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Global Prediction Accuracy in Diabetes
Simulation Models
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Objectives. (1) To demonstrate the use of quality-adjusted life-years (QALYs) as an outcome measure for comparing
performance between simulation models and identifying the most accurate model for economic evaluation and health
technology assessment. QALYs relate directly to decision making and combine mortality and diverse clinical events
into a single measure using evidence-based weights that reflect population preferences. (2) To explore the usefulness
of Q2, the proportional reduction in error, as a model performance metric and compare it with other metrics: mean
squared error (MSE), mean absolute error, bias (mean residual), and R2. Methods. We simulated all EXSCEL trial
participants (N = 14,729) using the UK Prospective Diabetes Study Outcomes Model software versions 1 (UKPDS-
OM1) and 2 (UKPDS-OM2). The EXSCEL trial compared once-weekly exenatide with placebo (median 3.2-y
follow-up). Default UKPDS-OM2 utilities were used to estimate undiscounted QALYs over the trial period based
on the observed events and survival. These were compared with the QALYs predicted by UKPDS-OM1/2 for the
same period. Results. UKPDS-OM2 predicted patients’ QALYs more accurately than UKPDS-OM1 did (MSE:
0.210 v. 0.253; Q2: 0.822 v. 0.786). UKPDS-OM2 underestimated QALYs by an average of 0.127 versus 0.150 for
UKPDS-OM1. UKPDS-OM2 predictions were more accurate for mortality, myocardial infarction, and stroke,
whereas UKPDS-OM1 better predicted blindness and heart disease. Q2 facilitated comparisons between subgroups
and (unlike R2) was lower for biased predictors. Conclusions. Q2 for QALYs was useful for comparing global predic-
tion accuracy (across all clinical events) of diabetes models. It could be used for model registries, choosing between
simulation models for economic evaluation and evaluating the impact of recalibration. Similar methods could be
used in other disease areas.
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Highlights

� Diabetes simulation models are currently validated by examining their ability to predict the incidence of
individual events (e.g., myocardial infarction, stroke, amputation) or composite events (e.g., first major
adverse cardiovascular event).

� We introduce Q2, the proportional reduction in error, as a measure that may be useful for evaluating and
comparing the prediction accuracy of econometric or simulation models.

� We propose using the Q2 or mean squared error for QALYs as global measures of model prediction
accuracy when comparing diabetes models’ performance for health technology assessment; these can be used
to select the most accurate simulation model for economic evaluation and to evaluate the impact of model
recalibration in diabetes or other conditions.
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More than 20 cost-effectiveness models of type 2 diabetes
have been developed,1 most of which use microsimulation
and simulate one patient at a time.2 Many use an integrated
set of risk equations predicting mortality and clinical events
(e.g., myocardial infarction [MI], stroke, or amputation)
that were estimated on individual-patient data from the UK
Prospective Diabetes Study (UKPDS) trial.3,4

A key criterion for assessing the accuracy with which
diabetes simulation models predict individuals’ outcomes
is external validity (i.e., the degree to which they can
replicate the incidence of events in samples not used to
build the model).5 At least 5 studies have validated the
UKPDS Outcomes Model version 2 (UKPDS-OM2),4,6–9

all of which compared observed and predicted cumulative
incidence of individual clinical events. Diabetes models
are typically able to predict the incidence of many clinical
events (e.g., MI, stroke, blindness).

However, external validity may vary between health
outcomes and/or between performance metrics. External
validation studies need to assess the outcome measure
that is most relevant for the intended application. Focus-
ing on specific events may be insufficient when validating
a model for health technology assessment (HTA), where
we are interested primarily in the accurate prediction of life
expectancy and of quality-adjusted life-years (QALYs).10

Interactions between events4 also mean that recalibrating
one equation may affect the incidence of other events,
necessitating an outcome capturing all events.

For external validation and calibration studies, pre-
specifying a single outcome and a single performance
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metric in an analysis plan can minimize reporting bias11

and make it easier to choose between large numbers of
recalibrated models. However, using multiple measures
can provide a more nuanced comparison of the strengths
and weaknesses of the models under comparison.

A global accuracy measure capturing all relevant
outcomes would be a useful addition to existing meth-
ods to inform evaluations of individual model perfor-
mance and comparisons between simulation models.
Such a measure could be used to choose a model for
economic evaluation or HTA, inform model registries
(e.g., Mount Hood1), and evaluate the impact of model
recalibration.

Previous validation studies have evaluated prediction
accuracy for commonly used trial composite outcomes
(e.g., time to first atherosclerotic event12). These may be
useful for external validation to inform trial design or
extrapolation of clinical endpoints. However, they may
be less relevant to HTA and give equal weight to all
events within the composite (e.g., MI, stroke, cardiovas-
cular death) but no weight to recurrent events or events
not included in the composite outcome.

