors to develop a combined model that achieved an 
AUC of 0.93, surpassing the performance of individual 
models.

There are various subtyping approaches for OC aimed 
at achieving more effective subtype-specific treat-
ments. Research has indicated that HGSOCs typically 
present with late peritoneal carcinomatosis; however, 

they respond more favorably to NAC compared to non-
HGSOCs [57, 58]. In advanced HGSOC, NAC is particu-
larly advantageous due to its chemosensitivity, whereas 
non-HGSOCs tend to benefit more from primary cytore-
ductive surgery. Therefore, some studies have focused on 
distinguishing between HGSOC and non-HGSOC sub-
types. For example, one study integrated clinical char-
acteristics and textural features from CE-CT to develop 
a successful combination model [59]. Another study by 
Wang et al. [60] utilized features across multiple catego-
ries to create a comprehensive radiomics model based 
on a large sample size. Although the data were collected 
from multiple sites, this approach overlooked clinical 
features and thus presented an opportunity for improve-
ment. In a separate investigation conducted by Li et  al. 
[61], 138 patients with SOC confirmed via histology 
were retrospectively assessed to evaluate the efficacy of 
MRI radiomics in distinguishing between HGSOC and 
LGSOC. Compared to either the clinical or radiomics 
models, a novel combination model had greater diag-
nostic effectiveness with an AUC of 0.93. Given the sig-
nificant differences in therapy schedules for EOC and 
non-epithelial ovarian cancer (NEOC), Zhu et  al. [62] 
extracted preoperative CT images from 101 patients with 
pathologically confirmed OC to evaluate the feasibil-
ity of radiomics to distinguish between EOC and NEOC 
using the logistic regression analysis. A nomogram devel-
oped by integrating clinical and radiomics signatures 
(AUC = 0.87) outperformed the radiomics (AUC = 0.78) 
and clinical models (AUC = 0.81), respectively. Within 
the range of NEOC, sex cord-stromal tumor (SCST) typi-
cally present as solid masses; however, diagnostic chal-
lenges may frequently arise if necrosis, bleeding, edema, 
or cystic degeneration is observed. Recently, Cheng et al. 
[63] conducted a pioneering radiomics study to differen-
tiate between SCST and EOC by constructing a robust 
mixture model that effectively distinguishes between 
these two entities with an AUC of 0.88. OCCC represents 
a distinct subtype of EOC where debulking surgery is rec-
ommended as the primary treatment, while conventional 
chemotherapy has shown limited efficacy. Therefore, 
early and accurate identification of the OCCC subtype 
before treatment is crucial to avoid unnecessary NAC. An 
integrated model combining clinical characteristics with 
radiomics features collected from CE-CT has been estab-
lished to detect OCCC alongside other types of EOC, 
yielding an AUC of 0.86. This study revealed that radiolo-
gists employing this model might improve subtyping sen-
sitivity [64]. Although various subtyping methods exist, 
the ultimate goal remains optimizing patient treatment 
while improving prognosis outcomes. The aforemen-
tioned studies suggest that radiomics holds substantial 
potential in OC subtyping and enhanced resolution can 
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be achieved through the amalgamation of clinical charac-
teristics and traditional imaging parameters.

At present, the majority of studies related to OC sub-
typing are primarily focused on distinguishing between 
type I and type II EOC, as well as EOC versus NEOC, 
and HGSOC versus non-HGSOC, with only a limited 
number of investigations dedicated to identifying OCCC. 
However, numerous other OC subtypes exhibit distinct 
biological differences that correlate with varying degrees 
of malignancy and drug sensitivity. Therefore, the iden-
tification of these additional OC types is of significant 
clinical importance and warrants further exploration by 
researchers.

Radiomics‑based prediction of OC
Predict the prognosis
Survival rates. Clinical outcomes can vary significantly, 
even among epithelial ovarian cancer (EOC) patients 
who have been treated homogeneously and present with 
the same tumor stage, due to the inherent heterogeneity 
of the tumor. Identifying patients at high risk for mor-
tality prior to surgery may facilitate decisions regarding 
the necessity for more aggressive therapies and stringent 
monitoring. However, there remains a lack of reliable 
prognostic and predictive biomarkers [65]. Consequently, 
it is imperative to develop a prognostic prediction tool 
that supports clinical judgment and enables personalized 
precision therapy for OC patients.

