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Purpose: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease influenced by environmental triggers, including
the commensal microbiota. Recent research has highlighted distinctive features of the gut microbiota in RA patients. This study
investigates the therapeutic potential of berberine (BBR), a gut microbiota modulator known for its significant anti-RA effects, and
elucidates the underlying mechanisms.

Methods: Utilizing the collagen-induced arthritis (CIA) rat model, we comprehensively evaluated the anti-rheumatoid arthritis effects
of BBR in vivo through various indices, such as paw edema, arthritis index, ankle diameter, inflammatory cytokine levels, pathological
conditions, and micro-CT analysis. Employing network pharmacology, we identified potential targets involved in RA alleviation by
BBR. To analyze comprehensive metabolic profiles and identify underlying metabolic pathways, we conducted a serum-based widely
targeted metabolomics analysis utilizing LC-MS technology. An integrated network encompassing metabolomics and network
pharmacology data was constructed using Cytoscape. The potential therapeutic targets and signaling pathways of BBR in the
management of RA were predicted using network pharmacology. Key targets and pathways were further validated by molecular
docking and immunofluorescent staining, which integrated findings from serum metabolomics and network pharmacology analysis.
Additionally, we analyzed the gut microbiota composition in rats employing 16S rDNA sequencing and investigated the effects of
BBR on the microbiota of CIA rats through bioinformatics and statistical methods.

Results: Our results showed that BBR demonstrated significant efficacy in alleviating RA symptoms in CIA rats, as evidenced by
improvements in paw redness and swelling, attenuation of bone and cartilage damage, reduction in synovial hyperplasia, inflammatory
cell infiltration, and suppression of proinflammatory cytokines IL-1f, IL-6, IL-17A, and TNF-a. KEGG analysis highlighted the PI3K/
AKT signaling pathway as a key mediator of BBR’s anti-RA effects. Metabolomics profiling via LC-MS revealed 22 potential
biomarkers. Arginine and proline metabolism, cutin, suberine and wax biosynthesis, glycine, serine and threonine metabolism and
taurine and hypotaurine metabolism are the most related pathways of BBR anti-RA. Molecular docking studies corroborated high
affinities between BBR and key targets. Furthermore, 16S analysis demonstrated BBR’s capacity to modulate gut bacteria composi-
tion, including an increase in the abundance of Lachnoclostridium, Akkermansia, Blautia, Romboutsia, and Faecalibacterium genera,
alongside a decrease in Prevotella 9 abundance in genus level. Integrated analysis underscored a strong correlation between serum
microbiota and fecal metabolites.

Conclusion: Our findings elucidate the multifaceted mechanisms underlying BBR’s therapeutic efficacy in RA, involving inhibition
of the PI3K/AKT pathway, modulation of intestinal flora, and regulation of host metabolites. These insights provide novel perspectives
on BBR’s role in RA management.
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Graphical Abstract

Unveiling the Therapeutic Potential of Berberine in Rheumatoid Arthritis: A Comprehensive Study
of Network Pharmacology, Metabolomics, and Intestinal Flora
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disorder distinguished by persistent synovitis, leading to localized bone and
cartilage damage, along with various systemic manifestations. The quality of life for individuals with RA is significantly
compromised due to joint stiffness and swelling, which can result in irreversible bone damage in milder instances and
profound bone destruction or disability in severe cases.' Despite extensive research, the exact etiology and pathology of
RA remain elusive, and the quest for less toxic yet efficacious drugs remain ongoing, with no specific pharmacological
breakthroughs to date.' Despite the availability of numerous effective therapies for RA, remission rates remain below
50%, with a notable proportion of patients classified as refractory, underscoring the absence of a definitive cure for this
condition.”

Emerging evidence underscores the intricate relationship between alterations in gut microbiota compositions, serum
metabolites, and RA, known as the gut-joint axis.>> Coptis chinensis (CC) is known for its diverse pharmacological
effects including antibacterial, anti-inflammatory, antioxidant, anti-tumor, antiarrhythmic properties.® With over 130
chemical constituents, CC primarily contains alkaloids, coumarins, organic acids, and flavonoids. Extracts from CC, such
as BBR, exhibit notable antibacterial and anti-inflammatory properties.” BBR, an isoquinoline alkaloid with a history of
over 400 years in traditional Chinese, Indian, and Middle Eastern medicine, has gained recent attention for its therapeutic
potential, particularly in managing RA.*'° Studies suggest that berberine effectively alleviates RA symptoms by
reducing inflammatory cytokine levels, modulating intestinal flora, enhancing uric acid excretion, and mitigating
inflammatory damage to joints and surrounding tissues.'' However, the specific mechanism underlying berberine’s anti-
RA effects warrants further investigation.
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Network pharmacology, primarily investigated through systems biology research methods, enhances comprehension
of cellular and organ behaviors at the molecular level. It accelerates the identification of drug targets, discovery of new
biomarkers, and construction of biological networks.'? Additionally, molecular docking simulation, matching a ligand
(drug) to a target molecule (receptor) by generating various conformations, proves invaluable in drug discovery and
molecular design.'*'* The successful integration of molecular docking simulation and network pharmacology offers
a robust model for treating RA with BBR.