In this article, we propose using QALYs as a global
measure of health to facilitate more accurate and generic
comparisons of the prediction accuracy of diabetes simu-
lation models used for economic evaluation or HTA. To
our knowledge, such an approach has not been explored
previously. QALYs combine data on mortality and non-
fatal clinical events that reduce patients’ health-related
quality of life. The weights attached to different clinical
events are based on health state preference values esti-
mated using choice-based methods, such as time tradeoff.
Following the reference case of many HTA organiza-
tions,13,14 these weights are based on general population
preferences.15 Evaluating model accuracy using QALYs
reflects the way that models are used for HTA10 and
combines diverse events/dimensions into a single measure
on which model performance can be ranked.

External validation and choosing between models also
require selection of a primary metric of prediction
accuracy. Previous studies validating UKPDS-OM24,6–
9 followed guidelines for prognostic models when mea-
suring prediction accuracy,16,17 presenting C-statistics,
mean absolute percentage error, and graphical compar-
isons of the cumulative incidence of events. Continuous
outcomes, such as QALYs, can also be evaluated using
mean squared error (MSE). Q2 (1�MSE=SD2, where
SD is the standard deviation across observed values)
has been used in other fields to identify outliers or as a
test criterion for prognostic relevance18,19 but to our
knowledge has not previously been used in health
economics.

In this article, we aim to provide a quantitative exam-
ple of how QALYs could be used as a global outcome
measure when comparing diabetes models. We also illus-
trate the benefits of Q2 as a metric of prediction accuracy
and model performance. As an exemplar, we compared
prediction accuracy between UKPDS Outcomes Model
version 1 (UKPDS-OM1)3,20 and version 2 (UKPDS-
OM2).4,21 Although UKPDS-OM1 and OM2 have been
compared in UKPDS data and their risk equations have
been compared within other models, we are not aware of
any previous study directly comparing the prediction
accuracy of these 2 simulation models in an external
dataset. We also discuss the implications of using
QALYs for this approach and describe methods/code
that can be used in future studies.

Methods

UKPDS Outcome Models

UKPDS-OM13,20 and UKPDS-OM24,21 comprise individual-
patient simulation models that predict clinical events and
mortality for individuals with type 2 diabetes based on
their clinical event history and risk factor levels at base-
line and in subsequent years. Lifetime costs, QALYs, and
event rates are predicted for each person in the
population.

UKPDS-OM1 used data collected from 1977 to 1997
from 3,642 UK patients with newly diagnosed type 2 dia-
betes who participated in the UKPDS randomized
trial.3,22 UKPDS-OM1 predicts the incidence of mortal-
ity and 7 clinically adjudicated23 clinical outcomes
(ischemic heart disease [IHD], MI, stroke, congestive
heart failure, blindness, amputation, and renal failure)
based on history of events and 10 risk factors (age, ethni-
city, sex, body mass index, glycated hemoglobin, lipids,
blood pressure, smoking, peripheral vascular disease,
and atrial fibrillation). We used the version 1.3 stand-
alone software implementation.20

UKPDS-OM2 used data on all 5,102 UKPDS trial
participants and included up to 10 additional years’ post-
trial follow-up for outcomes and 5 additional years of
clinical risk factor data.4 UKPDS-OM2 predicts 1 addi-
tional clinical outcome (diabetic foot ulcer) as well as sec-
ond occurrences of MI, stroke, and amputation. Version
2.2 was used in all simulations.21

External Validation Data

We externally validated UKPDS-OM1 and UKPDS-
OM2 using data from the Exenatide Study of Cardiovas-
cular Event Lowering (EXSCEL ClinicalTrials.gov
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NCT01144338) multinational cardiovascular outcome
trial.24 EXSCEL evaluated the addition of once-weekly
exenatide to usual care, following 14,752 participants
with type 2 diabetes, with or without previous cardiovas-
cular disease, for a median of 3.2 y between 2010 and
2017. We pooled data from intervention and control
arms. After excluding 23 participants with insufficient
data, 14,729 participants were analyzed. Appendix 1
describes their baseline characteristics, imputation of
missing data, and data-cleaning methods.

Outline of Analytical Methods

We simulated events for EXSCEL participants over the
trial period using UKPDS-OM1 and UKPDS-OM2
using observed risk factor values as predictors. Postbase-
line risk factor values were used (when available) as we
primarily aimed to validate the model risk equations in
the context of the model, rather than time path equa-
tions. Missing risk factor values were imputed using mul-
tiple imputation and time path equations25,26 (Appendix
1). We assessed how accurately the QALYs estimated by
the models for each participant (‘‘model QALYs’’) pre-
dict the QALYs that this participant would have experi-
enced if the disutility values used in the model were
applied to the observed clinical events in the trial (‘‘trial
QALYs’’). The level of agreement between model
QALYs and trial QALYs for each participant is pro-
posed as a measure of the accuracy of model predictions.