Based on MRI findings, Zhang et  al. [40] established 
a survival analysis model for OC patients. The Kaplan–
Meier method was utilized to obtain, analyze, and model 
the MRI radiomics characteristics that were most closely 
associated with the survival status of patients using 
LASSO regression. The results demonstrated that this 
radiomics model could offer a high-precision assess-
ment of survival for OC patients. To create and validate 
a radiomic-clinical nomogram for assessing overall sur-
vival (OS) in SOC patients after surgery, Hong et al. [66] 
conducted a study to develop a radiomics signature using 
LASSO regression on a training set comprising 1301 
radiomics characteristics extracted from OC lesions in 
CT images. Then, they constructed a radiomic-clinical 
nomogram through multivariate Cox regression analysis 
by integrating the radiomics signature with clinical vari-
ables. The findings revealed that the nomogram included 
the radiomics signature along with 4 clinical predictors: 
age, tumor size, pathological stage and tumor grade. This 
nomogram exhibited favorable discrimination in both the 
training and validation sets. In a retrospective analysis 
involving 734 HGSOC patients, Zheng et al. [67] created 
a DL model based on Vision Transformer (Vit) to predict 
OS using preoperative CT images, leading to promis-
ing results in predicting survival with an AUC of 0.822 

in the training cohort and 0.823 in the validation cohort. 
Lu et  al. [68] collected 657 quantitative mathematical 
descriptors from preoperative CT scans of 364 patients 
with EOC to develop a novel mathematical descriptor for 
prognostic and molecular phenotypes defined by radi-
omics, possessing predictive value. Utilizing the LASSO 
method, they identified 4 weighted features associated 
with OS, which were employed to calculate a radiomic 
prognostic vector (RPV) score for each tumor. Patients 
were subsequently categorized into low-risk, medium-
risk, and high-risk subgroups based on their RPV scores 
using an unsupervised K-means clustering technique. 
Significant differences in OS were observed among 
patient groups according to RPV stratification in both 
discovery dataset and two independent validation data-
sets. In a separate study, this radiomics biomarker was 
evaluated in the Department of Gynecologic Oncology 
at Kliniken Essen-Mitte (KEM), an OC center of excel-
lence accredited by the European Society of Gynecologi-
cal Oncology (ESGO), to assess its applicability. It was 
found that patients with lower RPV exhibited improved 
progression-free survival (PFS) compared to those with 
high RPV. Furthermore, in a multivariable Cox regres-
sion model, RPV showed a significant effect on PFS 
[69]. Despite these promising findings, external verifica-
tion and further testing through multicenter studies are 
required to establish its suitability for clinical application.

Risk stratification of patients prior to surgery enables 
more personalized treatment approaches. For those with 
poor long-term survival, alternative pathways can be rec-
ommended, such as NAC, and the early introduction of 
novel targeted therapies. Several previous studies have 
endeavored to develop prognostic prediction tools based 
on molecular profiles obtained from tumor biopsies [70, 
71]. However, the translation of these molecular prog-
nostic models into routine clinical practice remains chal-
lenging due to several factors: significant intratumoral 
heterogeneity leading to limited prognostic power, the 
invasive nature of biopsy procedures, high testing costs, 
and crucially, the considerable time constraints associ-
ated with molecular testing protocols. In contrast, radi-
omics leverages information extracted from patients’ 
routine preoperative imaging scans at the time of disease 
presentation. This approach is readily accessible without 
additional costs or time delays and has demonstrated 
substantial predictive capability. Nevertheless, most cur-
rent research in this field is predominantly focused on 
CT and MRI modalities; thus, it is imperative to explore 
radiomics models derived from other imaging techniques 
such as ultrasound and CE-CT to identify optimal prog-
nostic models.

