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Abstract

Heterozygous STAT1 (signal transducer and activator of transcription 1) gain-of-function 

(GOF) mutations promote a clinical syndrome of immune dysregulation characterized by 

recurrent infections and predisposition to humoral autoimmunity. To gain insights into immune 

characteristics of STAT1-driven inflammation, we performed deep immunophenotyping of 

pediatric patients with STAT1 GOF syndrome and age-matched controls. Affected individuals 

exhibited dysregulated CD4+ T cell and B cell activation, including expansion of Th1-skewed 

C-X-C Motif Chemokine Receptor 3-positive (CXCR3+) populations that correlated with serum 

autoantibody titers. To dissect underlying immune mechanisms, we generated Stat1 GOF 

transgenic mice (Stat1GOF mice) and confirmed the development of spontaneous humoral 

autoimmunity that recapitulated the human phenotype. Despite clinical resemblance to human 

regulatory T cell (Treg) deficiency, Stat1GOF mice and humans with STAT1 GOF syndrome 

exhibited normal Treg development and function. In contrast, STAT1 GOF autoimmunity was 

characterized by adaptive immune activation driven by dysregulated STAT1-dependent signals 

downstream of the Type 1 and Type 2 interferon (IFN) receptors. However, in contrast to the 

prevailing Type 1 IFN-centric model for STAT1 GOF autoimmunity, Stat1GOF mice lacking 

the type 1 IFN receptor (IFNAR) were only partially protected from STAT1-driven systemic 

inflammation, whereas loss of Type 2 IFN (IFN-γ) signals abrogated autoimmunity. Lastly, 

germline STAT1 GOF alleles are thought to enhance transcriptional activity by increasing 

total STAT1 protein, but the underlying biochemical mechanisms have not been defined. We 

showed that IFN-γ receptor deletion normalized total STAT1 expression across immune lineages, 

highlighting IFN-γ as the critical driver of feedforward STAT1 elevation in STAT1 GOF 

syndrome.

One Sentence Summary:

Increased type 2 interferon signals, not type 1 interferon activity, drive humoral autoimmunity in 

STAT1 gain-of-function syndrome.

Introduction:

Human genetic variations resulting in immunodeficiency or the propensity for autoimmunity 

represent “experiments of nature” that can advance our understanding of the human immune 

system and may inform the development of targeted therapies for inflammatory disease 

(1). In 2011, heterozygous gain-of-function (GOF) mutations in STAT1 (signal transducer 

and activator of transcription 1) were identified in patients with autosomal dominant 

chronic mucocutaneous candidiasis (CMCC) (2, 3). Subsequently, the clinical phenotype 

of STAT1 GOF syndrome was expanded to include systemic autoimmunity, bacterial and 

viral infections, cerebral aneurysms, and malignancy, in addition to chronic fungal infections 

(4, 5). Thus, pathogenic GOF mutations in STAT1 promote a complex syndrome of immune 

dysregulation, the pathophysiology of which is still poorly understood.

STAT1 GOF syndrome is associated with multiple features of systemic autoimmunity. 

Among 274 patients in a large international cohort, almost 40% exhibited clinical 

autoimmunity including autoimmune endocrine diseases (autoimmune thyroiditis or 
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type 1 diabetes), hematologic autoimmunity (antibody-mediated hemolytic anemia or 

immune thrombocytopenia), scleroderma and systemic lupus erythematosus (SLE) (5). 

STAT1 GOF mutations have also been identified in subjects with immunodysregulation 

polyendocrinopathy enteropathy X-linked (IPEX)-like syndrome (4, 6). A characteristic 

feature of STAT1 GOF autoimmunity is development of autoantibody-mediated or 

-associated diseases. Consistent with this observation, even among patients without clinical 

autoimmunity, the majority of tested individuals (65%) were positive for autoantibodies, 

including anti-nuclear and thyroid-specific antibodies (5).

Together, these findings suggest a prominent role for dysregulated B cell activation in the 

pathogenesis of STAT1 GOF autoimmunity. Crosstalk between autoreactive CD4+ T cells 

and B cells facilitates the generation of autoantibody-producing plasma cells, via both 

extra-follicular B cell activation and within spontaneous germinal centers (7). In contrast to 

the direct association of defective T helper 17 cell (Th17) differentiation with CMCC, the 

role of altered STAT1 function in humoral autoimmunity is likely complex because STAT1 

is expressed in multiple hematopoietic and non-hematopoietic lineages and can be activated 

downstream of numerous cytokine receptors.

To address the mechanisms underlying STAT1-driven breaks in immune tolerance, we 

performed multiparameter immunophenotyping of peripheral blood mononuclear cells 

(PBMCs) from 8 pediatric patients with STAT1 GOF syndrome and 9 age-matched controls. 

Affected individuals were studied prior to treatment with Janus kinase (JAK) inhibitors, 

allowing direct insight into the immune landscape of STAT1-driven immune dysregulation. 

These studies uncovered immune correlates of STAT1 GOF humoral autoimmunity, 

including expansion of activated CXC motif chemokine receptor 3-positive (CXCR3+) 

T and B cell populations. In parallel, we generated an inducible knock-in mouse strain 

allowing lineage-specific expression of the pathogenic STAT1R274Q human mutation. Global 

Stat1GOF mice developed spontaneous humoral autoimmunity, mirroring the human disease, 

allowing a detailed interrogation of the cellular and cytokine-specific drivers of STAT1-

driven autoimmunity.

Results:

Multiparameter immunophenotyping of pediatric STAT1 GOF syndrome

To gain insight into the immunologic underpinnings of STAT1 GOF syndrome, we used 

mass cytometry (cytometry by time-of-flight, CyTOF) to phenotype PBMCs from 8 

pediatric patients with STAT1 GOF syndrome and 9 age-matched controls. We limited 

our analyses to pediatric individuals because STAT1 GOF syndrome typically presents 

in childhood and to minimize the impact of ageing on adaptive immune phenotypes. 

The genetic and clinical characteristics of the patients with STAT1 GOF syndrome are 

summarized in Fig. 1A and tables S1 and S2. Initial presentations included recurrent fungal 

and bacterial infections in most patients, with overt autoimmunity diagnosed in 2 of 8 

patients. We first quantified major innate and adaptive immune cell types by manual gating 

(Fig. S1). Compared with age-matched controls, CD8+ T cells were expanded, whereas 

the percentage of plasmacytoid dendritic cells (pDCs) was reduced. The proportion of B 

cells, CD4+ effector T cells, and regulatory T (Treg) cells was similar between patients 
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and controls. In keeping with previous studies (8), CD56hi natural killer (NK) cells and 

CD56mid CD16+ NK cells were decreased in the peripheral blood in patients with STAT1 

GOF syndrome (Fig. 1B).

Despite similar CD4+ and CD8+ T cell proportions in patients and controls, enhanced 

STAT1 activity drove broad T cell activation. In keeping with the young age of this cohort, 

the majority of CD4+ and CD8+ T cells in controls exhibited a naïve surface phenotype. In 

contrast, STAT1 GOF syndrome was characterized by a profound loss of naïve CD4+ and 

CD8+ T cells, with corresponding increases in effector memory T (TEM), central memory 

T (TCM), and terminally differentiated effector memory T cell (TEMRA) populations (Fig. 