Model QALYs were estimated by UKPDS-OM13 and
UKPDS-OM2.4 Trial QALYs were estimated using the
code shown in Appendix 2, which mirrors the assump-
tions used in UKPDS-OM2 to calculate QALYs
(described in Appendix 3). Both model and trial QALYs
indicate the total QALYs over the period for which that
participant was in the trial.

The base-case analysis used the utility inputs27 that
are defaults within UKPDS-OM2 (Appendix 3) since
they were estimated on longitudinal data (UKPDS) using
fixed-effects models that avoid bias from omitted time-
invariant variables.27 Like most previous validation stud-
ies,9,28 our analysis was based on point estimates from
the model; for simplicity, uncertainty around model pre-
dictions and utilities was not quantified. No discounting
was applied to simplify the analysis and to give equal
weight to all person-years of data. A sensitivity analysis
explored the impact of discounting.

Estimation of Model QALYs

For the base-case analysis, we ran 100,000 Monte Carlo
replications (or ‘‘loops’’) for each participant in UKPDS-

OM1 and 1,000,000 for UKPDS-OM2 to minimize sto-
chastic (first-order) uncertainty (i.e., random variability
between patients with identical characteristics due to chance
outcomes29), although 50,000 loops were sufficient for con-
vergence (Appendix 5, Figure A5.3). Fewer loops were used
for UKPDS-OM1 due to the longer simulation time. In
each loop of the model, each participant may experience
different events and/or die at different times. Each clinical
event reduces participants’ utility by a certain ‘‘disutility’’ in
the year of the event and a potentially different amount in
subsequent years (Figure 1). Life-years, ‘‘model QALYs,’’
and event incidence were averaged across loops to obtain
model predictions for each participant.

The model predicts QALYs over 7 y for all partici-
pants, regardless of whether the participant died or was
censored in the trial. For each participant, ‘‘model
QALYs’’ and model predictions of the incidence of clini-
cal events were summed over the time until the partici-
pant was censored due to withdrawal or completion of
the study. For participants who died during the trial, the
censoring date for model QALYs was set to January 7,
2017 (the mean study end date for participants who did
not withdraw or die before study completion) to reflect
the follow-up duration the participant would have if they
had survived. We adjusted model QALYs in the year in
which patients were censored to allow for deaths occur-
ring that year (Appendices 2–3).

Estimation of Trial QALYs

We calculated ‘‘trial QALYs’’ for each participant by
applying the default disutilities for each event from
UKPDS-OM2 (Figure 1, Appendices 2–3). Although
EXSCEL participants completed EQ-5D, these data were
not used to calculate trial QALYs because this study aimed
to assess the validity of the risk equations, not the utility
inputs. Like model QALYs, trial QALYs were calculated
for discrete years and assumed that events occurred at the
beginning of each year and deaths occurred halfway
through each year. For each participant, we added up the
trial QALYs accrued in each year until the participant died
or was censored. Trial QALYs during the year in which
the participant died were estimated by multiplying the par-
ticipant’s utilities during that year by 0.5 (reflecting the
half-cycle correction within the model). Trial QALYs dur-
ing the year in which the participant was censored were
multiplied by the proportion of the year for which the par-
ticipant remained in the trial.

Performance Metrics

Five performance metrics were used to evaluate how
accurately ‘‘model QALYs’’ from UKPDS-OM1 and
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UKPDS-OM2 predict ‘‘trial QALYs.’’ All metrics were
based on the difference between the model QALYs for
patient i (averaged over microsimulation loops) and the
trial QALYs for patient i.

Bias. Bias is defined as the tendency for predicted values
to shift in one direction from the observed values. A
biased model that systematically under-/overestimates
observed values would be considered unreliable30 or

Figure 1 Methods and assumptions for estimating model quality-adjusted life-years (QALYs) and trial QALYs for a
hypothetical trial participant.
When estimating trial QALYs and estimating model QALYs for each loop of the model, all participants begin with a utility of 0.807,27 which

may be decreased following events, based on the assumptions within UKPDS-OM2 that are described in Appendix 3. For example, in loop 1

for this hypothetical patient, myocardial infarction reduces utility by 0.065 for 1 y, while in loop 3, successive strokes permanently reduce

utility by 0.165 following each event and the patient dies before the end of trial follow-up. Model QALYs for this patient are averaged over at

least 100,000 loops (giving equal weight to each loop). In a proportion of loops (e.g., loop 3), the model predicts that this patient will have

events or die during year 1, so the model QALYs in year 1 are 0.793 (cf. the initial utility of 0.807). Conversely, in some loops, the model

predicts that the patient will survive for .4 y, so the model QALYs extend beyond the date of the patient’s death. During the trial, this

hypothetical participant actually experienced a stroke in year 2, which (based on the utilities within the model) reduced utility by 0.165.