Therapeutic outcome. The application of radiomics in 
predicting therapeutic outcomes is primarily focused 
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on forecasting responses to residual disease and chemo-
therapy, as these are the two most critical factors influ-
encing treatment strategies. For patients with HGSOC, 
the standard treatment course remains primary debulk-
ing surgery (PDS) followed by platinum-based chemo-
therapy. The presence of residual disease at the time of 
PDS serves as a significant prognostic indicator [72–
74]. According to reliable evidence, individuals with 
advanced HGSOC after PDS may achieve optimal prog-
nosis through complete resection of all visible tumors 
(R0 resection) [72, 73]. However, PDS does not confer 
any survival benefit for patients with a low probability 
of attaining R0 resection, but it can significantly increase 
perioperative morbidity [75]. Consequently, the recom-
mended approach for these patients is interval tumor 
reduction surgery (IDS) followed by NAC [76–78]. It is 
essential to identify patients who are unlikely to achieve 
R0 resection before surgery. Preoperative abdominal CT 
imaging and laparoscopy-based minimally invasive tech-
niques are frequently used clinical tools for predicting 
residual disease at PDS. Nevertheless, the laparoscopic 
score may be limited by its invasiveness, cost considera-
tions, and potential risk for disease metastasis. Similarly, 
non-invasive methods based on CT depend heavily on 
subjective assessments from radiologists [79, 80]. Cur-
rently, radiomics has emerged as a non-invasive and 
objective method that can effectively predict residual dis-
ease as delineated in this paper [81, 82].

To determine the relationship between radiomics fea-
tures, either independently or in conjunction with clini-
cal data, and residual disease at the time of surgery, Rizzo 
et  al. [83] extracted 516 radiomics features from ovar-
ian masses using a 3D ROI derived from CT images of 
HGSOC patients. They employed the Chi-square test to 
evaluate the association between representative cluster 
radiomics features and residual disease. The results dem-
onstrated that mass size, randomness, and homogeneity 
were significantly correlated with residual disease. To 
develop a radiomic-clinical nomogram based on preop-
erative MRI for patients with advanced HGSOC that can 
predict residual disease, Li et al. [81] analyzed a cohort of 
217 individuals with advanced HGSOC. To ensure con-
sistency in radiomic feature extraction between patients 
presenting bilateral cancers and those with unilateral 
tumors, two fusion methods were implemented: maximal 
volume of interest (MV) and maximal feature value (MF). 
Radiomics signatures were generated by combining the 
LASSO classifier alongside the minimum redundancy 
maximum relevance (mRMR) technique. A radiomic-
clinical nomogram was constructed incorporating both 
traditional clinicoradiological parameters and these novel 
radiomics signatures through multivariate logistic regres-
sion analysis, followed by performance evaluation using a 

validation set. The findings revealed that this nomogram 
achieved an AUC of 0.80 in the validation set, cohort, 
demonstrating superior predictive capability compared 
to traditional clinicoradiological metrics as well as MF-
based radiomics signatures, which yielded AUCs of 0.62 
and 0.74 respectively. Additionally, another study devel-
oped a nomogram utilizing MRI data for predicting 
residual disease. This investigation quantified metastases 
in abdominal and pelvic regions as independent factors 
influencing R0 resection inclusion within the nomogram 
framework, achieving an impressive AUC of 0.90 [82].