1, C and D). As predicted by the established link with CMCC, patients with STAT1 GOF 

syndrome exhibited reduced CXCR3− CCR6+ Th17 cells within the non-naïve CD4+ T 

cell compartment (Fig. 1E). In addition, we observed an expansion of CD38+HLA-DR+ 

T cells in affected individuals, with up to 50% of non-naïve CD8+ T cells co-expressing 

CD38 and HLA-DR, findings mirroring the polyclonal T cell activation and CD38 and 

HLA-DR upregulation characteristic of severe viral infections, including Ebola, influenza, 

and SARS-CoV-2 infections (9–11). Although the magnitude of CD38+HLA-DR+ T cell 

expansion varied among patients with STAT1 GOF syndrome, relative CD4+ and CD8+ T 

cell activation was tightly correlated (Fig. 1, F to H).

Given the central role for dysregulated T cell:B cell crosstalk in the pathogenesis of 

humoral autoimmunity, we expanded our analyses within the CD4+ T cell and CD19+ B cell 

compartments. Although we observed no change in PD-1+CXCR5+ circulating T follicular 

helper (cTfh) cells, patients with STAT1 GOF syndrome exhibited an increase in activated 

CD38+ICOS+ cTfh, thought to reflect more recent antigen engagement within GCs (Fig. 1, 

I, and J) (12, 13). Moreover, cTfhs in STAT1 GOF syndrome were qualitatively remodeled, 

manifested by increased pro-inflammatory T helper 1 (Th1)/Th17-like cTfh, a trend towards 

increased Th1-like cells, and the reciprocal differentiation away from Th17-like surface 

phenotype (Fig. 1K), in keeping with previous reports (14). To aid exploration of this 

multiparameter dataset, we created a composite sample of concatenated CD4+ effector T 

cells (3500 cells/subject) including 27 T cell surface markers. A t-distributed stochastic 

neighbor embedding (tSNE) representation of the data highlighted key differences between 

patients with STAT1 GOF syndrome and controls (Fig. 2A). Enhanced STAT1 activity 

drove a prominent increase in regions of the tSNE map characterized by high expression 

of CD45RO, CXCR3, HLA-DR, PD-1, CD95, and CD138 (Fig. 2B). To further delineate 

the differences between patients with STAT1 GOF syndrome and controls, we used the 

Phenograph algorithm (15) to identify 9 clusters defined by differential marker expression 

(Fig. 2, C and D; hereafter T cell clusters T.1 through T.9). Clusters T.2 and T.3 expressed 

naïve T cell markers CD45RA, CD62L, and CD27 and were predictably reduced in STAT1 

GOF syndrome relative to controls. In contrast, patients with STAT1 GOF syndrome 

exhibited a marked expansion in clusters T.5, T.8, and T.9 (Fig. 2E). Cluster T.5 included 

activated Th1-like cTfh phenotype cells expressing CXCR5, PD-1, ICOS, CD95, HLA-DR, 

and the chemokine receptor CXCR3. Clusters T.8 and T.9 likely represented dysregulated 

CD4+ memory T cells expressing high CD24, chemokine receptors CXCR3 and CCR6 

(corresponding to Th1/Th17 phenotype), and the heparan-sulfate proteoglycan family 

molecule CD138 (syndecan 1). Although the functional significance of human CD138+ 
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T cells remains to be determined, CD138-expressing memory CD4+ T cells promote disease 

progression in murine lupus (16), suggesting a potential link with autoimmune pathogenesis. 

Collectively, these multidimensional analyses highlight distinct subpopulations of CD4+ 

effector T cells expanded in STAT1 GOF syndrome.

Dysregulated B cell activation in STAT1 GOF syndrome

We next examined the phenotype of B cells in patients with STAT1 GOF syndrome. 

Despite increased risk for humoral autoimmunity in this disorder, we observed no expansion 

of circulating CD27+CD38+ plasmablasts, and both non-switched (NSWM) and switched 

memory (SWM) B cells were decreased in patients with STAT1 GOF syndrome (in keeping 

with previous studies (5, 14)) (Fig. 3A). Moreover, we observed no accumulation of lupus-

associated B cell populations, such as “activated naïve” (aNAV) and IgD−CD27− double 

negative DN2 B cells (17–19) (Fig. S2). To explore potential unknown B cell subpopulations 

contributing to STAT1-driven humoral autoimmunity, we projected concatenated CD19+ 

B cells into the high-dimensional tSNE space using a subset of CyTOF surface markers 

expressed by human B cells (20). As predicted, samples from patients with STAT1 GOF 

syndrome exhibited reduced density in tSNE regions corresponding with switched and 

unswitched memory B cells (CD27hiIgDloIgMlo and CD27hiIgD+IgM+). In parallel, there 

was a marked STAT1-driven expansion in tSNE regions characterized by retained IgM 

and IgD expression, reduced CD19 and CXCR5 abundance, and upregulation of CXCR3 

and CD138 (Fig. 3, B and C). Phenograph clustering identified 12 unique B cell clusters 

within the dataset (denoted as B.1 through B.12). Consistent with these findings, controls 

exhibited an increase in clusters B.2 and B.5, corresponding to IgM+CD27+ NSWM 

and IgM−CD27+ SWM B cells, respectively. In contrast, STAT1 GOF syndrome was 

characterized by expansion of clusters B.4, B.7, and B.9, which each retained variable 

IgD and IgM and colocalized within the tSNE space. These clusters were characterized by 

reduced CD19/CD21 expression and downregulation of the chemokine receptor CXCR5, 

required for B cell follicular migration (21), predicted to reflect STAT1-driven B cell 

activation via an extrafollicular pathway. Although reminiscent of CD21lo B cells expanded 

in human SLE (18, 19), these populations lacked expression of CD11c and CD95. Cluster 

B.7 exhibited marked upregulation of Th1-lineage chemokine receptor CXCR3 and the 

plasma cell marker CD138, suggesting that these cells may be antibody-secreting cell (ASC) 

precursors (Fig. 3, D to F). We then developed a manual gating strategy to assess for 

phenotypic changes within the IgD+CD27− B cell compartment and confirmed expansion 

of CXCR5loCXCR3+ B cells in STAT1 GOF syndrome (Fig. 3, G and H). In summary, 

STAT1 GOF syndrome is characterized by dysregulated B cell activation and expansion of 

IgM+ B cells downregulating the follicular homing receptor CXCR5 and upregulating the 

Th1-defining marker CXCR3.

Correlation between STAT1 GOF lymphocyte phenotype and increased serum 
autoantibodies

Cellular crosstalk between autoreactive CD19+ B cell and CD4+ T cells facilitates humoral 

autoimmunity. For this reason, we performed a correlation analysis on CD4+ T cell and B 

cell Phenograph clusters, focusing on those subpopulations exhibiting statistically significant 

differences between patients with STAT1 GOF syndrome and controls (P<0.05 by two-tailed 
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Mann-Whitney test). Across the combined samples, the proportion of naïve and activated 

B and T cell subsets was tightly correlated (Fig. 4A). When we limited these analyses 

to patients with STAT1 GOF syndrome, we noted that increases in B cell cluster B.7 

(CD138hiCXCR5loCXCR3hi) were associated with an expansion in Th1-like cTfh cells 

(T.5; CXCR3hiCXCR5hiPD-1hiICOShi) and the activated memory CD4+ T cell cluster T.9 

(CD45RAloCD45ROhiCD38midHLA-DRhiCXCR5midCXCR3hi) (Fig. 4B). Although future 

studies are needed to define the antigenic targets of these populations, the parallel expansion 

of CXCR5+ cTfh-like cells and activated B cells suggests a role for CD4+ T cell help in 

facilitating STAT1-dependent B cell responses.