Subsequently, the patient had renal failure, which reduced utility by a further 0.330, and the participant died during year 4. When estimating

QALYs (whether for the trial or the model), we assumed that events occurred at the start of each year and death occurred halfway through the

year. Appendix 3 describes the assumptions and utilities used.
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poorly calibrated.31 We estimated bias by averaging
deviations (residuals) between model and trial QALYs
across participants.

bias=

PN
i= 1 Mi � Tið Þ

N
ð1Þ

where Mi is the mean estimate of ‘‘model QALYs’’ for
participant i averaged over 100,000 loops, Ti is the ‘‘trial
QALYs’’ for participant i, and N is the number of trial
participants. A bias value of zero indicates no bias, posi-
tive (negative) values indicate that the model overesti-
mates (underestimates) trial QALYs, and larger absolute
values indicate higher levels of bias.

MSE. MSE was our primary performance metric since
it is increased by both bias and poor discrimination and
therefore provides a good global measure of model per-
formance. Discrimination comprises a model’s ability to
predict which patients have high values and which have
low values, that is, how well it captures heterogeneity
and predicts high (or low) model QALYs for those parti-
cipants with high (or low) trial QALYs. As the difference
between observed and predicted values is squared, large
differences between observed and predicted values
increase MSE more than mean absolute error (MAE).

MSE=

PN
i= 1 Mi � Tið Þ2

N
ð2Þ

MAE. MAE comprises the average of absolute differ-
ences between observed and predicted outcomes and is
thus less sensitive than MSE to outliers or predictions
that are far from the observed values, but it is also
increased by both bias and poor discrimination.

MAE=

PN
i= 1 jMi � Tij

N
ð3Þ

R2. The coefficient of determination (R2) indicates the pro-
portion of variability explained by a linear regression model
and can be compared between samples. We estimated R2 by
regressing trial QALYs on model QALYs using ordinary
least squares. This regression effectively recalibrates the slope
(a) and intercept (b), which means that R2 measures discrimi-
nation but does not capture bias within predictions.

R2 = 1�
PN

i= 1 aMi + b� Tið Þ2
PN

i= 1 Ti � �Tð Þ2
ð4Þ

where �T represents mean trial QALYs.

Q2. Q2 is a measure of the proportional reduction in
error18,19 that captures bias and discrimination. A model
perfectly predicting outcomes would have a Q2 of 1;
unlike R2, Q2 can be negative for very poor models. It is
analogous to scaled Brier scores30 but uses a different
scaling formula. The absolute value for Q2 can be inter-
preted in isolation and can be directly compared between
studies, subgroups, or outcome measures, unlike MSE
and MAE (which tend to be larger in samples or out-
comes with larger standard deviations).

Q2 = 1�MSE

SD2
= 1�

PN
i= 1 Mi � Tið Þ2=N

PN
i= 1 Ti � �Tð Þ2=ðN� 1Þ

ð5Þ

Additional Analyses

We present prediction accuracy for life-years and con-
ducted 8 sensitivity analyses to assess the robustness of
the results to changes in the assumptions:

1. including second MI, stroke, amputation, blind-
ness, and ulcer when estimating trial QALYs,
regardless of patient history;

2. excluding disutilities from second events (MI,
stroke, or amputation);

3. excluding disutilities from second events or ulcers;
4. using alternative utility values32;
5. excluding QALYs in the year of censoring/

withdrawal;
6. discounting QALYs (3.5% per annum);
7. 1-y time horizon;
8. 3-ytime horizon;
9. model life-years as a biased estimate of trial

QALYs (base-case assumptions); and
10. model QALYs as a biased estimate of trial life-

years (base-case assumptions).

We also graphically compared predicted and observed
cumulative incidence for individual events in participants
with no baseline history of that event to compare our
results against those of previous validation studies,
explore whether prediction accuracy varied between
events, and assess which endpoints require recalibration.
Observed cumulative incidence was plotted for each indi-
vidual event adjusting for death as competing risk using
the stcompet command in Stata version 17 (StataCorp,
College Station, TX, USA). This was compared graphi-
cally against the mean cumulative incidence predicted by
UKPDS-OM1/UKPDS-OM2, estimated as the number
of events predicted over time, divided by the number of
individuals at start of simulation (Appendix 1).
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Results

QALYs

The base-case analysis demonstrated that UKPDS-OM2
had better prediction accuracy for QALYs than
UKPDS-OM1 (Figure 2, Table 1). The MSE for QALYs
for UKPDS-OM2 was 17% lower than that for
UKPDS-OM1, and MAE was 8% lower. Although
both models had a downward bias, UKPDS-OM2

underestimated trial QALYs by an average of 0.127
(5.0%), while UKPDS-OM1 underestimated QALYs by
0.150 (5.8%; Table 1, Figure 3). Model QALYs for both
models lay outside the 95% confidence interval [CI] of
trial QALYs for each year (Figure 3). QALYs for both
models mirrored the bimodal distribution of QALYs
(Figure S5.1, Supplementary Material), but model
QALYs had a lower standard deviation than trial
QALYs did (Table 1).