In this investigation, we established a rat model of RA by administering Freund’s Incomplete Adjuvant combined
with Bovine Type II Collagen and assessed the establishment of the CIA model and the effectiveness of BBR in treating
RA through parameters such as paw thickness, arthritis score, cytokine levels, histopathological examination, and micro-
CT analysis. We utilized network pharmacology to identify the main targets, and potential mechanisms of BBR in
treating RA. The predictive pathways identified through network pharmacology were validated using molecular docking
and Immunofluorescence (IF) techniques. Leveraging LC-MS technology, we conducted serum metabolomics to identify
endogenous metabolites and metabolic pathways. Furthermore, we investigated the composition of intestinal flora and
serum metabolites, analyzing the correlation between serum metabolites and gut microbiota. By integrating the findings
from network pharmacology, metabolomics, and gut microbiota analysis, we systematically elucidated the mechanisms
underlying the anti-RA effects of BBR.

Materials and Methods

Materials

Freund’s Incomplete Adjuvant (F5506) were purchased from Sigma Biological Engineering Co., Ltd. Bovine Type 11
Collagen (20022) was gotten from Chondrex Co., Ltd. Hematoxylin-Eosin staining solution (G1120), Modified Safranin
O-Fast Green Cartilage Staining Kit (G1371) and Tartrate-Resistant Acid Phosphatase (TRAP) Stain Kit (GP1492) were
gotten from Beijing Solarbio Science Technology Co., Ltd. ELISA kits of TNF-a (MM-0180R1), IL-18 (MM-0922R2),
IL-6 (MM-0190R1) and IL-17A (MM-70049R1) were purchased from Jiangsu Meimian Industrial Co., Ltd (Jiangsu,
China). Antibodies against inhibitor of PIK3CB (ab151549) and second antibody, including Alexa Fluor 488 (ab150077
and ab150113) were purchased from Abcam Co., Ltd (Cambridge, UK), PIK3CD (12788-1-AP), AKT (60203-2-1g),
NOS3 (27,120-1-AP) were were got from Proteintech Co., Ltd (Wuhan, China). Berberine (purity >98%) was purchased
from Zelang Pharmaceutical Technology Co., Ltd. (Nanjing, China). MTX (XW00590521) was got from Sinopharm
Chemical Reagent Co., Ltd. and used as the positive control, TGuide S96 Magnetic Soil/Stool DNA Kit was purchased
from Tiangen Biotech Co., Ltd (Beijing, China).

Animals

SPF-grade male Sprague-Dawley (SD) rats, weighing 200 + 10 grams, were procured from Hubei Beinte Bio-Tech Co.,
Ltd. (Hubei, China) (certified under number SCXY (E) 2021-0027). These animals were housed in a well-regulated
environment with a standard 12-hour light/dark cycle, maintained at a constant temperature of 24 = 1°C and relative
humidity of 50 + 10%. Food and water were provided to the animals without restriction. All experimental procedures
involving animals adhered strictly to the ethical guidelines approved by the Animal Experiments Ethics Committee of
Hubei University of Chinese Medicine (Approval No.00298217).

CIA Induction and Drug Administration

In this study, a collagen-induced arthritis (CIA) model was established in rats through the administration of type II
collagen and Freund’s incomplete adjuvant following adaptive feeding.'”> The rats were then categorized into three
groups: model group; BBR group (treatment at a dosage of 200 mg/kg administered orally)'® and MTX group (treated
with MTX at a dosage of 1 mg/kg once per week).'” Each group consisted of six rats, and all underwent a 7-week
treatment period to evaluate the efficacy and effects of the respective interventions on arthritis progression. The
experimental timeline was shown in Figure 1.
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Figure | Eighteen eight-week-old Sprague—Dawley rats received an type |l collagen and Freund’s incomplete adjuvant to build RA model after seven days of adaptive feeding.
Then, experimental groups underwent BBR and MTX treatment 14 days after the initial immunization, and the arthritis index scores, ankle joint swelling and body weight
tested every week. After seven weeks of intervention, all rats were sacrificed. Serum were collected to conduct Elisa and widely targeted metabolomics analysis. Feces were
collected to conduct gut microbiota analysis. Cartilage and synovium from ankle joint were collected to conduct histology test immunofluorescence labeling.

Measurement of Arthritis Index Scores, Ankle Joint Swelling, Body Weight and ELISA
Assay

Throughout the study, various parameters were assessed to monitor arthritis progression. Body weight, paw thickness,
and arthritis score were measured every 3 days from week 2 to week 9. Hind-paw thickness was quantified using a digital
vernier scale. Arthritis severity was evaluated using a scoring system ranging from 0 to 4, with the cumulative score of
both hind paws serving as the arthritis index, with a maximum value of 8.'® Importantly, all scoring procedures were
conducted in a blinded manner to minimize bias and ensure the accuracy and reliability of the data collected.

In week 9, Blood sample was collected to estimate cytokine levels. Serum was obtained by centrifuging blood
samples at 3500 rpm and 4 °C for 15 minutes. ELISA kits were employed to quantify levels of IL-1B, IL-6, IL-17A, and

TNF-a in the serum, following the manufacturer’s recommendations.