Next, we examined whether STAT1-driven adaptive immune activation correlated with 

serum autoantibody titers. Among patients with STAT1 GOF syndrome, the extent of 

CD4+ T cell and CD19+ B cell activation varied markedly. Thus, to gain an unbiased 

assessment of this variability, we used principal components analysis [PCA; using ClustVis 

(22)] to compare the immune profiles of controls and patients with STAT1 GOF syndrome 

based on relative representation of Phenograph clusters (Fig. 4C). As predicted, affected 

patients clearly separated from controls, although STAT1 GOF samples were more 

dispersed in PCA space, with patients SCH04, SCH05, and to a lesser extent SCH06 

exhibiting greater separation from healthy controls. SCH04 and SCH05 were among 

the three individuals diagnosed with clinical autoimmunity or noted to have high-titer 

autoantibodies on diagnostic testing (table S1). We examined the breadth of the serum 

autoantibody repertoire using a microarray panel consisting of 128 disease-associated 

autoantigens. This analysis was performed for each of the 9 age-matched controls, on 

serial serum samples from patients with STAT1 GOF syndrome, and for 3 additional 

patients with SLE as positive controls (Fig. 4D). The patients with SLE exhibited minimal 

IgM autoreactivity, but exhibited high-titer IgG autoantibodies binding RNA-associated 

specificities, including the U1 small nuclear ribonucleoprotein complex (U1-snRNP-A, 

U1-snRNP-BB’, U1-snRNP-C, U1-snRNP-68/70). In contrast with this relatively focused 

autoantibody repertoire in SLE, patients with STAT1 GOF syndrome exhibited widespread 

IgM and IgG autoantibodies targeting diverse disease-associated autoantigens. For example, 

patient SCH04 produced high-titer IgM and IgG autoantibodies binding single-stranded 

(ssDNA) and double-stranded DNA (dsDNA). The IgG autoantibody repertoire in patient 

SCH06 targeted diverse autoantigens, including liver kidney microsomal type 1 antibody 

(LKM1), Factor H, the muscarinic receptor, insulin, and histone components. Despite a 

prominent expansion of CXCR5loCXCR3+ B cells, patient SCH05 lacked both IgM and IgG 

autoantibodies at the time of immunophenotyping sample collection. However, 12 months 

later SCH05 developed high-titer anti-dsDNA IgM, suggesting that phenotypic features of 

STAT1-driven immune dysregulation may portend future breaks in immune tolerance. In 

summary, STAT1 GOF syndrome is characterized by polyclonal IgM and IgG autoreactivity 

targeting diverse disease-associated specificities. Although limited patient numbers preclude 

definitive conclusions, the development of immune dysregulation appears to correlate with 

serum autoantibodies in STAT1 GOF syndrome.
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Generation and validation of Stat1 GOF knock-in model

To further delineate the immune mechanisms underlying STAT1 GOF syndrome, we 

generated a inducible knock-in mouse model allowing Cre-mediated conditional expression 

of the pathogenic Stat1R274Q mutation [recurrently identified in 33 patients from 16 

independent kindreds (5)] within the endogenous Stat1 gene; a knock-in strategy that 

leads to endogenous regulation of Stat1 expression in all relevant lineages following 

Cre-expression. The design and genetic validation of this model is shown in Fig. S3. 

We first crossed Stat1R274Q transgenic mice with the ubiquitous CMV-Cre strain (23) 

to induce global expression of the Stat1R274Q allele in all cellular lineages (hereafter 

designated Stat1GOF). As predicted, ex vivo type 2 interferon (IFN-γ) stimulation induced 

a Stat1GOF gene dose-dependent increase in STAT1 phosphorylation (pSTAT1) in CD4+ T 

cells and CD19+ B cells, confirming that Stat1R274Q functions as a GOF variant in mice 

(Fig. 5, A and B). Human studies have indicated that STAT1 GOF mutations enhance 

STAT1 transcriptional activity by either delaying STAT1 dephosphorylation (24, 25) or 

by increasing total STAT1 protein expression (26–29). In keeping with the latter model, 

total STAT1 protein was increased in Stat1GOF mice, whereas STAT1 dephosphorylation 

(as defined by the rate of pSTAT1 decline as a percentage of peak phospho-STAT1) was 

unaffected (Fig. 5, C to E). During Th1 differentiation, STAT1 induces expression of the 

lineage-defining transcription factor T-bet, which cements Th1 differentiation and promotes 

secretion of the canonical cytokine IFN-γ (30). In keeping with this role for STAT1 in 

regulating Th1 vs. Th17 differentiation, we observed an expansion of splenic Th1 cells and 

reciprocal decrease in enteric Th17 cells in Stat1GOF animals (Fig. S3). Thus, the Stat1GOF 

transgenic mouse strain exhibits enhanced STAT1 activity and models the functional impact 

of human STAT1 GOF mutations.

Spontaneous humoral autoimmunity in Stat1GOF mice

To test whether STAT1 GOF promotes breaks in immune tolerance, we aged cohorts of 

heterozygous Stat1WT/GOF and homozygous Stat1GOF/GOF mice and littermate controls. By 

6 months of age, Stat1GOF animals developed Hep-2 anti-nuclear antibodies (ANA) as 

well as anti- dsDNA and anti-Sm/RNP autoantibodies, with this increase most apparent 

in homozygous Stat1GOF/GOF mice (Fig. 5, F to H). Serum autoantibodies were skewed 

towards the T-bet-dependent IgG2c subclass, which has been linked to autoimmune 

pathogenesis via complement fixation and activation of myeloid Fc-receptors (31, 32). 

Assessment of the broader autoantibody repertoire using an autoantigen microarray 

demonstrated that the Stat1GOF allele drove widespread IgG and IgG2c reactivity across 

a broad spectrum of disease-associated autoantigens (Fig. 5I; Fig. S4).

Autoreactive plasma cells can be generated within spontaneous GCs or via extra-follicular 

B cell activation pathways, with multiple STAT1-dependent cytokines including type 1 IFN, 

IL-6, IL-21, IL-27, and IFN-γ, facilitating breaks in B cell tolerance (33–42). Consistent 

with this model, Stat1GOF mice exhibited gene dose-dependent splenic enlargement and 

spontaneous GC formation, as evidenced by flow cytometry quantification of PNA+FAS+ 

GC B cells and CXCR5+PD-1+ Tfh cells (Fig. 5, J to L). The Stat1GOF allele also drove 

expansion of CD11b+CD11c+ age- and autoimmunity-associated B cells (ABCs) (Fig. 

5M), a memory B cell population derived following extra-follicular B cell activation (43). 
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Stat1GOF mice also exhibited increased splenic and bone marrow TACI+IRF4+ plasma cells, 

presumably comprised of extra-follicular-derived short-lived plasmablasts and GC-derived 

long-lived populations, respectively (44, 45) (Fig. 5, N and O).