Figure 2 MSE, MAE, Q2, and R2 for QALYs.
IHD, ischemic heart disease; MAE, mean absolute error; MI, myocardial infarction; MSE, mean squared error; Q2 = 1 2 MSE/standard

deviation2; QALY, quality-adjusted life-year; SA, sensitivity analysis; UKPDS-OM1, United Kingdom Prospective Diabetes Study Outcomes

Model version 1; UKPDS-OM2, United Kingdom Prospective Diabetes Study Outcomes Model version 2.

SA1: Trial QALYs include second MI, stroke, amputation, blindness, and ulcer since randomization regardless of patient history.

SA2: Excluding disutility from second MI, stroke, or amputation in UKPDS-OM2: 8,269 patients with no prior MI, stroke, or amputation.

SA3: Excluding ulcer and second events from UKPDS-OM2 (which are not captured in UKPDS-OM1): 8,269 patients with no prior MI, stroke,

or amputation.

SA4: Alternative utility values for both UKPDS-OM1 and UKPDS-OM2: initial utility, 0.785; IHD, 20.09; MI, 20.055; stroke, 20.164; heart

failure, 20.108; blindness, 20.074; ulcer, 20.170; amputation, 20.280; renal failure, 20.204; disutility for subsequent years same as year of

event.32

SA5: Excluding QALYs in the year when patients were censored for both trial and model QALYs.

SA6: Discounting QALYs at 3.5% per annum.

SA7: 1-y time horizon.

SA8: 3-y time horizon.
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Q2, which allows for bias in absolute values as well as
the proportion of variability explained by the model, sug-
gested that the proportional error reduction for UKPDS-
OM2 was 82%, compared with 79% for UKPDS-OM1.
UKPDS-OM2 model QALYs explained 84% of the
variability in trial QALYs (coefficient of determination,
R2), compared with 81% for UKPDS-OM1 (Figure 2).

Mortality was the main driver of model QALYs: only
0.064 QALYs were lost through quality-of-life reductions
associated with diabetic events versus 0.885 QALYs lost
through mortality (Fig. 4). Stroke and amputation
reduced QALYs more than all other events combined.

Subgroup and Sensitivity Analyses

UKPDS-OM2 had lower MSE and higher Q2 than
UKPDS-OM1 in all subgroup analyses (Table 1). How-
ever, UKPDS-OM1 had lower MAE than UKPDS-
OM2 and a bias closer to 0 for participants aged \65 y.
Both models had lower Q2 for older people, those with
prior cardiovascular disease, and those with longer

Table 1 Results for the Base Case Analysis, Sensitivity Analyses Testing Performance Metrics, and Subgroup Analysesa

Analysis Model
Trial QALYs,

�x (s)
Model QALYs,

�x (s) Q2 R2 MAE MSE Bias n

Model QALYs v. model QALYs (base case) OM1 2.573 (1.087) 2.423 (0.953) 0.786 0.805 0.289 0.253 20.150 14,729
OM2 2.573 (1.087) 2.445 (0.951) 0.822 0.837 0.265 0.210 20.127 14,729

Model life-years v. trial life-years OM1 3.226 (1.352) 3.028 (1.190) 0.797 0.819 0.342 0.372 20.199 14,729
OM2 3.226 (1.352) 3.058 (1.188) 0.829 0.846 0.314 0.313 20.168 14,729

Extreme sensitivity analyses testing performance metrics
Model life-years v. trial QALYs OM1 2.573 (1.087) 3.028 (1.190) 0.596 0.809 0.522 0.477 0.455 14,729

OM2 2.573 (1.087) 3.058 (1.188) 0.609 0.840 0.517 0.461 0.485 14,729
Model QALYs v. trial life-years OM1 3.226 (1.352) 2.423 (0.953) 0.423 0.814 0.887 1.056 20.803 14,729

OM2 3.226 (1.352) 2.445 (0.951) 0.462 0.841 0.865 0.984 20.781 14,729
Subgroup analyses by participant characteristics at randomization
Age \65 y OM1 2.630 (1.098) 2.568 (1.010) 0.879 0.883 0.184 0.145 20.061 8,500

OM2 2.630 (1.098) 2.555 (1.005) 0.886 0.892 0.186 0.137 20.075 8,500
Age �65 y OM1 2.495 (1.066) 2.225 (0.830) 0.649 0.718 0.433 0.399 20.270 6,229

OM2 2.495 (1.066) 2.296 (0.849) 0.727 0.768 0.373 0.311 20.200 6,229
No prior MI, IHD, or stroke OM1 2.694 (1.129) 2.570 (1.015) 0.840 0.853 0.241 0.204 20.125 8,188

OM2 2.694 (1.129) 2.595 (1.023) 0.865 0.874 0.216 0.172 20.100 8,188
Prior MI, IHD, or stroke OM1 2.421 (1.011) 2.240 (0.834) 0.693 0.726 0.349 0.313 20.181 6,541