When immediate primary surgery is not feasible, 
NAC is recommended prior to delayed primary surgery 
(DPS) for patients with advanced HGSOC. For those 
who exhibit resistance to chemotherapy, early surgery 
intervention or targeted immunotherapy may be con-
sidered [74]. The most reliable method for assessing 
the response to chemotherapy is the chemotherapy 
response score, which requires omental surgery and 
is not widely accessible. Therefore, there is a pressing 
need for an alternative approach that offers both high 
accuracy and ease of use [84]. With the advent of radi-
omics, non-invasive prediction of chemotherapy remis-
sion and platinum resistance has become achievable, 
demonstrating commendable performance. Rundo et al. 
[85] explored whether omental tumor volume and CE-
CT-based radiomics could effectively predict the com-
plete response to NAC in HGSOC patients. The results 
showed that pre- and post-NAC measurements of 
omental tumor volume, along with a larger percentage 
change in response to NAC, were significantly corre-
lated with achieving a complete response. Furthermore, 
the model incorporating radiomics features obtained 
a higher AUC in the training set. While the volumet-
ric model had the highest AUC in the validation set, 
integrating radiomics data significantly enhanced the 
negative predictive value (NPV) from 0.61 to 0.79, 
thereby indicating improved reliability in identifying 
non-responders at earlier time points. In a recent study 
by Li et al. [86], recurrence within 6 months following 
the completion of platinum-based chemotherapy was 
defined as platinum resistance. They developed a radi-
omics nomogram that combined radiomics signatures 
with 3 clinical characteristics. This nomogram dem-
onstrated superior performance compared with the 
clinical mode, achieving a higher AUC of 0.80 vs. 0.75. 
Platinum-based chemotherapy remains the standard 
treatment before DPS; however, patients with platinum 
resistance should be considered for alternative non-
platinum therapies. The establishment of this model is 
anticipated to improve long-term prognostic outcomes 
for advanced HGSOC patients [87, 88].
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Surgery and chemotherapy represent the fundamental 
treatments for OC. The aforementioned studies have 
demonstrated that radiomics can effectively predict 
residual disease and chemotherapy sensitivity in 
patients with OC. With ongoing research into OC 
treatment, additional modalities such as targeted 
therapy and immunotherapy are gradually offering 
hope to patients with inoperable or chemotherapy-
resistant OC. To alleviate the financial and physical 
burdens associated with these treatments, further 
predictions regarding their therapeutic efficacy will be 
essential in future endeavors.

Predict the progress
Metastasis. According to previous studies, the 
5-year overall survival rate for early-stage disease is 
approximately 92%, while the rate for late-stage disease 
is only 29%, suggesting that advanced metastasis 
significantly impacts patient survival [89]. Early detection 
of metastasis is crucial for accurate staging of OC and 
has the potential to enhance prognosis, treatment 
options, and overall survival rates for patients [90]. 
However, research indicates that screening methods 
using CA125, ultrasound, and other technologies have 
proven ineffective in reducing mortality associated 
with OC, and no effective screening techniques have 
been developed [91]. In recent years, the application 
of radiomics in OC has gradually evolved to predict 
metastasis with high sensitivity and specificity. This 
advancement holds promise for further guiding clinical 
management. Ai et  al. [92] recruited 101 patients with 
pathologically confirmed metastases to investigate if 
radiomics features alone or in combination with clinical 
indicators could reliably predict the status of metastases. 
The results demonstrated that the combined model 
outperformed both radiomics and clinical models in 
predicting metastasis (AUC = 0.86 vs. 0.83 vs. 0.82). 
Notably, up to 75% of individuals diagnosed with stage 
III–IV disease exhibit lymph node metastases, while 
approximately 25% of patients with stage I–II disease also 
present lymph node involvement among those affected 
by HGSOC [93, 94]. The FIGO staging system for EOC 
is significantly influenced by lymph node status [95–97]. 
For instance, patients identified as having stage I lymph 
node metastases may be reclassified as stage III or IV 
[98, 99], highlighting the substantial impact of lymph 
node status on the EOC staging. According to guidelines 
established by the American College of Radiology and 
the European Society of Urogenital Radiology (ESUR), 
CT is currently regarded as the first-line imaging 
method for OC staging and follow-up [100]. However, 
with a sensitivity ranging from 48 to 80%, its predictive 
capability for lymph node metastasis remains insufficient 

[101]. Therefore, it is imperative to explore non-invasive 
techniques for preoperatively predicting lymph node 
metastasis to enhance clinical decision-making. In a 
study by Chen et  al. [102], a total of 256 patients with 
pathologically confirmed lymphatic metastasis were 
included. The results indicated that the radiomics 
approach performed better than the CT lymph node 
report (AUC = 0.75 vs. 0.72), and when combined, these 
methods yielded a composite model exhibiting superior 
predictive performance (AUC = 0.84).