Tfh differentiation is driven by the master regulator BCL-6, which reciprocally represses 

T-bet and Th1-lineage differentiation (46, 47). Based on this model, enhanced STAT1-

dependent T-bet might be predicted to limit Tfh differentiation. However, although Th1 

and Tfh cells are functionally distinct lineages, they share a developmental link and neither 

subset fully represses T-bet or BCL-6, respectively (48, 49). A subset of Tfh cells are 

known to produce IFN-γ during a GC response (48, 50), and T-bet expression early in Tfh 

differentiation has been shown to epigenetically alter mature Tfhs and allow for ongoing 

IFN-γ production (51). In keeping with this model, Stat1GOF animals exhibited a gene 

dose-dependent increase in T-bet expression in Tfh cells (Fig 5, P and Q), mirroring the 

expansion of “Th1-like” activated cTfh in the human patients (Fig. 1G).

Although initially identified in T cells, T-bet also exerts multiple independent impacts 

on B cell function. These include promotion of IgG2a/c class-switch recombination (32, 

52), maintenance of IgG2a/c+ memory B cell survival (53), and B cell migration via the 

induction of surface CXCR3 expression (54, 55). The Stat1GOF allele drove a step-wise 

increase in T-bet expression in CD11c+CD11b+ ABCs, and to a lesser extent in GC B 

cells (Fig 5, P and Q). Thus, in addition to promoting overall Tfh, GC B cell, and ABC 

expansion, enhanced STAT1 activity alters the phenotype of activated B and T cells in 

Stat1GOF mice by promoting cell-intrinsic T-bet expression.

Lastly, we assessed whether Stat1GOF mice manifest systemic inflammation reminiscent of 

clinical autoimmunity in human STAT1 GOF syndrome. Analysis of renal disease uncovered 

prominent glomerular immune complex deposits comprising IgG2c and complement C3 

in homozygous Stat1GOF/GOF mice. In keeping with IgG2c subclass antibodies driving 

autoimmune inflammation, histopathology revealed active Stat1GOF/GOF glomerulonephritis 

manifested by mesangial expansion and glomerular hypercellularity (Fig. 6, A and B). 

Given the diverse autoimmune manifestations of human STAT1 GOF syndrome, we 

performed a detailed histopathological assessment for organ inflammation, focusing on 

wild-type (WT) versus homozygous Stat1GOF/GOF mice. Stat1GOF/GOF animals exhibited 

widespread inflammatory lesions in the lung, liver, salivary gland, and pancreas, comprised 

of dense accumulations of small lymphoid cells, minimal histiocytes and plasma cells, 

and rare neutrophils (Fig. 6, C to F). Together these observations demonstrated that 

endogenously-regulated expression of a common STAT1 GOF variant is sufficient to drive 

humoral autoimmunity within the non-autoimmune prone C57BL/6 background; findings 

that highlight the critical importance of regulated STAT1 signaling in maintenance of 

immune tolerance.

Normal Treg development and function in STAT1 GOF syndrome

The clinical similarity between STAT1 GOF and IPEX syndromes (4, 6) has suggested that 

altered Treg function might mediate STAT1 GOF-driven autoimmunity. However, in keeping 

with previous reports (4), the proportion of CD127loCD25hi Treg was equivalent in STAT1 

GOF patients and age-matched controls (Fig. S5). Increased STAT1 signals also did not 
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alter the proportion of CXCR5+ T follicular regulatory (Tfr) cells, required to limit humoral 

autoimmunity (56), in patients with STAT1 GOF syndrome (Fig. S5).

To further address this question, we examined Treg development, surface phenotype, and 

suppressor function in Stat1GOF mice. The number and proportion of splenic CD25+Foxp3+ 

Tregs were similar in WT, Stat1WT/GOF, and Stat1GOF/GOF mice (Fig. 6G). Increased 

STAT1 activity did not impact CTLA-4, Helios, or CD25 expression on Tregs (Fig. S5). 

Stat1GOF/GOF Treg exhibited normal or possibly slightly increased in vitro suppressive 

activity, suggesting that Treg dysfunction is not a major driver of autoimmunity in STAT1 

GOF syndrome (Fig. 6, H and I).

However, as ex vivo functional assays do not fully recapitulate in vivo Treg biology, we 

directly examined whether Treg-intrinsic Stat1GOF expression results in loss of immune 

tolerance. We crossed “unflipped” (non-Cre-affected) Stat1GOF mice with Foxp3YFP/Cre 

animals (57) and confirmed efficient Stat1GOF recombination in Foxp3YFP+ Treg (Fig. 

S5). Similar to global Stat1GOF animals, male Foxp3YFP/Cre.Stat1WT/GOF animals exhibited 

normal YFP+ Treg numbers in spleen and lymph nodes (LN), relative to Foxp3YFP/

Cre.Stat1WT/WT controls (Fig. 6J). In addition, Foxp3-driven Stat1GOF expression did not 

alter Treg CD25, CTLA-4, or Helios expression (Fig. 6, K and L). Lastly, aged Foxp3YFP/

Cre.Stat1WT/GOF mice lacked features of immune activation and humoral autoimmunity 

observed in global Stat1GOF animals, including no expansion of Tfh cells, GC B cells, 

ABCs, or plasma cells (Fig. S5). Thus, although these findings do not preclude more subtle 

defects in Treg function, our combined human and murine data suggest a limited role for 

altered Treg biology in STAT1 GOF autoimmunity.

Dysregulated type 2 interferon signaling and autoimmunity in STAT1 GOF syndrome

Type 1 IFN-induced STAT1 phosphorylation results in the formation of IFN-stimulated 

gene factor 3 (ISGF3) complex comprising IFN-regulatory protein 9 (IRF9) and STAT1/

STAT2 heterodimers. In contrast, IFN-γ signals induce phospho-STAT1 homodimers termed 

gamma-interferon activation factor (GAF). ISGF3 and GAF subsequently translocate to the 

nucleus and regulate gene transcription by binding interferon-stimulated response elements 

(ISRE) and gamma-interferon-activated sites (GAS), respectively (58). While the prevailing 

model holds that enhanced type 1 IFN activity underlies autoimmunity in STAT1 GOF 

syndrome (5, 58), IFN-γ receptors are critical for initial breaks in immune tolerance in 

murine models (33–35). Human STAT1 GOF CD4+ T cells and CD19+ B cells exhibited 

increased pSTAT1 in response to both type 1 IFN (IFN-α and IFN-β) and IFN-γ stimulation 

(Fig. 7A), implicating either IFN family in autoimmunity in STAT1 GOF syndrome.