Histopathological and Micro-CT Analysis

At week 9, the hind paws of rats were collected and the skin was removed, and they were then fixed in 4%
paraformaldehyde. Tissue samples underwent decalcification using 10% EDTA for 8 weeks before being embedded in
paraffin. Hematoxylin and eosin (H&E), safranin O-fast green, and tartrate-resistant acid phosphatase (TRAP) stains
were conducted on 5-micrometer sagittal sections of the ankle joint to assess histopathological changes. The histological
assessment of ankle joints was conducted in a blinded manner, adhering to the following criteria.'"” Synovial
Inflammation: 0 = No evidence of hyperemia or inflammation; 1 = Mild hyperemia accompanied by 2—4 layers of
reactive synovial cells; 2 = Moderate hyperplasia, >4 layers of reactive synovial cells and scattered inflammatory cell
infiltration; 3 = Severe hyperplasia, extensive inflammatory infiltration into the synovial space. Cartilage damage: 0 =
Smooth joint surface without any erosion; 1 = Rough articular surface with minimal bone erosion; 2 = Ulcerated articular
surface, significant cartilage erosion; 3 = Severe bone erosion with complete absence of staining in cartilage.
Immunofluorescence staining was performed using primary antibodies targeting PIK3CB (1:100), PIK3CD (1:100),
AKT (1:100), and NOS3 (1:100), followed by secondary labeling with Alexa Fluor 488 (1:500) and nuclear staining with

DAPI. Immunofluorescence images were captured using a microscope system (Carl Zeiss, Axio Observer Z1), ensuring
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a minimum of 3 random replicates for each sample. CIA rats’ joint bone images were obtained using a Skyscan 1276
micro-CT scanner (Bruker microCT, Kontich, Belgium) and reconstructed using NRecon.

Targets Prediction, Pathway Enrichment Analysis and Network Construction
BBR targets were sourced from the TCMSP database,”® the SwissTargetPrediction database,”'
server.”? Targets related to “Rheumatoid arthritis” were identified in the DisGeNET database,” the Therapeutic Target

and the PharmMapper

database, the GeneCards database,” and the OMIM database,>* and the retrieved gene targets were merged.

To elucidate the pathways through which BBR treats RA, the David database was utilized for GO biological
processes pathway and KEGG enrichment analysis.”> The top 20 KEGG pathways were selected based on the order
of p-values, arranged from smallest to largest. Detailed information is provided in Table S1.

Protein-Protein Interaction (PPI) network, drug-targets-pathways network and drug-reaction-enzyme-gene network was
constructed by Cytoscape 3.10.2 software. Using MetScape plug-in to obtain the drug-reaction-enzyme-gene network.

Widely Targeted Metabolomics Analysis

Serum samples were thawed on ice from —80°C, vortexed for 10 seconds, then added to a 2 mL microcentrifuge tube
along with 50pL of sample and 300pL of extraction solution (ACN: Methanol = 1:4, V/V). The mixture was vortexed for
3 minutes, centrifuged at 12000 rpm for 10 minutes at 4°C, and 200uL of the supernatant were collected and stored at
—20°C for 30 minutes. 180uL of the supernatant was then analyzed by ultra-performance liquid chromatography (UPLC,
ExionLC AD) and quadrupole-time of flight mass spectrometry (TripleTOF 6600, AB SCIEX).

UPLC conditions included a Waters ACQUITY UPLC HSS T3 C18 column (1.8um, 2.1 mmx100 mm) maintained at
40°C, with a flow rate of 0.4 mL/min, and an injection volume ranging from 2pL to SuL. The solvent system consisted of
water (0.1% formic acid) and acetonitrile (0.1% formic acid), with a gradient program starting at 95:5 V/V at 0 minutes,
transitioning to 10:90 V/V at 10.0 minutes, maintaining 10:90 V/V until 11.0 minutes, returning to 95:5 V/V at
11.1 minutes, and holding at 95:5 V/V until 14.0 minutes.

The mass spectrometry (MS) conditions were set as follow: electrospray ionization (ESI) temperature at 500°C; Ion
spray voltage (IS) at 5500 V, positive mode and —4500 V, negative mode. Gas I (GSI) and gas II (GSII) at 50 psi each,
curtain gas (CUR) at 25.0 psi. Collision gas (CAD) at high. A specific set of multiple reaction monitoring (MRM)
transitions was monitored for each period based on eluted metabolites, ensuring accurate and comprehensive data
acquisition and analysis.

Gut Microbiota Analysis

Fecal samples from colon were collected fresh and kept at —80 °C after rats were sacrificed. The TGuide S96 Magnetic
Soil/Stool DNA Kit was used in this study to extract genomic DNA from rat feces. The hypervariable region V3-V4 of
the bacterial 16S rRNA gene was amplified using primer pairs 338F: 5>~ ACTCCTACGGGAGGCAGCA-3’ and 806R:
5’-GGACTACHVGGGTWTCTAAT-3". PCR products were visualized on agarose gel and subsequently purified using
the Omega DNA purification kit. The purified PCR products underwent paired-end sequencing (2 x 250 bp) on the
[llumina Novaseq 6000 platform. Sequences were then clustered into operational taxonomic units (OTUs) at a 97%
similarity threshold using USEARCH (version 10.0). Taxonomy annotation of OTUs/ASVs was performed using the
Naive Bayes classifier in QIIME2 with the SILVA database (release 138.1), confidence threshold was 70%.

Alpha diversity analysis was conducted using QIIME2 software to assess species diversity complexity in each
sample. Principal coordinate analysis (PCoA) was utilized for beta diversity calculations. Bacterial abundance and
diversity were compared using one-way analysis of variance. Linear discriminant analysis coupled with effect size
(LEfSe) was applied to identify differentially abundant taxa. Finally, sequencing data were analyzed using the online
platform BMKCloud (https://www.biocloud.net).

Statistical Analysis
GraphPad Prism (version 8.3.0) facilitated our statistical analysis, with results expressed as means + SD. For data not
conforming to normal distribution, we applied the Mann—Whitney test. To discern significant variances, ANOVA and
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subsequent Tukey’s test were employed. Serum metabolite-genera correlations hinged on Spearman’s method via the
Metware cloud platform (https://cloud.metware.cn/). Only completed the correlation in those genera (P < 0.05) and

metabolites (P < 0.05, VIP > 1) were found to be statistically significant between groups.