Clinically, the identification of small peritoneal metas-
tasis (PM) in biopsies leads to approximately 30% of 
early-stage OC patients being upstaged postoperatively 
[103]. Early detection of peritoneal tumor seeding is 
essential for clinicians to improve preoperative staging 
accuracy and guide personalized therapy for OC, as it 
significantly influences therapeutic strategies and out-
comes. The most commonly utilized imaging modali-
ties for assessing PM are CT and MRI; however, they 
exhibit limitations in detecting micronodular peritoneal 
seeding when tumor masses are absent [104, 105]. DWI 
may offer a more precise evaluation of PM status in OC, 
although its effectiveness largely depends on the exper-
tise of physicians. Therefore, developing an impartial tool 
for the precise identification of PM is essential. Accord-
ing to two recent investigations, the MRI-based radiom-
ics nomogram demonstrated exceptional performance in 
recognizing PM status among patients with EOC [106, 
107]. Despite these findings being encouraging, the small 
sample sizes employed in these studies may lead to bias 
in their results. Additionally, both investigations were 
conducted at a single center and lacked external data for 
validation, which limits the generalizability of their con-
clusions. The latest study addressed these limitations. 
Wei et  al. [108] constructed clinical models alongside 
radiomics and DL models and subsequently integrated 
them into an ensemble model that exhibited superior 
predictive performance. This study also compared the 
predictive capabilities of this model against those of radi-
ologists, revealing that the former outperformed human 
assessments while confirming that the diagnostic perfor-
mance improved among various experienced radiologists 
following model-assisted interpretation.

The studies mentioned above were conducted to 
predict the metastasis of the peritoneum and lymph 
nodes, which are the most common metastatic sites 
of OC. The National Comprehensive Cancer Network 
(NCCN) guidelines recommend selective resection of 
all peritoneal surfaces and any metastatic lymph nodes 
suspected of harboring cancer, as this approach aims 
to enhance survival rates. Currently, the diagnosis of 
metastatic lesions primarily relies on laparoscopy, a 
method that is both invasive and costly [109]. Radiomics, 
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as a non-invasive technique, addresses these challenges 
and has demonstrated superiority over traditional 
imaging modalities in predicting metastasis. However, 
its reliability necessitates further investigation through 
multi-center trials and prospective studies.

Recurrence. HGSOC is the most prevalent and 
aggressive subtype of OC, characterized by a high rate 
of tumor recurrence that contributes to patient mor-
tality [110, 111]. Despite this, there are currently no 
reliable predictive biomarkers for clinical application 
[112]. Recent literature suggests that radiomics can 
enhance the predictive value of clinical indicators by 
extracting quantitative features in a high-throughput 
manner to predict tumor recurrence. Wang et al. [113] 
used DL to develop a noninvasive model for predict-
ing recurrence in patients with HGSOC based on 
CE-CT images. The results showed that the C-index 
of the model was 0.713 and 0.694 for the two valida-
tion cohorts, respectively. In another study also based 
on CE-CT images, Chen et  al. [114] revealed that the 
addition of radiomics features significantly improved 
the predictive ability of clinical models for recur-
rence, which combined model achieved an AUC of 
0.77. As the inaugural study to utilize β-2-[18F]-fluoro-
2-deoxy-D-glucose (18F-FDG) PET/CT, Wang et  al. 
[115] sought to determine whether radiomics fea-
tures extracted from the PET and CT components of 
18F-FDG PET/CT images, in conjunction with clinical 
characteristics and PET metabolic parameters, could 
predict PFS in HGSOC patients. The study found that 
the clinical + PET model performed better in terms 
of prognostic performance than other models. Previ-
ous studies have shown that MRI-based radiomics 
is also effective for predicting the recurrence of OC 
[116–118]. Among them, Wang et  al. [118] showed 
that the radiomics model based on T2WI had the best 
prediction ability by modeling and comparing different 
sequences of MRI. Moreover, Li et  al. [116] adopted 
the DL method and conducted external verification, 
which has broader applicability and credibility. Yao 
et al. [119] first built a radiomics model based on the 
ultrasound and integrated it with clinical characteris-
tics to create a promising model, with an AUC of 0.83, 
for predicting the recurrence of OC.