For this reason, we intercrossed Stat1GOF/GOF animals with mice lacking either type 1 

IFN [IFNAR; Ifnar−/− (59)] or type 2 IFN [IFN-γR; Ifngr−/− (60)] receptors. Whereas 

IFN-γR deletion abrogated STAT1-driven autoantibodies, a similar proportion of Ifnar−/

−.Stat1GOF/GOF and Ifnar+/+.Stat1GOF/GOF animals developed class-switched anti-dsDNA 

and anti-Sm/RNP titers (Fig. 7B). Moreover, STAT1-driven immune activation was 

abolished in Ifngr−/−.Stat1GOF/GOF mice, as evidenced by reduced spleen size and loss 

of expanded Tfh cell, GC B cell, and ABC populations. In contrast, loss of type 1 IFN 

signals only partially ameliorated T and B cell activation in Stat1GOF/GOF mice ((Fig. 
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7, C to E). These differential roles for type 1 versus type 2 IFN in driving breaks 

in immune tolerance extended to analyses of systemic inflammation. Although reduced 

compared with IFNAR-sufficient Stat1GOF/GOF controls, we observed ongoing organ low-

grade inflammation in Ifnar−/−.Stat1GOF/GOF mice. In contrast, IFN-γR deletion eliminated 

histopathologic evidence of STAT1-dependent systemic inflammation (Fig. 7, F and G).

Lastly, we examined whether loss of type 1 or type 2 IFN signals impacted the relative 

increase in T-bet and total STAT1 expression in Stat1GOF animals. IFN-γR deletion 

prevented Stat1GOF-driven increase in T-bet expression by activated Tfh cells, GC B cells, 

and ABCs, and restored total STAT1 expression to that of WT controls (Fig. 8, A and B). 

In contrast, loss of type 1 IFN signals only partially ameliorated these STAT1-dependent 

changes. Because STAT1 activation induces its own transcription (61), these data implicate 

enhanced IFN-γ signals as a central driver of increased total STAT1 protein in STAT1 

GOF syndrome. To test this idea, we stimulated WT and Stat1GOF/GOF B cells in vitro 

on feeder cell lines expressing CD40-ligand (CD40L) and B-cell activating factor (BAFF) 

(62), together with increasing concentrations of IFN-γ. In addition to elevated basal 

STAT1 concentrations, Stat1GOF/GOF B cells exhibited proportionally greater IFN-γ-driven 

increases in total STAT1 (Fig. 8C). These findings lend support to a model in which an 

altered threshold of IFN-γ signals promotes STAT1 GOF pathogenesis via a feedforward 

mechanism, findings which may account for the characteristic clinical heterogeneity of the 

human disease. Consistent with this model, total STAT1 expression in B and T cell lineages 

of patients with STAT1 GOF syndrome correlated with the proportion of activated B and T 

cell clusters in each patient (Fig. 8D). In addition, B cell STAT1 expression correlated with 

the proportion of manually-gated IgD+CD27−CXCR5loCXCR3+ B cells (Fig. 8E). Relative 

to CXCR5hi B cells, total STAT1 was increased in CXCR5lo B cells in both controls and 

patients with STAT1 GOF syndrome, implicating STAT1-dependent signals in the genesis of 

this B subset (Fig. 8F).

Discussion

The study of rare genetic variants resulting in immune dysregulation has informed our 

understanding of human biology. However, the identification and functional characterization 

of specific mutations linked with human immune dysfunction represent only the first 

steps in delineating disease-specific mechanisms underlying individual syndromes. Here, 

we combined multiparameter immunophenotyping of human STAT1 GOF syndrome with 

a detailed characterization of Stat1GOF knock-in mice to interrogate the biology of STAT1-

driven immune dysregulation. Patients with STAT1 GOF syndrome, including those with 

and without clinical autoimmunity or active infection, exhibited profound alterations in the 

CD4+ and CD8+ T cell compartments, with loss of naïve T cells and expansion of activated 

memory subsets. Of specific relevance to humoral autoimmunity was the STAT1-driven 

increase in Th1-skewed CXCR3+ activated cTfh cells, which may provide T cell help to 

autoreactive B cells. Although patients with STAT1 GOF syndrome manifested no increase 

in CD27+ switched and unswitched memory B cells or lupus-associated aNAV or DN2 

B cells (17–19), the increase in CXCR3+ cTfh was accompanied by a parallel expansion 

of CXCR3+IgD+IgM+ B cells characterized by downregulation of the follicular homing 
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receptor CXCR5, implicating extra-follicular B cell activation in the pathogenesis of STAT1-

driven humoral autoimmunity.

Although these data highlight immune correlates of autoimmunity in STAT1 GOF 

syndrome, limited access to human samples and the confounding effects of recurrent 

infection prevented definitive conclusions as to causation. For this reason, we generated an 

inducible Stat1GOF knock-in model which exhibited similar spontaneous immune activation 

and systemic autoimmunity on a non-autoimmune genetic background raised in specific 

pathogen free conditions. This model also afforded new insights into the cellular and 

cytokine-specific drivers of breaks in immune tolerance. Contrary to previous speculation, 

we observed no evidence for Treg dysfunction as a cause for STAT1 GOF autoimmunity. In 

addition, we show that IFN-γ receptor activation, and not type 1 IFN activity, is required for 

STAT1-dependent breaks in immune tolerance.

During the pathogenesis of humoral autoimmunity, autoreactive B cells recognizing self-

ligands act as antigen-presenting cells, presenting autoantigens to cognate CD4+ T cells 

and providing costimulatory signals and B cell-derived cytokines necessary for Tfh 

differentiation (33, 43, 63, 64). Subsequently, extrafollicular pre-GC and GC Tfh support 

the generation of pathogenic plasma cells via parallel extrafollicular and GC B cell 

activation pathways. Although defined by their ability to support GC function, the cytokine 

milieu during early Tfh differentiation impacts the subsequent biology of this lineage. 

Subpopulations of “Th1-like”, “Th2-like”, and “Th17-like” Tfh develop in response to 

specific pathogens and thereby tune B cell responses. An important consequence of this 

model for disease pathogenesis is that the threshold of cytokine signals must be tightly 

regulated to prevent breaks in immune tolerance.

In this context, the development of humoral autoimmunity in Stat1GOF mice was 

accompanied by increased expression of the Th1-defining transcription factor T-bet in 

CD4+ Tfh cells, GC B cells, and ABCs, that mirrored the expansion of human cTfh cells 

and activated B cells expressing the T-bet regulated chemokine receptor CXCR3 (54). 

Importantly, increased CXCR5loCXCR3+ B cells in patients with STAT1 GOF syndrome 

correlated with autoantibody titers, suggesting a link between dysregulated T-bet+ B cells 

and STAT1-driven humoral autoimmunity. Despite lacking CD11c expression, the surface 

phenotype of these CXCR3+ B cells in STAT1 GOF syndrome is reminiscent of aNAV or 

DN B cells expanded in SLE (17–19).

Of the many STAT1-dependent cytokine receptors, enhanced type 1 IFN signaling has been 

linked to the autoimmunity seen in STAT1 GOF syndrome (5), based on the prominent 

“interferon gene signature” in human SLE (65–67). Both STAT1 GOF syndrome and 

polygenic SLE are characterized by ANA; however, a direct link between increased 

type 1 IFN and breaks in B cell tolerance has not been established. Patients with 

genetic “type 1 interferonopathies” (for example, Aicardi Goutières syndrome (AGS) and 

STING-associated vasculopathy with onset in infancy (SAVI)) frequently lack ANA (68), 

implicating additional cytokine(s) in initiating breaks in immune tolerance. In this context, 

independent groups uncovered a critical role for IFN-γR signals in the pathogenesis of 

murine SLE, via cell-intrinsic impacts on GC B cells (33, 34) and Tfhs (35). Further, we 
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showed that IFN-γ promotes STAT1-dependent IL-6 production by B cells, a critical step 

for Tfh differentiation in murine lupus (64). Informed by these data, we directly compared 

the impact of type 1 versus type 2 IFN receptor deletion on STAT1 GOF autoimmunity. 