Results
Alleviating Effects of BBR on Physical Indices and Bone Damage in CIA Rats

To investigate the effects of BBR on CFA-induced arthritis, we assessed arthritis index scores, ankle joint swelling, and body
weight changes. In the model group, arthritis index scores markedly increased from 2th to 9th weeks post-primary immuniza-
tion compared to the control group (P < 0.01). Treatment with BBR and Methotrexate (MTX) resulted in a significant reduction
in arthritis index scores compared to the model group at the 6th week (P < 0.05, Figure 2A). Hind paw thickness notably
increased in CIA rats compared to the control group (P < 0.01). Following treatment with BBR and MTX in CIA rats, paw
thickness began to decrease from the 6th week (P < 0.01, Figure 2B). By the 5th week, the control group exhibited
a significantly greater increase in body weight compared to the model groups (P < 0.05). However, by the 9th week, rats
treated with BBR exhibited a notable increase in weight compared to the CIA model rats (P < 0.05, Figure 2C). These findings
underscore the significant ameliorative effects of BBR on various symptoms associated with CFA-induced arthritis in rats.

The effects of BBR on joint damage in CIA rats were scrutinized through comprehensive morphological analysis and
Micro-CT evaluations. As shown in Figure 2D, the morphological changes in paw appearance were compared among
groups, revealing that while paws of control group rats appeared slim and flexible, those of model rats displayed evident
RA symptoms, characterized by redness and swelling. Following treatment with BBR and MTX, these RA symptoms
were alleviated to varying degrees. Micro-CT analysis of CIA rats displayed significant damage to bone structure,
including erosion and the presence of irregular, coarse surfaces on the ankle and toe joints, indicating severe bone
destruction, as shown in Figure 2E. After administration of BBR and MTX, there was a marked reduction in the severity
of bone destruction, along with noticeable improvement in the roughness of the articular surfaces.

Effect of BBR on Histopathological Changes and Inflammatory Cytokines in CIA Rats
Results of histopathological alterations in ankle joints revealed that BBR modulated the pathological state of CIA rats.
Representative images of H&E and Safranin O&Fast Green staining displayed cartilage damage, erosion, synovial
hyperplasia, and inflammatory cell infiltration in model group rats compared to controls (Figure 3A and B). However,
administration of MTX and BBR significantly ameliorated these pathological changes in RA. Histological assessment
scores clearly demonstrated that BBR treatment effectively reduced cartilage damage and alleviated synovial inflamma-
tion in CIA rats, as depicted in Figure 3D and E. Furthermore, trap staining images (Figure 3C) indicated that the number
of trap-positive cells elevated in the model group compared to controls. Treatment with MTX and BBR can decrease the
number of trap-positive cells, suggesting BBR’s potential in ameliorating claw joint bone destruction in CIA rats.

The expression levels of IL-1p (Figure 3F), IL-6 (Figure 3G), IL-17A (Figure 3H), and TNF-a (Figure 3I) in serum
was tested by Elisa. The expression of these cytokines in the model group was significantly elevated compared to the
control group (P < 0.01). Treatment with BBR and MTX resulted in reduced levels of inflammatory cytokines compared
to the model group (P < 0.05). These results showed that the CIA model was established successfully and both BBR and
MTX effectively suppressed the inflammatory response.

The Combination Interaction of BBR and Target

314 targets associated with BBR were found and labeled based on their gene symbols. Through database searches, 2298 genes
relevant to RA were identified. Among these, 134 common target genes were input into the STRING database, applying
aminimum required interaction score > 0.9 and specifying Homo sapiens as the species. The resulting protein-protein interaction
(PPI) network was visually analyzed using Cytoscape 3.10.2 software, revealing 131 nodes and 1349 edges (Figure 4A).
Through network analysis, nodes were color-coded and sized based on their degree to identify core targets. Key targets
implicated in the anti-RA effects of BBR included ALB, CASP3, SRC, EGFR, HSP90AA1, and IGF1, based on their degree
in the network, The details of these targets are shown in Table S2. Further investigation into the combined mechanisms of BBR
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Figure 2 (A) The arthritis index of rats. (B) The paw thickness of rats. (C) The body weight changes of rats. Data were expressed as mean * SD. *p < 0.05, **p < 0.01,
compared with Control; #p < 0.05, ™p < 0.001 compared with Model. (D) The represented paw of rat in different treatment groups. (E) Represented image of Micro-CT
analysis of joint destructions of rats.

for treating RA involved the construction of a drug-target network using 136 targets (Figure 4B). This analysis revealed that BBR

interacts with multiple targets, resulting in 64 drug-target associations, highlighting its multifaceted approach in treating RA.

Effects of BBR on Pathways

The drug-targets-pathway network encompassing of 156 nodes (20 pathways, 134 targets, 1 drug, 1 disease) and 541
edges (Figure 4C). Notably, “Pathways in cancer” (degree = 47), PI3K/AKT signaling pathway (degree = 29), and Lipid
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Figure 3 (A) and (B) Representative pathological images of ankle joints stained with HE and Safranin O/Fast green staining (100 magnification). Black arrow represents the
cartilage damage and red arrow represents the Synovial inflammatory changes Scale bar = 100 um. (C) Representative pathological images of subchondral bone stained with
trap, Scale bar =20 pum. (D and E) Histological evaluation score of cartilage damage and synovial inflammation (n = 6). **p < 0.01, compared with Control; ##p < 0.001
compared with Model; NS = no significant. (F-1) The serum concentrations of inflammatory cytokines IL-1p, IL-6, IL-17A, TNF-qa. **p < 0.0, compared with Control; #p <
0.05, "p < 0.001 compared with Model; NS = no significant.
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and atherosclerosis (degree = 28), exhibited a relatively high number of target connections among others. The top three
targets based on degrees were PIK3CB (degree = 18), PIK3CD (degree = 18), and HRAS (degree = 16).