OM2 2.421 (1.011) 2.258 (0.815) 0.747 0.778 0.327 0.259 20.162 6,541
\5 y diabetes duration OM1 2.658 (1.155) 2.568 (1.060) 0.847 0.853 0.218 0.204 20.090 2,712

OM2 2.658 (1.155) 2.568 (1.046) 0.863 0.870 0.216 0.182 20.090 2,712
�5 y diabetes duration OM1 2.554 (1.070) 2.390 (0.925) 0.770 0.794 0.305 0.263 20.163 12,017

OM2 2.554 (1.070) 2.418 (0.926) 0.810 0.829 0.276 0.217 20.136 12,017

IHD, ischemic heart disease; MAE, mean absolute error; MI, myocardial infarction; MSE, mean squared error; n, number of trial participants

included in this analysis; OM1, United Kingdom Prospective Diabetes Study Outcomes Model version 1; OM2, United Kingdom Prospective

Diabetes Study Outcomes Model version 2; QALY, quality-adjusted life-year; Q2 = 1 2 MSE/S2; QALYs, quality-adjusted life-years; SD,

standard deviation; �x, mean; (s), standard deviation.
aFor bias, zero indicates no bias, positive (negative) values indicate that the model overestimates (underestimates) trial QALYs, and larger

absolute values indicate higher levels of bias.

Figure 3 Trial and model QALYs in each year of the study for
the base-case analysis. Person-years in which participants were
censored or had been censored previously are excluded, although
person-years after death are included. Error bars show 95%
confidence intervals around trial QALYs.
QALYs, quality-adjusted life-years; UKPDS-OM1, United Kingdom

Prospective Diabetes Study Outcomes Model version 1; UKPDS-OM2,

United Kingdom Prospective Diabetes Study Outcomes Model version 2.
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diabetes duration compared with the overall population.
MSE and MAE cannot be directly compared between
analyses or subgroups as they depend on the variability
in trial QALYs.

Varying the methods in sensitivity analysis had very
little impact on Q2 (Figure 2). UKPDS-OM2 outper-
formed UKPDS-OM1 for all performance metrics in
every sensitivity analysis. Q2 for life expectancy was simi-
lar to Q2 for QALYs (Table 1). Comparing model versus
trial life expectancies rather than QALYs had similar Q2

to the base-case analysis (Table 1).
Two sensitivity analyses evaluating extremely biased

models were conducted to assess the extent to which differ-
ent performance metrics pick up biased estimators: model
life-years systematically overestimate trial QALYs, and
trial QALYs systematically underestimate model life-years.
The R2 for these scenarios was similar to that for the base-
case analysis, despite the substantial biases (Table 1). By
contrast, Q2 was substantially lower and MSE was sub-
stantially higher, reflecting the substantial bias.

Cumulative Incidence of Events

Plotting the cumulative incidence for individual events
demonstrated that both models overestimate the

incidence of death, first MI, first stroke, and blindness
(Figure 5). UKPDS-OM2 performed better for mortal-
ity, MI, and stroke, while UKPDS-OM1 performed bet-
ter for blindness and IHD. The predictions of both
models partially overlapped the 95% CIs of the observed
data for amputation, heart failure, and renal failure; for
heart failure and renal failure, UKPDS-OM2 overesti-
mated the incidence, while UKPDS-OM1 underesti-
mated incidence. UKPDS-OM2 gave good predictions
of ulcer and overestimated the incidence of second MI,
second stroke, and second amputation, which are not
included in UKPDS-OM1. UKPDS-OM2 also overesti-
mated the first occurrence of any event (including
death).

Discussion

QALYs can be used as an informative global outcome to
assess prediction accuracy for individual patient simula-
tion models used for HTA and economic evaluation,
since they capture the occurrence of multiple clinical
events in a single outcome that is relevant to that appli-
cation. QALYs give the greatest weight to deaths and
clinical outcomes associated with the largest quality-of-

Figure 4 Breakdown of model QALYs for UKPDS-OM2 by event: quality-adjusted life-years (QALYs) lost through the baseline
disutility associated with diabetes, QALYs lost through the disutilities attached to each event, and years of life lost through
mortality before year 7.
The impact of each individual event includes only the disutilities directly applied to that event: it excludes any mortality from fatal events of that

type (which are counted in the years of life lost) and the impact of one event on the risk of another event. For example, the impact of stroke

captures only the quality-of-life reduction from nonfatal stroke (0.165): the QALYs lost from fatal stroke and the QALYs lost from stroke

survivors having higher mortality are counted in years of life lost, while the QALYs lost from MI and amputation (which occur at a higher rate

following a stroke4) are counted under MI and amputation. IHD, ischemic heart disease; MI, myocardial infarction; QALYs, quality-adjusted