Preoperative identification of recurrence in patients 
with OC is crucial, as it can inform personalized 
treatment and monitoring strategies, including the 
selection of chemotherapy agents. Current research 
indicates that clinical features such as CA125 and 
FIGO stage are associated with OC recurrence [120]. 
However, traditional clinical biomarkers provide 
limited insights into tumor characteristics and often 
require invasive procedures. The aforementioned 

studies have established AI models for predicting 
recurrence based on multiple imaging modalities, 
all yielding significant findings. This underscores 
the effective application of radiomics in recurrence 
prediction, which is vital for monitoring disease 
progression. Nevertheless, current predictions 
primarily focus on HGSOC or EOC, both of which 
exhibit relatively high recurrence rates. In contrast, 
germ cell tumors, sex cord-stromal tumors, and 
metastatic OC also remain at risk for recurrence 
following therapy. Consequently, predicting the 
recurrence across a broader range of OC subtypes is 
essential for improving the overall prognosis of OC 
patients.

Application of radiogenomics in OC
Identify abnormal genetic changes
BRCA1/2 mutations in both germline and somatic 
cells represent the most prevalent mechanism driv-
ing homologous recombination deficiency, which is 
observed in approximately 50% of EOC and results in 
DNA repair deficiencies through homologous recombi-
nation [121]. Several studies have indicated that patients 
with BRCA​-mutant HGSOC tend to exhibit a higher 
likelihood of survival compared to those with BRCA​ 
wild-type HGSOC [122–124]. A more favorable progno-
sis for BRCA​-mutant HGSOC has been associated with 
increased sensitivity to platinum-based chemotherapy 
and distinct tumor biology, providing survival benefits 
independent of chemotherapy sensitivity [123, 125]. 
Additionally, poly ADP-ribose polymerase (PARP) inhib-
itor therapies may serve as beneficial adjuncts to main-
tenance treatment for BRCA​-mutant HGSOC during 
this interim period [126]. Therefore, detecting the status 
of BRCA​ mutation is crucial for personalized treatment 
stratification. Genetic testing currently serves as the pri-
mary method for clinical assessment of BRCA​ gene muta-
tions; however, it can be costly and time-consuming, and 
a single sample often fails to encompass the entire tumor 
[127]. Consequently, there is an urgent need to develop 
imaging models capable of non-invasively and com-
prehensively evaluating BRCA​ mutations in OC. There 
are conflicting findings regarding the ability of radiom-
ics features to predict BRCA​ mutational status. Meier 
et  al. [128] investigated the relationship between BRCA​ 
mutational status and inter-site heterogeneity but found 
no significant evidence linking them. In another study 
conducted by Li et  al. [129], three models were devel-
oped using 2D and 3D CE-CT radiomics characteristics 
to predict BRCA​ mutational status. However, Delong 
tests revealed no substantial differences in performance 
among these models. In a multicenter study, authors con-
structed both radiomics and DL models to predict BRCA​ 
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mutation and found that only the model incorporating 
clinical factors achieved an AUC of 0.75, while all other 
models exhibited poor predictive performance [130].

Amplification of the cyclin E1 gene (CCNE1) has fre-
quently been associated with chemoresistance and pri-
mary treatment failure in HGSOC patients, as well as 
poor survival outcomes [131–133]. In vitro studies have 
shown that tumors exhibiting increased CCNE1 levels 
are susceptible to inhibition by cyclin-dependent kinase 
2 (CDK2) or proteasome inhibitors [134, 135]. Conse-
quently, the amplification status of CCNE1 may aid in 
stratifying individuals with HGSC for targeted therapies. 
In a study examining tumor heterogeneity, gray-level 
correlation matrix-based texture features from all sites 
suspected of HGSOC involvement on preoperative CT 
were calculated and divided into 5 clusters using a Gauss-
ian mixture model. The intersite similarity matrix (ISM) 
was generated by calculating the similarity between site 
pairings. Based on ISM, the textural heterogeneity index 
between sites was computed and compared to CCNE1 
amplification status. The result showed that CCNE1 
amplification predominately occurred in individuals 
exhibiting greater variability in inter-site texture metrics 
[136].