We utilized DAVID 2021 to conduct GO function and KEGG analysis on the 134 candidate target genes, aiming to
elucidate the molecular mechanism of BBR in treating RA. The KEGG pathway analysis revealed a strong correlation
between several targets and the PI3K/AKT, MAPK, VEGF signaling pathways, all these pathways are intricately
intertwined with inflammatory responses (Figure 4D). The GO evaluations were categorized into biological process
(BP), cell component (CC), and molecular function (MF) terms. A total of 342 enrichment results in the BP category
were identified, encompassing signal transduction, positive regulation of MAPK cascade, protein phosphorylation, and
positive regulation of protein kinase B signaling (Figure 4E). Furthermore, 57 enrichment results were associated with
CC, including cytosol, extracellular region, extracellular space, and extracellular exosome (Figure 4F). Additionally, 100
enrichment processes related to MF were identified, covering protein serine/threonine/tyrosine kinase activity, protein
tyrosine kinase activity, protein kinase activity, and others (Figure 4G). Therefore, the PI3K/AKT signaling pathway was
considered a key pathway in the anti-RA effects of BBR. These findings underscored the multifaceted nature of BBR’s
treatment for RA, operating through multiple pathways.

Multivariate Data Analysis and Screening and ldentification of Differential Metabolites
Initially, an unsupervised PCA model was employed to analyze all samples (Figure SA). The PCA results effectively
distinguished the control group from the model group, confirming the successful establishment of the RA model.
Furthermore, the BBR group exhibited clear differentiation from the model group, indicating a discernible effect of
BBR in treating RA. Subsequently, PLS-DA was utilized to extract variation information among groups to identify
distinct compounds (Figure 5B). The PLS-DA score plots, demonstrated significant classification effects, with each group
clearly separated. The supervised OPLS-DA model depicted the overall trends of all groups (Figure 5C).

Differential metabolites were identified based on VIP values (> 1.0) and 7-test (p value < 0.05). This screening
process yielded a total of 176 differential metabolites. Comparative analysis revealed that in the model group, 82
differential metabolites exhibited significant increases, while 94 showed noticeable decreases compared to the control
group. However, treatment with BBR partially reversed the levels of these metabolites. Specifically, following BBR
administration, 21 biomarkers (such as Deethylatrazine, Docosahexaenoic acid, Isoquinoline, etc.) exhibited a tendency
to normalize. The heatmap analysis of these 21 differential metabolites across different groups illustrating a distinct
cluster separation between the model and control groups (Figure 5D). Consequently, BBR demonstrated a capacity to
mitigate metabolic disorders in CIA rats to some extent. The details of the differential metabolites are shown in Table S3.

Metabolic Pathways Analysis

The differentially expressed metabolites in the control and model groups were mainly enriched in arginine and proline
metabolism, arginine biosynthesis, neuroactive ligand-receptor interaction and purine metabolism (Figure 5E). In
addition, arginine and proline metabolism, cutin, suberine and wax biosynthesis, glycine, serine and threonine metabo-
lism, taurine and hypotaurine metabolism were highly enriched in the model and BBR groups (Figure 5F).

Integrated Analysis of Metabolomics and Network Pharmacology

For a comprehensive understanding of BBR’s mechanisms in combating RA, we established an interaction network
amalgamating metabolomics and network pharmacology (Figure 6). Differential metabolites were incorporated into the
MetScape plugin within Cytoscape. Through correlating potential targets from network pharmacology with genes in
MetScape analysis, 24 key targets were pinpointed, encompassing STS, GSTP1, NOS3, and others. The associated key
metabolites included D-Galactose, 4-Guanidinobutanoate, and 3’-monoiodo-L-thyronine. Furthermore, the affected path-
ways encompassed tyrosine metabolism, phosphatidylinositol phosphate metabolism, androgen and estrogen biosynthesis
and metabolism, bile acid biosynthesis, purine metabolism, and urea cycle and metabolism of arginine, proline,
glutamate, aspartate, and asparagine. These pathways may contribute significantly to the therapeutic effects of BBR on
RA. The screened targets were further matched with hub targets identified in the PPI pathway network; we identified
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NOS3. For subsequent validation, we focused on genes related to the PIK3-AKT pathway among the key genes, which
are highlighted in red.

Molecular Docking

Drawing from the outcomes of network pharmacological analysis, our focus was on the core PI3K/AKT pathway, for
which three key targets were selected for molecular docking investigations. Employing AutoDock Vina, we conducted
molecular docking analyses between BBR and the three chosen targets: PI3KCB, PI3KCD, and NOS3. The PDB IDs of
the receptor proteins for PIK3CD and NOS3 are 8bcy and 1m9q, respectively. As PI3KCB lacks PDB data, we utilized
AlphaFold structure prediction (AF-P42338-F1). Our findings exhibited robust binding affinity between BBR and
PI3KCB, with a binding energy of —5.62 kcal/mol (Figure 7A). Docking analyses unveiled hydrogen bonds formed
between BBR and the LY S318 residues of the PI3KCB protein. Similarly, a strong binding affinity was observed between
BBR and PI3KCD in the ligand binding domain of PI3KCD (binding energy of —6.44 kcal/mol), with hydrogen bonds
formed between BBR and the GLN-116 residues of the PI3KCD (Figure 7B). Furthermore, BBR demonstrated favorable
interaction with NOS3 (binding energy of —7.07 kcal/mol), forming hydrogen bonds with the TYR475 residues of the
NOS3 (Figure 7C).