Notably, IFN-γR deletion prevented STAT1-driven breaks in immune tolerance, highlighting 

a central role for dysregulated IFN-γ signaling in the pathogenesis of autoimmunity 

associated with STAT1 GOF syndrome. In contrast, loss of type 1 IFN signals modestly 

reduced systemic inflammation, without impacting autoantibody titers. These findings are 

consistent with longitudinal clinical data in human SLE, in which increased type 1 IFN 

activity correlates with onset of symptoms but occurs years after initial development of ANA 

(69, 70). Importantly, the central role for IFN-γ in the clinical symptoms of STAT1 GOF 

syndrome may extend to CMCC. Recent data indicates that enhanced STAT1-dependent 

IFN-γ signaling induces intrinsic defects in skin barrier function, resulting in a favorable 

local tissue niche for fungal pathogens (71, 72).

In addition to defining the cytokine driver of STAT1-driven tolerance breaks, our study 

informs the biochemical understanding of STAT1 GOF syndrome. Although STAT1 GOF 

alleles were initially proposed to delay STAT1 dephosphorylation (24, 25), more recent 

studies reported increased total STAT1 expression, but unaffected STAT1 dephosphorylation 

in patients with STAT1 GOF syndrome (26–29). Consistent with this latter model, total 

STAT1 protein was increased in both patients with STAT1 GOF syndrome and Stat1R274Q 

expressing animals. IFN-γR deletion abolished this increase in total STAT1 expression 

across multiple immune lineages resulting in normalization of STAT1-dependent systemic 

inflammation. Since STAT1 regulates its own transcription (61), these findings highlight 

IFN-γ as a critical driver of a feedforward inflammatory cascade in STAT1 GOF syndrome.

Our study has several limitations. STAT1 GOF syndrome is a rare disorder characterized by 

substantial clinical heterogeneity, with about one third of patients exhibiting autoimmunity 

in the largest international cohort (5). Given that we had relatively few samples available for 

immunophenotyping studies, we were unable to assess whether specific immune parameters 

correlated with STAT1 GOF clinical manifestations or the development of autoimmunity. 

In addition, the cross-sectional study design limited our ability to establish a causal role 

for any immune subsets in the pathogenesis of STAT1-driven autoimmunity. Although we 

hypothesize that CXCR5loCXCR3+ B cells act as a precursor for autoantibody-producing 

plasma cells, proving this link would require further analyses, such as single-cell B cell 

receptor sequencing to delineate clonal lineage trees. Alternatively, analysis of longitudinal 

samples from individual treatment-naïve patients could inform the CyTOF phenotypes 

linked to breaks in tolerance, but such samples were not available and logistically 

challenging. Lastly, our animal modeling focused on a single variant lying in the STAT1 

coiled-coil domain (CCD). While neither the presence of autoimmunity nor the relative 

expansion of activated B and T cells correlated with specific mutation types in our dataset, in 

vitro modeling of separate STAT1 GOF alleles has uncovered diverse patterns of differential 

gene expression following IFN-α or IFN-γ stimulation (73–75). For this reason, the current 

transgenic strain may not inform the phenotype of every pathogenic mutation identified in 

patients with STAT1 GOF syndrome.
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Despite these caveats, our study has important translational implications. For example, 

hematopoietic stem cell transplantation (HSCT) for STAT1 GOF syndrome is potentially 

curative, but historical outcomes are poor with secondary graft failure observed in about 

50% of subjects (73). We speculate that muti-dimensional CyTOF immunophenotyping of 

patients with STAT1 GOF syndrome might predict poor outcomes post-HSCT and support 

the use of targeted biologics for a subset of patients prior to transplant conditioning. In 

addition, multiple United States Food and Drug Administration (FDA)-approved agents are 

available that either neutralize cytokine activity or block downstream JAK-STAT signaling. 

Given the relatively greater importance of dysregulated IFN-γ signaling in STAT1 GOF-

associated autoimmunity, our data suggest that directly blocking IFN-γ [emapalumab (74)] 

or JAK1/JAK2 signals [ruxolitinib (75)], is likely to confer greater benefits in comparison 

to type 1 IFN-directed therapies under development for the treatment of SLE [anifrolumab 

(76); selective tyrosine kinase 2 (TYK2) inhibitors (77)]. Moreover, the observation that 

IFN-γ drives feedforward increases in total STAT1 expression highlights the importance of 

sustained treatment with the goal of normalizing STAT1 expression and restoring immune 

tolerance in patients with STAT1 GOF syndrome.

Materials and Methods

Study Design

The aims of this study were to determine the immune alterations in pediatric patients with 

STAT1 GOF syndrome and to interrogate the underlying cellular mechanisms using an 

inducible knock-in mouse model allowing lineage-specific expression of the pathogenic 

STAT1R274Q human mutation. We used CyTOF to interrogate PBMCs from 8 individuals 

with STAT1 GOF syndrome (ages 2–11), and 9 randomly-identified age- and sex-matched 

healthy controls. Cytokine stimulation of PBMCs was performed in serum-free media 

for 30 minutes at 37°C with or without cytokines (IFN-α, IFN-β, or INF-γ) and total 

and phosphorylated STAT1 measured by flow cytometry. Patient sera were submitted 

for autoantibody microarray analysis by the University of Texas Southwestern Medical 

Center (UTSW) Microarray Core. Research protocols were approved by the Seattle 

Children’s Research Institute (SCRI) and Benaroya Research Institute (BRI) Institutional 

Review Boards. Participants or their parents provided written informed consent before 

participation in the study. All available pediatric STAT1 GOF samples in the Seattle 

Children’s Immunology Biorepository were analyzed and no outliers were excluded. No 

power calculations were performed. All experiments and data analysis were performed by 

investigators blinded to sample demographics. Sampling and experimental replicates are 

specified in the figure legends.

Inducible Stat1GOF knock-in murine model:

Stat1GOF knock-in mice were generated at Biocytogen using a targeting strategy designed 

to allow Cre-driven replacement of WT exon 10 with R274Q-expressing mutant exon 10. 

In frame Stat1GOF allele recombination was confirmed using polymerase chain reaction 

(PCR) and digital droplet PCR (ddPCR) assays. For murine studies, male and female 

experimental animals and littermate controls were sacrificed at 6 months of age unless 
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otherwise indicated. Data are representative of at least 2 independent experiments for all 

animal modeling.

Statistical analysis

P-values were calculated using Prism (Graphpad). Normally distributed data (as determined 

by D’Agostino test) was analyzed by two-tailed Student’s t test or the one-way analysis 

of variance (ANOVA) followed by Tukey’s multiple comparison test. Nonparametric data 

was analyzed using the Mann-Whitney U-test or Kruskal-Wallis test with Dunn’s correction. 