life-years; SA, sensitivity analysis; UKPDS-OM2, United Kingdom Prospective Diabetes Study Outcomes Model version 2.
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Figure 5 (continued)
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Figure 5 Observed (95% CI) cumulative incidence and predicted cumulative incidence from UKPDS-OM1 (blue line) and
UKPDS-OM2 (red line) for individual events in the base-case analysis.
amp, amputation; AnyEvent, first event of any type; CI, confidence interval; ihd, ischemic heart disease; mi, myocardial infarction; hf, heart

failure; MSE, mean squared error; QALY, quality-adjusted life-year. Ulcer, second events, and the composite endpoint any event cannot be

estimated by UKPDS-OM1 and so are shown only for UKPDS-OM2. The observed cumulative incidence of amputation, blindness, renal failure,

and ulcer is plotted up to the last occurrence of that event in the trial. Deaths and any event are based on all patients. All other graphs plotting

the incidence of the first event of each type are plotted only for the subset of patients who had no history of that event at randomization; graphs

for second events are plotted only for patients who had a history of that event at randomization.
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life decrements. They allow for the timing of events, giv-
ing greater weight to deaths or irreversible conditions
that occur early in the study period and giving greater
weight to common events than rare events.

The prediction accuracy for QALYs gives limited
information about which event(s) are predicted well or
poorly. Theoretically, a model could have good predic-
tion accuracy for QALYs (or clinical composite end-
points) despite one event being overestimated and
another being underestimated if both events arose in
patients with the same characteristics. Using QALYs
alongside additional analyses, such as cumulative inci-
dence curves, can help overcome these shortcomings and
identify which parameters need recalibration.

Prespecifying a single primary outcome in an analysis
plan can help reduce reporting bias.11 The primary out-
come should reflect the application for which the model
will be used. If a single global outcome is needed and the
model is used for economic evaluation, QALYs could be
a candidate that is likely to be more informative than
composite outcomes such as major cardiovascular events.

In the EXSCEL sample, UKPDS-OM2 produced
more accurate and less biased predictions than UKPDS-
OM1 for QALYs and mortality. This extends a previous
study by Hayes et al.,4 who observed that in the original
UKPDS sample, UKPDS-OM2 predicted fewer cardio-
vascular events and deaths than UKPDS-OM1 did. It is
likely that part of the difference between the models is
due to secular trends in mortality and management of
diabetes and diabetic events, since UKPDS-OM2
includes more recent data. Internationally, mortality
rates and the incidence of diabetic events have dropped
sharply since the UKPDS study began in 1977.33

UKPDS-OM2 was also estimated using more data and
incorporated additional risk factors and second events.
Our conclusions about which model was best were sensi-
tive to the outcome used to estimate prediction accuracy,
with UKPDS-OM1 giving better predictions for amputa-
tion, blindness, and IHD and UKPDS-OM2 performing
better for QALYs and mortality. This highlights the
importance of choosing the primary measure carefully.

Model and trial QALYs depend on the assumptions
that are used to estimate the impact of events on quality
of life. In this analysis, we followed the assumptions used
to calculate QALYs in UKPDS-OM2 (Appendix 3). This
may have contributed to the better prediction accuracy
for UKPDS-OM2. One such assumption was that sec-
ond MI, stroke, and amputation have the same impact
as the first event of that type, but that third MI, stroke,
or amputation or second ulcer have no further impact.
In principle, trial QALYs could be estimated with fewer
assumptions to test other model assumptions, such as

the half cycle correction. Our approach could also be
extended to evaluate uncertainty measures around model
estimates,28 allowing for both parameter and sampling
uncertainty.34

UKPDS-OM2 performed reasonably well in the
EXSCEL sample but overestimated the incidence of
death and most first events, while underestimating
QALYs and second events. It is likely that further recali-
bration will be needed to accurately predict events and
QALYs in contemporary global populations, particu-
larly for second events.

EXSCEL provided a large contemporary interna-
tional population, recruited patients with a wide range of
risk factor values, and adjudicated clinical outcomes.
The EXSCEL and UKPDS populations differ in that
UKPDS recruited patients with newly diagnosed dia-
betes,22 whereas EXSCEL participants were diagnosed a
median of 12 y before randomization and 73% had prior
cardiovascular events.24 However, EXSCEL has limita-
tions for external validation. First, the median follow-up
was only 3.2 y, whereas economic evaluation generally
requires a lifetime horizon.13 There are very few real-
world datasets with data on all UKPDS-OM risk factors
that have longer follow-up; registry studies often include
only risk factor measurements that are indicated by
patients’ symptoms (introducing bias) and will not have
adjudicated clinical outcomes. Second, EXSCEL (like
many diabetes trials) excluded participants with frailty,
dementia, or life expectancy \2 y, which may mean that
event rates and mortality in EXSCEL are lower than for
routine clinical practice. Consequently, the standardized
mortality ratio (SMR) for US patients in EXSCEL com-
pared with the 2015 US general population35 was 0.75 in
the patients’ first year after randomization and 1.35 in
year 3, whereas registry studies observe higher SMRs
(e.g., 1.38 for men and 1.49 for women36). While the
models overestimated mortality in EXSCEL, it is less clear
whether they would overestimate mortality in ‘‘typical’’
diabetes populations. Third, some events were defined dif-
ferently from UKPDS (Appendix 1, Table S1): EXSCEL
recorded hospitalization for heart failure/unstable angina
and gangrene rather than diagnosis of heart failure/IHD
and ulcer, so the actual incidence of these may be higher.
Finally, EXSCEL did not collect data on white blood cell
count or postrandomization smoking.