Effects of BBR on PI3K-AKT Signaling Pathways

The PI3K-AKT signaling pathway emerged as a pivotal route for RA treatment according to network pharmacology
analysis. To delve deeper into the potential anti-RA mechanisms of BBR, we investigated its effects on PI3K-AKT
signaling pathways (including PIK3CB, PIK3CD, AKT and NOS3), utilizing IF staining. The expression levels of
PIK3CB, PIK3CD, AKT and NOS3 in the cartilage and synovial tissues of rats are depicted in Figure 8. Compared to the
control group, the model group exhibited significantly heightened expression of PIK3CB, PIK3CD, AKT and NOS3 (P <
0.01). Following treatments with BBR and MTX in CIA rats, the expression of PIK3CB, PIK3CD, AKT and NOS3
markedly decreased compared to the model group (P < 0.01). Similarly, there was no significant difference observed
between the BBR and MTX groups (Figure 8A-D).

Effects of BBR on Gut Microbiota in CIA Rats

To investigate BBR’s impact on gut microbiota during RA treatment, 16S rRNA sequencing was employed. For -diversity,
there was a distinct separation in the distribution of microbiota composition among the three groups by PCoA analysis
(Figure 9A). At phylum and genus levels, results of bacterial composition and relative abundance analysis showed that nine
phyla with abundance exceeding 1%, among these, Firmicutes, Patescibacteria, and Bacteroidota were notably prevalent in
each sample in each sample. Firmicutes emerged as the dominant phylum, representing approximately 70% in each group
(Figure 9B). Bacteroidota and Proteobacteria followed Firmicutes in abundance. 11 genera with abundances of >1% were
identified, with ligilactobacillus and unclassified Muribaculaceae being the predominant genera across all three groups

A PIK3CB B PIK3CD C NOS3

I YA o bl
[ & e, )
[ Y% a7
I + &
| |

Figure 7 Molecular docking simulation of compound-target binding. (A) MDT of BBR on PI3KCB. (B) MDT of BBR on PI3KCD. (C) MDT of BBR on NOS3.
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(Figure 9C). The other genera with high abundance in the control group were lactobacillus (17.61%), unclassified Bacilli

(8.82%), Candidatus_Saccharimonas (4.39%), and unclassified Oscillospiraceae (3.49%). In the model group, ligilacto-

bacillus (33.8%), lactobacillus (5%) and unclassified bacilli (2.28%) evaluated remarkable compared with control group
(P<0.05), We also found the abundance of unclassified Muribaculaceae (10.8%) decreased (P<0.05) and akkermansia
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increased (P<0.05) in BRB group comparing with model group. Results of alpha diversity showed that, BBR significantly

BBR significantly decreased the Chaol and Shannon Index of gut microbiota in CIA rats.>*?” This finding supports the

notion that BBR possesses natural antibacterial properties (Figure 9D). Linear Discriminate Analysis Effect Size (LEfSe)
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analysis was then conducted and the results indicated that the unclassified Lactobacillus, Candidatus_Saccharimonas,
unclassified Clostridia UCG_014 and Prevotellaceae Ga6A1_group genus were enriched in the control group; in the CIA
group, the unclassified Muribaculaceae, unclassified Oscillospiraceae and prevotella 9 genera were enriched; the
Akkermansia, Prevotellaceae UCG_001, Eubacterium, Blautia and Lachnoclostridium were enriched in the BRB groups
(Figure 9E and F).

Correlation Analysis of the Widely Targeted Metabolomics and the Gut Microbiota
Spearman rank correlation coefficient analysis was employed to investigate the correlation between differential genera of
intestinal flora and serum metabolites, which was then visualized in a heatmap chart. (Figure 10). The associations
between 35 differential genera and 21 serum metabolites were investigated and identified numerous associations were
existed. For instance,

Peptococcus, Prevotella 9 and unclassified Prevotellaceae were negatively correlated with 4-Guanidinobutyric Acid.
Incertae Sedis was negatively, while Peptococcus, Prevotella 9, unclassified Atopobiaceae and unclassified Prevotellaceae
were positively correlated with Phosphatidylcholine(18:2/16:0). Tuzzerella, unclassified Prevotellaceae and Prevotella 9 were
negatively, while Incertae Sedis, [Clostridium]_innocuum_group and Anaerostipes, unclassified [Clostridium] methylpento-
sum_group were positively correlated with Hepc. Differential bacterial genera in terms of relative abundance and listed at
Table S4.