Contingency tables were analyzed using the two-tailed Fischer’s exact test. Dots in graphs 

represent individual human patients or experimental animals. Central horizontal lines in 

column dot plots display mean values. Boxplots display the median with a central line, 

the 25th and 75th percentiles with the bottom and top edges of the boxes respectively, and 

the minimum and maximum values with the whiskers. Statistical details and degree of 

significance are specified in the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: STAT1 GOF immunophenotyping by mass cytometry
(A) Schematic showing location of STAT1 mutations in the patient cohort. STAT1 protein 

domains: CCD, Coiled-coil domain; DBD, DNA-binding domain; SH2, Src-Homology 

2 domain; Trans, Trans-Activation domain. * Mutation studied in the Stat1GOF murine 

model. (B) Frequencies of major immune cell types amongst total PBMCs. (C and 

D) Frequencies of naïve, effector memory (TEM), central memory (TCM), terminally 

differentiated effector memory T cells (TEMRA) as proportion of total CD4+ (C) and 

CD8+ (D) T cells. (E) Proportion of Th1, Th1/Th17, Th17, and Th2 cells within non-Tfh 

memory population (CXCR5−CD45RO+CD4+ Teff). (F) Representative flow cytometry 

plots (gated on non-naïve CD8+) showing expansion of CD38+HLA-DR+ T cells in patients 

with STAT1 GOF syndrome. Number equals percentage within gate. (G) CD38+HLA-DR+ 

cells as a percentage of non-naïve CD8+ (left) and CD4+ (right) T cells. (H) CD38+HLA-

DR+CD8+ vs. CD38+HLA-DR+CD4+ cells in patients with STAT1 GOF syndrome. 

Spearman correlation shown. (I) Representative flow cytometry plots showing gating of 

CXCR5+PD-1+ cTfh and activated CD38+ICOS+ cTfh. Number equals percentage within 

gate. (J) Percentage of cTfh (left) and percentage of activated cTfh in control and STAT1 

GOF syndrome. (K) Percentage of activated cTfh exhibiting Th1, Th1/Th17, and Th17 

surface phenotype. (B-K) Each dot represents an individual; black (control), red (STAT1 

GOF syndrome). *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; by two-tailed 

Mann-Whitney test. N=1 CyTOF experiment.
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Figure 2: STAT1 GOF syndrome promotes broad changes in the CD4+ T cell compartment
(A) t-SNE projection of effector CD4+ T cell composite sample (3500 representative cells 

per individual). Red contour plot represents concatenated healthy control (left) and patients 

with STAT1 GOF syndrome (right). Composite sample including patients and controls 

shown in grey. (B) Heat maps of select marker expression overlaid on composite t-SNE 

projection from A. (C) t-SNE projection of CD4+ Teff clusters identified using phenograph. 

(D) Heatmap of marker MFI in CD4+ Teff phenograph clusters. (E) % of CD4+ Teff cells in 

each phenograph cluster in controls (black) and patients with STAT1 GOF syndrome (red). 

**, P<0.01; ***, P<0.001; ****, P<0.0001; by two-tailed Mann-Whitney test. N=1 CyTOF 

experiment.
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Figure 3: Expansion of activated CXCR3+ B cells in patients with STAT1 GOF syndrome
(A) Percentage of IgD+CD27− (Naïve/transitional), IgD+CD27+ (NSWM), IgD−CD27+ 

(SWM), and CD27+CD38+ plasmablasts. (B) t-SNE projection of CD19+ B cell composite 

sample. Red contour: concatenated control (left) and STAT1 GOF (right). Grey: combined 

composite sample. (C) Heat maps of select marker expression in composite t-SNE from B. 

(D) t-SNE projection of CD19+ B cell phenograph clusters. (E) Heatmap of marker MFI in 

CD19+ B cell phenograph clusters. (F) Percentage of CD19+ B cells in each phenograph 

cluster. (G) Gating strategy to identify CXCR5loCXCR3+ subset within IgD+CD27− B cells. 
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(H) Percentage of CXCR5loCXCR3+ B cells (of IgD+CD27− gate). (A, F, H) Each point 

indicates an individual; Control (black) and STAT1 GOF (red). *, P<0.05; **, P<0.01; ***, 

P<0.001, n.s. not significant; by two-tailed Mann-Whitney test. N=1 CyTOF experiment.
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Figure 4: STAT1-driven changes in CD4+ T cell and B cell compartments correlate with 
autoantibody titers in patients with STAT1 GOF syndrome
(A) Correlation between CD4+ Teff and CD19+ B cell phenograph clusters in control 

and STAT1 GOF patients. Heat map shows Spearman’s rank correlation coefficient. *, 

P<0.05; **, P<0.01; ***, P<0.001; False-discovery rate correction by Benjamini-Hochberg 

procedure (<0.05 significance threshold). (B) Spearman correlation of STAT1 GOF CD4+ 

Teff versus CD19+ B cell phenograph clusters. (C) PCA of CD4+ Teff and CD19+ B 

cell phenograph cluster distribution in controls (black) versus patients with STAT1 GOF 

syndrome (red). Ellipses indicate 95% probability range for each group. (D) Heatmap of 

IgM (upper panel) and IgG (lower panel) autoantibody titers in controls (blue), patients with 

STAT1 GOF syndrome (red), and patients with SLE (green). Timing of serum collection, 

relative to CyTOF sample, indicated in months. N=1 CyTOF and autoantibody microarray 

experiment.
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Figure 5: Enhanced STAT1 activity promotes spontaneous humoral autoimmunity in Stat1GOF 

mice
(A and B) IFN-γ-induced phospho-STAT1 (pSTAT1) in naïve CD44loCD4+ T cells (A) and 

CD19+ B cells (B) from WT (black), heterozygous Stat1WT/GOF (blue), and homozygous 

Stat1GOF/GOF (red) mice. Right panel: Relative pSTAT1 expression over time, normalized to 

the peak WT response. Left panel: Quantification of pSTAT1 area under the curve (AUC; 

normalized to WT). (C) pSTAT1 expression over time expressed as a percentage of peak 

expression for each respective genotype. (D) Histogram of total STAT1 in CD4+ T cells. (E) 

Total STAT1 MFI (normalized to WT) in indicated subsets. (F) Representative Hep-2 ANA 

Largent et al. Page 26

Sci Transl Med. Author manuscript; available in PMC 2024 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



staining (left) and quantification of ANA intensity (right). (G and H) Anti-dsDNA (G) and 

anti-Sm/RNP (H) IgG and IgG2c autoAb in animals of indicated genotypes. Top panels: 

Graph of mean autoAb titer (Error bars indicate SEM*; P<0.05, by one-way ANOVA). 

Lower panel: Pie chart showing percent of animals that are autoAb positive (defined as O.D. 