The application of targeted therapies and the progno-
sis of carcinomas are intricately linked to abnormal gene 
expression. The emergence of radiogenomics addresses 
the limitations associated with time-consuming and 
costly genetic testing, demonstrating its utility in predict-
ing BRCA​ mutations and CCNE1 amplification. Look-
ing forward, the prediction of additional existing targets, 
such as TP53, will increasingly depend on advancements 
in radiogenomics.

Predict the clinical outcome
Nowadays, the most common treatment approach for 
advanced HGSOC is NAC followed by DPS [127]. How-
ever, 39% of patients do not exhibit any discernible 
improvement following neoadjuvant therapy with pacli-
taxel and carboplatin [137]. If it were possible to identify 
potential non-responders who would benefit from urgent 
primary surgery before the initiation of therapy, patient 
care would be significantly enhanced. Individual data 
streams, including clinical characteristics [138], CA125 
levels [139], CT imaging [127], and circulating tumor 
DNA (ctDNA) [140], have been the focus of prediction 
studies. The improved predictive potential capability of 
integrative models for complex endpoints has been suc-
cessfully shown in numerous cancer types [141, 142]. 
Therefore, Crispin-Ortuzar et  al. [143] developed an 
integrative radiogenomic framework to predict chemo-
therapy responses. In the correlation study exploring dis-
ease burden, the results indicated that both CA125 levels 

and the TP53 mutant allele fraction (MAF) accessed via 
ctDNA significantly correlated with total disease bur-
den at baseline [total volume, number of lesions, and 
summed response evaluation criteria in solid tumors 
(RECIST 1.1) diameters] and showed a significant posi-
tive correlation with the summed RECIST 1.1 diameters 
post-chemotherapy. Then, the authors trained four mod-
els by successively adding clinical and molecular features: 
(i) age, FIGO stage, and treatment; (ii) CA125; (iii) radi-
omics features; and (iv) ctDNA to predict RECIST 1.1. 
The results showed in an independent external cohort 
that the full model achieved an AUC of 0.80, similar to 
the radiomics model (0.78), compared to 0.47 and 0.50, 
respectively for the clinical and CA125 models [143]. 
The integrative radiogenomics framework showed good 
predictive power. In another study focused on predicting 
platinum resistance in OC, the predictive performance 
of integrated models combining genomic data such as 
human single-nucleotide polymorphisms (SNPs) related 
to human sulfatase 1 (SULF1) and CT radiomics features 
derived from pretreatment CT images was superior to 
that of SULF1 model combined with SNPS alone or using 
the radiomics model independently [144]. Furthermore, 
a multimodal data model proved effective for risk strati-
fication among patients. In a study aiming at predicting 
patient mortality, a multimodal model that includes his-
topathological, radiomic, and genetic data performed 
well. This promising outcome encourages further 
research using multimodal data models [145]. With the 
advancement and integration of radiomics and genomics, 
radiogenomics has increasingly been employed to pre-
dict clinical outcomes. Research has demonstrated that 
radiogenomics can effectively forecast chemotherapy 
responses and facilitate patient risk stratification. The 
convergence of multi-omics approaches with radiomics is 
emerging as a significant trend, warranting application in 
additional areas such as disease progression prediction to 
enhance clinical decision-making.

Conclusions and challenges
Radiomics significantly enhances the accuracy of OC 
diagnosis and reduces the variability in diagnostic 
proficiency among physicians. Additionally, it enables 
precise subtyping of OC without necessitating needle 
biopsies. Furthermore, radiomics plays a crucial role in 
predicting survival rates, therapeutic outcomes, tumor 
metastasis, and recurrence in OC patients, which is of 
great significance for guiding personalized medicine. In 
recent years, radiogenomics has emerged as a promising 
field capable of identifying genetic abnormalities such as 
BRCA​ mutations. Currently, genetic data are combined 
with radiomics features to predict clinical outcomes 
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like chemotherapy response and risk stratification that 
further guide clinical decision-making.