1.0
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Figure 10 Spearman correlations between the gut microbiome and serum metabolites rats after BBR treatment. The magnitude of correlation was represented by color
intensity (green, negative correlation; red, positive correlation).
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Discussion

Metabolomics has become a widely employed tool for investigating disease mechanisms and intervention strategies.
However, metabolomics studies typically only list potential metabolites and related pathways without delving into their
direct relationships comprehensively. Due to the complexity and heterogeneity of metabolomics data, collaborative
efforts are needed for data analysis and interpretation.”® The field of network pharmacology, grounded in systems
biology, assesses the impact of drug polypharmacology on a molecular scale to foresee the interplay between natural
substances and proteins, and to pinpoint key mechanisms.?*>° It further validates therapeutic regulation of metabolic
networks and aids to identify of key targets and biomarkers.>' In our study, metabolomics analysis revealed that BBR
administration reversed alterations in serum metabolites in CIA rats. Specifically, BBR significantly increased levels of
Methostenol, HePC, 4-Guanidinobutyric Acid, 4-Methylhippuric Acid, 4-toluenesulfonic acid, 5-(Diphenylphosphinyl)
pentanoic acid, Arg-Gln-Ser-Lys, Arg-Val, Carmamycin B, Glutaryl-7-aminocephalosporanic acid, Guanidineacetic
Acid, Guanidinoethyl Sulfonate, Halofantrine, Histamine dihydrochloride, LPA(18:0/0:0), LPC(0:0/15:0), and Ser-Leu-
Arg-Glu. Conversely, BBR led to a decrease in the abundance of Phosphatidylcholine (18:2/16:0), Dichlorprop-P, Phe-
Ser, and cis-EODA in the serum of these rats. Guanidinoethyl sulfonate is the N-amidino derivative of taurine. TauCl,
metabolite of Taurine exhibits anti-inflammatory and connective tissue protective effects, as demonstrated in rats with
modified adjuvant-induced arthritis, where it notably down-regulated the generation of inflammatory mediators.*
Guanidinoacetic acid is the N-amidino derivative of glycine. Glycine has the protective effects to anti-oxidation and anti-
inflammation and enhanced ferroptosis via SAM-related GPX4 promoter methylation to ameliorate CIA progression.*?
Phe-Ser is a dipeptide that is the N-(L-phenylalanyl) derivative of L-serine. Serine metabolism is necessary for
macrophage glutathione synthesis to support IL—1p cytokine production.®* Arg-Val is a dipeptide formed from
L-arginine and L-valine residues while L-arginine is reported to ameliorate arthritis and bone erosion through metabolic
reprogramming and perturbation of purine metabolism in osteoclasts.>> In RA patients, the levels of numerous amino
acids are diminished to varying degrees, potentially indicating a dysregulation in amino acid metabolism that could play
a pivotal role in the development of RA.*® Interventions with BBR may offer relief for RA patients by contributing to the
amelioration of dysregulated amino acid (Guanidinoethyl sulfonate, Guanidinoacetic acid, Phe-Ser and Arg-Val) deri-
vatives in serum, suggesting a potential mechanism for its therapeutic efficacy in RA management. Additionally, other
metabolites such as Histamine dihydrochloride, LPA (18:0/0:0), and 4-guanidinobutyric acid may serve as biomarkers of
RA remission after BBR intervention, although further studies are needed to elucidate their exact role in RA
improvement.