One disadvantage of QALYs is the need to choose a
set of utility values for events. However, sensitivity anal-
yses showed that prediction accuracy was not very sensi-
tive to utilities. The base-case analysis assigned no
disutility to IHD or blindness, since these had no signifi-
cant effect on utility in UKPDS.27 The accuracy with which
these events were predicted therefore had no effect on MSE
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for QALYs (except insofar as participants with IHD are at
higher risk of mortality or other cardiovascular events).
However, any composite endpoint and any approach to
assessing global prediction accuracy will inevitably rely on
weights of some kind, and we are not aware of any other
set of weights with a better evidence base.

In principle, costs of different events could be used as
an alternative set of weights, whereby different events
accrue different costs and models are compared based on
the accuracy with which total costs are predicted. Predic-
tion accuracy for costs could be important if high-cost
nonfatal events are poorly predicted. However, fatal
events generally have low cost, and patients who die
accrue no further costs: using costs as a global measure
of prediction accuracy could favor models that poorly
predict mortality, which is one of the most important
model outcomes. Poor prediction of fatal and nonfatal
events could also cancel out and erroneously suggest a
model produced good predictions. Costs are also likely
to vary between countries and over time more than utility
weights, which may introduce challenges for generaliz-
ability, especially in multinational studies. Furthermore,
as most diabetes treatments are taken for a lifetime, the
impact of prediction accuracy on total cost depends
heavily on treatment cost, which will vary between appli-
cations or model arms. By contrast, it is necessary to
choose a single model that can be applied to both inter-
vention and control and often (e.g., for multinational
studies) for multiple countries. Net benefit could also be
used: this would combine prediction accuracy for both
cost and QALYs but would be sensitive to assumptions
about setting, treatment cost, and ceiling ratio. We there-
fore consider QALYs a more generalizable outcome for
assessing global model performance.

One challenge for comparing prediction accuracy for
QALYs is that different simulation models include differ-
ent events and apply the quality-of-life impact of events
differently (e.g., additive or multiplicative). However,
this is not a challenge if we are assessing the impact of
recalibrating a single model. Furthermore, some datasets
do not provide data on all events, which means that we
would be able to assess the impact of the reported events
only on QALYs, which may lead to overestimation of
both model and trial QALYs. However, our approach
does not require any more data than validating each
event individually. The code for estimating QALYs is
provided in Appendix 2.

Our analysis methods are illustrated by validating 2
closely related diabetes microsimulation models using a
single trial. However, the same approach could be
applied to any model able to simulate outcomes for a
population of patients based on their baseline

characteristics, including many cohort models (e.g.,
Schlackow et al.,37 Dakin et al.,38 Heart Protection
Study Collaborative et al.,39 and Stevenson et al.40).
Future research to evaluate our methods in other disease
areas would be valuable. We used the EQ-5D values
built into UKPDS-OM2, but our methods could be used
with any set of utility (or disability) weights, reflecting
the preferences of either the general public or patients.

To our knowledge, this article is the first to use Q2 (1
minus MSE divided by standard deviation squared)18,19

in health economics. This provides an absolute measure
of prediction accuracy that can be compared between
outcome measures and between samples. Q2 has all of the
advantages of MSE: it captures discrimination, impreci-
sion, and bias and penalizes models more for larger pre-
diction errors than smaller prediction errors. R2 captures
only discrimination, and a biased model may have a high
R2, whereas Q2, MSE, and MAE capture both discrimi-
nation and bias. Bias is likely to be particularly relevant
to population-level cost-effectiveness. However, while
MSE values indicate only relative performance and can-
not be compared between outcomes or between samples,
Q2 can be interpreted in a similar way to R2. Q2 is also
more sensitive to outliers than R2 is (which in this case
could be low-risk participants who died early in the trial
and patients with long follow-up) and penalizes econo-
metric models for collinearity more than R2.18

In conclusion, QALYs can be used as an outcome
measure when assessing prediction accuracy of decision-
analytical models that predict outcomes for individual
patients. Similar methods could be applied to models of
other diseases that can predict outcomes for individual
patients. Q2 could be used for any application in which
MSE is used, including mapping models, prognostic
models predicting continuous endpoints, and any econo-
metric application.
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