Skip to main content
. 2024 Dec 10;17:5917–5926. doi: 10.2147/JMDH.S491697

Table 2.

Performance of the Radiomics, Clinical and Clinical-Radiomics Models

Datasets Models AUC (95% CI) ACC SEN SPE PPV NPV
Training cohort R-model 0.775(0.719, 0.830) 0.713 0.796 0.617 0.705 0.725
C-model 0.802(0.749, 0.854) 0.742 0.707 0.781 0.788 0.699
CR-model 0.880(0.840, 0.920) 0.807 0.776 0.844 0.851 0.766
Internal validation R-model 0.752(0.662, 0.842) 0.723 0.656 0.8 0.792 0.667
Cohort C-model 0.736(0.644, 0.828) 0.731 0.812 0.636 0.722 0.745
CR-model 0.807(0.728, 0.887) 0.748 0.688 0.818 0.815 0.692
External validation R-model 0.747(0.658, 0.836) 0.713 0.764 0.64 0.753 0.653
Cohort C-model 0.789(0.709, 0.870) 0.77 0.972 0.48 0.729 0.923
CR-model 0.815(0.740, 0.891) 0.779 0.931 0.56 0.753 0.848

Abbreviations: R-model, radiomics model; C-model, clinical model; CR-model, clinical-radiomics model; AUC, area under the receiver operating curve; ACC, accuracy; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; SEN, sensitivity; SPE, specificity.