By integrating metabolomics with network pharmacology, a comprehensive approach is established to identify core
targets and mechanisms, offering a more precise understanding of the network of BBR action against RA. We identified
24 key targets (PIK3CB, PIK3CD, and NOS3, among others), 6 key metabolites (D-Galactose, 4-Guanidinobutanoate,
3’-monoiodo-L-thyronine, 3alpha,7alpha-Dihydroxy-Sbeta-cholestane, Androst-5-ene-3beta,l7beta-diol, and 3°,5’-
Cyclic AMP), and 6 related pathways (tyrosine metabolism, phosphatidylinositol phosphate metabolism, androgen and
estrogen biosynthesis and metabolism, bile acid biosynthesis, purine metabolism, and urea cycle and metabolism of
arginine, proline, glutamate, aspartate, and asparagine). This approach provides a method to verify the results of both
approaches. The integrated analysis of metabolomics and network pharmacology revealed that the PI3K/AKT pathway
plays a pivotal role in the treatment of RA. This pathway influences the mammalian target of rapamycin protein (mTOR),
inhibiting fibroblast-like synoviocyte (FLS) autophagy, and exacerbating RA by promoting synovial cell proliferation.’”
Furthermore, PI3K/AKT signaling not only contributes to abnormal FLS proliferation and synovial inflammation but also
affects osteoclast differentiation and generation.’® Elevated PI3K expression in RA synovial tissue may regulate synovial
fibroblasts, contributing to inflammatory erosive arthritis and TNF-a-mediated cartilage destruction. TNF-a prompts
T cells to produce macrophage-colony stimulating factor, triggering osteoblasts to generate RANKL, ultimately leading
to osteoclast formation.*® These osteoclasts migrate, causing bone and articular cartilage destruction, ultimately worsen-
ing RA progression.®® In our investigation, we conducted molecular docking and IF to validate the interaction between
BBR and the PI3K/AKT pathway. The findings indicated that BBR tightly binds to PIK3CB, PIK3CD, and NOS3, and
reduced the expression of PIK3CB, PIK3CD, AKT and NOS3. These results suggested that BBR may alleviate
inflammation by inhibiting the PI3K/AKT pathway.
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The concept of bacterial involvement in the onset and progression of RA traces its origins back to the 19th century when
a correlation between RA and tuberculosis emerged, suggesting Mycobacterium infection as a potential cause.***' In recent
times, the gut-joint-axis hypothesis gained traction, supported by observations that 20% of inflammatory bowel disease patients
experience recurrent episodes of peripheral arthritis.*> The gut microbiota represents the largest microbial community within the
human body, often referred to as the “invisible organ”. Its metabolic capacity underscores its crucial role in both host health and
disease.*® While our data unveiled a novel target for BBR in CIA rats, the precise mechanism through which BBR guards against
metabolic abnormalities remains elusive.” Microbiota dysbiosis is a hallmark of RA patients,> and well-established rodent
arthritis models corroborate this finding.** Moreover, specific alterations in gut bacterial abundance have been linked to clinical
RA manifestations.*’ For instance, diminished levels of Lactobacillus and heightened levels of Prevotella are recognized features
of RA patients’ gut microbiota.*® This study observed similar distinctions in gut microbial compositions between control and RA
rats. BBR could altered gut dysbiosis at the phylum level by downregulating Patescibacteria, Proteobacteria, Bacteroidota and
upregulating Verrucomicrobiota. At the genus level, BBR increased the abundance of Akkermansia, Prevotellaceac UCG_001,
Eubacterium, Blautia, Lachnoclostridium, UBA 1819, Erysipelatoclostridium, [Ruminococcus]_torques_group, Faecalibaculum,
Romboutsia, Incertac Sedis, Flavonifractor, unclassified Clostridia, Anaerostipes, [Eubacterium] nodatum_group,
[Clostridium]_innocuum_group, Holdemania, unclassified [Clostridium] methylpentosum_group, Sutterella and decreased
the  abundances of  Candidatus Saccharimonas,  unclassified Oscillospiraceae,  unclassified Muribaculaceae,
Christensenellaceac R 7 group, Monoglobus, unclassified Ruminococcaceae, unclassified Desulfovibrionaceae, unculture-
d rumen_bacterium,  Candidatus Soleaferrea, = NK4A214 group,  Colidextribacter,  unclassified Peptococcaceae,
Prevotellaceae Ga6A1 group, unclassified Prevotellaceae, unclassified_Clostridia_vadinBB60_group, Tuzzerella,
Prevotella 9, Papillibacter, unclassified RF39, UCG 009, Alloprevotella, Peptococcus, Candidatus Arthromitus,
unclassified Atopobiaceae, Rikenellaceae RC9 gut group in CIA rats. Hence, there is compelling evidence suggesting that
BBR’s impact on RA may stem from its regulation of specific intestinal microorganisms. Among these, Akkermansia
predominates in healthy populations, conferring protective effects on digestive health while bolstering the host’s immune
system, metabolism, and gut barrier integrity.*” Conversely, Blautia can serve as an exogenous antigen, stimulating lymphocyte
proliferation and cytokine activation, thus fostering inflammatory responses that contribute to cartilage injury and bone
changes.*® Romboutsia and Faecalibacterium are associated with intestinal health, being abundant in healthy mucosa and
reduced in oncogenic states such as colorectal cancer. Their decrease may signify a vulnerability to disease progression.*’
Prevotella 9 exhibits a positive correlation with serum levels of antibodies to cyclic citrullinated peptide (ACPA) and rheumatoid
factor (RF), suggesting a potential role in RA pathogenesis.>® Increasing its abundance could mitigate inflammation and benefit
RA patients. Lachnoclostridium, an anaerobic bacterium found in the human intestinal flora, produces butyric acid, contributing
to colorectal cancer prevention. It correlates positively with age and disease duration in RA patients, indicating a potential
protective role.*® Based on our findings and existing literature, Akkermansia, Blautia, Romboutsia, Faecalibacterium,
Prevotella 9, and Lactobacillus emerge as pivotal bacteria for RA relief. BBR intervention modulates the abundance of these
bacteria, rebalancing the intestinal microecology, reducing inflammation, and thereby alleviating RA symptoms.

The gut microbiota plays a crucial role in host metabolism through its interaction with host signaling pathways. For
instance, the heightened presence of Collinsella in the gut microbiota of RA patients correlates with increased levels of
alpha-aminoadipic acid and asparagine.’’ In our study, we observed a significant negative correlation between
Guanidinoethyl sulfonate and the abundance of Alloprevotella. Guanidinoacetic acid showed positive correlations with
Candidatus_Soleaferrea, Holdemania, and unclassified Clostridia, while negatively correlating with Peptococcus,
Prevotella 9, Tuzzerella, unclassified Desulfovibrionaceae, and unclassified Prevotellaceae. Phe-Ser exhibited positive
correlations  with  Peptococcus, Prevotella 9, Tuzzerella, UCG 009, unclassified Muribaculaceae, and
unclassified Prevotellaceae, but negative correlations with [Eubacterium] nodatum group and Incertae Sedis. Arg-Val
was negatively correlated with Peptococcus, Prevotella 9, unclassified Atopobiaceae, and unclassified Prevotellaceae.
These host metabolites likely interact with the gut microbiota, yet the precise mechanism by which BBR influences this
metabolism in CIA rats requires further investigation.
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Conclusion

In summary, our comprehensive analysis, which combined network pharmacology, metabolomics, intestinal flora studies,
and molecular biology techniques, has elucidated the pharmacological effects and molecular mechanisms by which BBR
alleviates RA. The findings highlight the PI3K/AKT, MAPK, and VEGF signaling pathways—critical mediators of
inflammation and immune response—as key targets of BBR. Molecular docking and experimental validation further
confirmed the involvement of the PI3K/AKT pathway. Additionally, BBR was shown to modulate the intestinal
microbiota. These results enhance our understanding of the molecular underpinnings of BBR’s anti-RA effects.
However, further research, including in vitro studies, targeted metabolomics, fecal microbiota transplantation and fecal
metabolomics analyses, is needed to fully validate these mechanisms.
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