> WT mean plus 1 SD) for each antigen/subclass. *, P<0.05; **, P<0.01; ***, P<0.001, 

by Fisher's exact test relative to WT control. (I) Heatmaps of IgG2c autoantibodies in WT 

and Stat1GOF/GOF mice. Each column represents an independent animal. (J to O) Spleen 

weight (J), %PNA+FAS+ GC B cells (K), %PD1+CXCR5+ Tfh cells (L), %CD11b+CD11c+ 

ABCs (M), and %TACI+IRF4+ plasma cells in spleen (N) and bone marrow (O) in WT 

(black), heterozygous Stat1WT/GOF (blue), and homozygous Stat1GOF/GOF (red) mice. (P) 

Representative histogram T-bet expression in indicated immune subsets. (Q) T-bet MFI 

(normalized to WT for each population) in indicated genotype. (A to C) Data representative 

of 4 independent experiments. Error bars indicate SEM; *, P<0.05; **, P<0.01, by one-way 

ANOVA relative to WT control. (E-Q) Each point equals individual animal. *, P<0.05; 

**, P<0.01;***, P<0.001; ****, P<0.0001, by Kruskal-Wallis test with Dunn’s multiple 

comparison test (E, J to Q) or by one-way ANOVA (F). Data compiled from 4–10 

independent mouse cohorts.
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Figure 6: Systemic autoimmunity despite normal regulatory T cell development and function in 
murine and human STAT1 GOF syndrome
(A) Immunofluorescence (IF) staining for glomerular IgG, IgG2c, and complement C3. Left 

panels: Representative images. Right panels: Quantification of glomerular IF staining. (B) 

Representative hematoxylin and eosin (H&E)-stained kidney sections (left) and glomerular 

inflammation (right; scored from 0–3 based on mesangial expansion and cellularity, 

glomerular basement membrane (GBM) thickening, and glomerular hypercellularity). (C 

to E) Representative images showing widespread organ inflammation in homozygous 

Stat1GOF/GOF mice, including: lymphoid cell infiltrates in lungs surrounding pulmonary 

blood vessels (C; upper panels 10x; arrows) with extension into surrounding airspace 

resulting in patchy alveolar collapse (lower panels 20x; arrows); and inflammatory cell 
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accumulations in perivascular and periductal regions of Stat1GOF/GOF salivary glands 

(D; 10x) and pancreas (E; 20x). Bars equal 100μm. (F) Composite score of organ 

inflammation in Stat1GOF model. (G) Percentage (left) and total number (right) of splenic 

Foxp3+CD25+ global WT, Stat1WT/GOF, and Stat1GOF/GOF mice. (H) WT CD4+ T cell 

proliferation by cell-trace violet (CTV) dilution co-cultured with indicated ratios of WT or 

Stat1GOF/GOF Treg. (I) Treg suppression index at different Treg ratios. **, P<0.01, unpaired 

Student t test. (J) Percentage of YFP+ Treg in spleen and LN of Foxp3cre.Stat1WT/WT 

and Foxp3cre.Stat1WT/GOF mice. (K) Treg surface marker expression in LN Treg from 

Foxp3cre.Stat1WT/WT (dashed line) versus Foxp3cre.Stat1WT/GOF (solid line) mice. Gray 

histogram: WT Foxp3−CD4+ non-Treg. (L) CD25, CTLA-4, and Helios MFI on CD4+ 

non-Treg vs. Foxp3.YFP+ Treg (normalized to WT non-Treg). (A-L) Data representative 

of 8 independent cohorts with each circle indicating an individual animal. *, P<0.05; **, 

P<0.01, ***, P<0.001; ****, P<0.0001; ns, not significant, by Kruskal-Wallis test with 

Dunn’s multiple comparison test (A, B, G, L), and two-tailed Mann-Whitney test (F, J). Bars 

equal 50μm.
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Figure 7: Dysregulated type 1 and type 2 IFN signals promote autoimmunity in STAT1 GOF 
syndrome
(A) Human T cells: CD4+ T cell pSTAT1 MFI (normalized to unstimulated control) 

following IFN-α, IFN-β, or IFN-γ stimulation. Each data point indicates individual controls 

(black) and patients with STAT1 GOF syndrome (red). *, P<0.05; **, P<0.01; ***, 

P<0.001; ****, P<0.0001; by one-way ANOVA followed by Tukey multiple comparison 

test. N=1 human CD4+ T cell in vitro stimulation. (B to G) Murine Stat1GOF model: (B) 

Anti-dsDNA and anti-Sm/RNP IgG and IgG2c titers in indicated genotypes. (C to E) Spleen 

weight (C), Percentage of PD1+CXCR5+ Tfh cells (D), percentage of PNA+FAS+ GC B 

cells, and percentage of CD11b+CD11c+ ABCs (E) in indicated mice. (F) Representative 

images showing hematoxylin and eosin (H&E) staining of indicated tissues from Ifnar−/

−.Stat1GOF/GOF and Ifngr−/−.Stat1GOF/GOF animals. Bars equal 100μm. (G) Composite 

score of glomerulonephritis (GN, upper) and organ inflammation (lower) in indicated 

genotypes. (B to G) Each dot represents an individual WT (light grey), Stat1WT/GOF (dark 

grey), Stat1GOF/GOF (black), Ifnar−/−.Stat1GOF/GOF (blue), and Ifngr−/−.Stat1GOF/GOF (red) 

animal. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; by Kruskal-Wallis test with 

Dunn’s multiple comparison test. Data compiled from 7 Ifnar−/−.Stat1GOF/GOF and 3 Ifngr−/

−.Stat1GOF/GOF independent mouse cohorts.
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Figure 8: IFN-γ drives increased total STAT1 expression in STAT1 GOF syndrome:
(A to C) Murine Stat1GOF model: (A) T-bet MFI (normalized to WT for each population) 

in WT (light grey), Stat1WT/GOF (dark grey), Stat1GOF/GOF (black), Ifnar−/−.Stat1GOF/GOF 

(blue), and Ifngr−/−.Stat1GOF/GOF (red) mice. (B) Total STAT1 abundance (normalized to 

WT for each population) in indicated genotypes. (C) WT and Stat1GOF/GOF B cells were 

cultured for 4 days on 40LB feeder cells [expressing CD40 ligand (CD40L) and B-cell 

activating factor (BAFF)] plus indicated concentrations of IFN-γ. Left panel: Histograms 

of total STAT1 expression assessed by flow cytometry in WT (black) and Stat1GOF/GOF 

(red) B cells, treated with 0 ng/mL (dashed) or 20 ng/mL (solid) IFN-γ. Right panel: 

Relative total STAT1 concentrations (normalized to 0 ng/mL IFN-γ condition for each 

genotype) in WT (black) and Stat1GOF/GOF (red) B cells. (A to C) *, P<0.05; **, P<0.01; 

***, P<0.001; ****, P<0.0001; ns, not significant; by one-way ANOVA followed by Tukey 

multiple comparison test (A), by Kruskal-Wallis test with Dunn’s multiple comparison test 

(B), and by unpaired Student t test (C). Representative of ≥2 independent experiments. (D 

to F) Human STAT1 GOF syndrome: (D) Spearman correlation of activated B cell (left) and 

CD4+ T cell (right) phenograph clusters versus total STAT1 concentrations in total B and 

CD4+ T cells, respectively. (E) Spearman correlation of IgD+CD27−CXCR5loCXCR3+ B 

cells versus total B cell STAT1. (F) STAT1 MFI in CXCR5hi versus CXCR5lo B cells from 

controls (black) and patients with STAT1 GOF syndrome (red). (D to F) Each data point 

indicates an individual healthy control (black) or patient with STAT1 GOF syndrome (red). 

Spearman correlation statistics are reported for combined population (black) and patients 

with STAT1 GOF syndrome alone (red). *, P<0.05; ***, P<0.001; by paired t test (F). N=1 

CyTOF experiment.
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