Table 2.
Datasets | Models | AUC (95% CI) | ACC | SEN | SPE | PPV | NPV |
---|---|---|---|---|---|---|---|
Training cohort | R-model | 0.775(0.719, 0.830) | 0.713 | 0.796 | 0.617 | 0.705 | 0.725 |
C-model | 0.802(0.749, 0.854) | 0.742 | 0.707 | 0.781 | 0.788 | 0.699 | |
CR-model | 0.880(0.840, 0.920) | 0.807 | 0.776 | 0.844 | 0.851 | 0.766 | |
Internal validation | R-model | 0.752(0.662, 0.842) | 0.723 | 0.656 | 0.8 | 0.792 | 0.667 |
Cohort | C-model | 0.736(0.644, 0.828) | 0.731 | 0.812 | 0.636 | 0.722 | 0.745 |
CR-model | 0.807(0.728, 0.887) | 0.748 | 0.688 | 0.818 | 0.815 | 0.692 | |
External validation | R-model | 0.747(0.658, 0.836) | 0.713 | 0.764 | 0.64 | 0.753 | 0.653 |
Cohort | C-model | 0.789(0.709, 0.870) | 0.77 | 0.972 | 0.48 | 0.729 | 0.923 |
CR-model | 0.815(0.740, 0.891) | 0.779 | 0.931 | 0.56 | 0.753 | 0.848 |
Abbreviations: R-model, radiomics model; C-model, clinical model; CR-model, clinical-radiomics model; AUC, area under the receiver operating curve; ACC, accuracy; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; SEN, sensitivity; SPE, specificity.