In contrast to other tumor types, the application of 
image-based AI in OC has been relatively delayed. This 
discrepancy may be attributed to the fact that radiomics 
was initially applied and yielded more results in tumors 
for which CT is the recommended examination tech-
nique, such as head and neck tumors and lung cancers 
[18]. Additionally, we have noted a limited utilization of 
radiomics in clinical settings for grading OC, despite its 
more widespread application in head and neck cancers 
[146, 147]. Currently, numerous researchers are con-
centrating on predicting OC subtypes to tailor treat-
ment strategies accordingly, as different OC subtypes 
exhibit significantly varied responses to chemotherapy. 
While several studies have been conducted to predict the 
response to targeted therapy and immunotherapy across 
various tumor types like non-small cell lung cancer, 
breast cancer, and hepatocellular carcinoma [148–150], 
similar investigations for OC have not yet been under-
taken, as these treatments are not considered standard. 
However, radiomics has frequently been employed to 
predict responses to residual disease and chemotherapy 
in OC, facilitating personalized treatment adjustments 
that lead to improved patient outcomes. Furthermore, 
radiomics holds the potential to assist clinicians in mak-
ing precise diagnoses of both benign and malignant 
tumors, thereby minimizing delays in disease manage-
ment and preventing overtreatment of benign tumors 
before surgery. It can also aid in determining the fre-
quency of imaging follow-ups and postoperative treat-
ment based on predictions regarding patient survival and 
recurrence rates, ultimately contributing to a significant 
improvement in survival rates among patients with OC. 
Moreover, radiogenomic detection of BRCA​ gene muta-
tions provides convenience for the application of targeted 
therapy by avoiding invasive procedures and reducing 
associated costs.

Despite these promising outcomes in using radiomics 
for OC management, several constraints have impeded 
its widespread adoption in clinical settings. Firstly, the 
lack of reproducibility in radiomics research presents 
a significant challenge. The processes used in radiom-
ics vary greatly across different platforms and studies, 
encompassing aspects from image acquisition to the 
extraction of multiple features. Factors such as acquisi-
tion parameters, reconstruction techniques, scanner 
manufacturers, and scanning protocols may introduce 
variability during image acquisition. Secondly, numer-
ous segmentation methods are documented in the litera-
ture, including those based on 2D or 3D images, as well 
as solid, cystic, or whole tumors. The diversity of these 
methods significantly influences the radiomics features 

and the adaptability of models constructed using these 
features. Therefore, standardization of process is crucial 
for improving reproducibility when conducting radiom-
ics research. Thirdly, despite an increasing number of 
multi-omics studies focusing on genomics, transcriptom-
ics, and proteomics, there remains a paucity of studies 
that integrate radiomics with other omics disciplines. The 
integration of multiple omics has the potential to improve 
patient survival rates and promote more precise medical 
approaches in the future. Additionally, the establishment 
of large and annotated datasets through international col-
laboration such as the Cancer Imaging Archive will play a 
supportive role [151]. Moreover, the algorithms utilized 
in radiomics and radiogenomics are often described as 
“black boxes”, which may face challenges in the context of 
AI-enabled imaging biomarkers for optimizing therapy, 
due to the necessity for biomarker-driven treatment deci-
sions to be grounded in pathophysiological explanations 
[152]. Therefore, we encourage future studies to prior-
itize the interpretability of AI models in their modeling 
efforts to facilitate the translation of benefits into prac-
tical applications. Furthermore, it is essential to conduct 
large sample, multi-center prospective studies to further 
validate these models and enhance their clinical usabil-
ity. Researchers should also expand the practical applica-
tion of radiomics and radiogenomics in clinical practice 
by synthesizing experiences and addressing shortcom-
ings to improve model performance. Finally, there are 
several promising fields worth exploring, such as virtual 
biopsy and delta radiomics. Virtual biopsy enables the 
acquisition of multi-site tissue information, while delta 
radiomics introduces a temporal dimension by involving 
quantitative feature extraction from image sets obtained 
during treatment [153, 154], thereby providing insights 
into the evolution of feature values.

In conclusion, through these development directions, 
radiomics and radiogenomics are expected to become 
more mature and refined in the future, offering more 
effective and reliable support for early diagnosis, accurate 
treatment, and prognostic evaluation of OC.
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