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Abstract
Gene expression is an inherently noisy process that is constrained by natural selection. Yet the condition dependence of con-
straint on expression noise remains unclear. Here, we address this problem by studying constraint on expression noise of E. 
coli genes in eight diverse growth conditions. In particular, we use variation in expression noise as an analog for constraint, 
examining its relationships to expression level and to the number of regulatory inputs from transcription factors across 
and within conditions. We show that variation in expression noise is negatively associated with expression level, implicat-
ing constraint to minimize expression noise of highly expressed genes. However, this relationship is condition dependent, 
with the strongest constraint observed when E. coli are grown in the presence of glycerol or ciprofloxacin, which result in 
carbon or antibiotic stress, respectively. In contrast, we do not observe evidence of constraint on expression noise of highly 
regulated genes, suggesting that highly expressed and highly regulated genes represent distinct classes of genes. Indeed, we 
find that essential genes are often highly expressed but not highly regulated, with elevated expression noise in glycerol and 
ciprofloxacin conditions. Thus, our findings support the hypothesis that selective constraint on expression noise is condition 
dependent in E. coli, illustrating how it may play a critical role in ensuring expression stability of essential genes in unstable 
environments.

Keywords Gene expression · Expression noise · Essential gene · Evolution · Natural selection · E. coli

Introduction

Gene expression is the result of a series of interactions 
among regulatory molecules, including transcription factors 
(TFs). Because TFs have limited intracellular availabilities, 
they are subject to the stochasticity of diffusion and bind-
ing (van Zon et al. 2006). Consequently, gene expression 
is a noisy process driven by a combination of extrinsic and 
intrinsic factors. Extrinsic noise affects all genes in the same 
way and depends on the characteristics of a cell, such as its 
size, position in the cell cycle, and concentrations of various 

TFs (Elowitz et al. 2002; Barroso et al. 2018; Thomas 2019). 
Intrinsic noise varies across genes and depends on the char-
acteristics of a gene, such as its genomic position, regulatory 
sequences, and stability of transcribed mRNAs. (Elowitz 
et al. 2002; Barroso et al. 2018; Thomas 2019). Both types 
of noise play key roles in the overall cell-to-cell variation in 
gene expression observed in isogenic populations living in 
homogeneous environments (Elowitz et al. 2002; Hodgins-
Davis et al. 2015).

Gene expression noise can be beneficial in some sce-
narios, such as when the environment is in flux (Thattai 
and van Oudenaarden 2001; Acar et al. 2008; Beaumont 
et  al. 2009; Liu et  al. 2015; Bódi et  al. 2017; Duveau 
et  al. 2018; Payne and Wagner 2019; Schmutzer and 
Wagner 2020; Urchueguía et al. 2021). Indeed, studies in 
the unicellular organisms E. coli and S. cerevisiae show 
that noisy gene expression in genetically identical cells 
produces heterogeneous phenotypes conferring selective 
advantages in stressful or fluctuating environments (That-
tai and van Oudenaarden 2001; Acar et al. 2008; Liu et al. 
2015; Wolf et al. 2015; Duveau et al. 2018; Schmutzer 
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and Wagner 2020; Urchueguía et al. 2021). Further dem-
onstrating this effect, S. cerevisiae populations with high 
phenotypic heterogeneity evolve greater antifungal resist-
ance and are more robust to extinction than those with 
low phenotypic heterogeneity (Bódi et al. 2017; Payne 
and Wagner 2019). However, expression noise is typically 
deleterious (Barkai and Leibler 2000; Fraser et al. 2004; 
Wang and Zhang 2011; Schmiedel et al. 2019), and stabi-
lizing selection maintains expression levels in most sce-
narios (Gilad et al. 2006). The fitness effects of expression 
noise vary across genes, with gene-specific sensitivity to 
noise hypothesized to depend on an evolutionary trade-off 
between energy efficiency and noise reduction (Thattai and 
van Oudenaarden 2001; Hausser et al. 2019). Regardless, 
multiple theoretical and empirical studies have uncovered 
support for widespread negative selection to minimize 
gene expression noise (Fraser et al. 2004; Lehner 2008; 
Wang and Zhang 2011), suggesting that it is an important 
trait that should be considered in evolutionary studies.

As for other biologically important traits, the fitness 
effects of expression noise are expected to vary across 
environments (Raser and O’Shea 2005; Wang and Zhang 
2011; Duveau et al. 2018; Schmiedel et al. 2019). Yet 
because most genome-wide studies have only assayed 
expression noise in a single condition, noise response 
to different environments is not clearly understood. A 
recent study addressed this question by quantifying and 
comparing expression noise in 1,103 E. coli genes across 
eight growth conditions (Urchueguía et al. 2021). Their 
findings demonstrate that gene expression noise indeed 
varies across conditions and, moreover, that the condi-
tion dependence of genome-wide noise levels is primarily 
determined by the structure of the gene regulatory net-
work (Urchueguía et al. 2021). However, the condition-
dependent role of selection on gene expression noise 
remains unclear.

To tackle this problem, we used the dataset of Urchue-
guía et al. (2021) to examine and compare the impacts of 
expression level, number of regulatory inputs from TFs, 
and essentiality on variation in expression noise across 
and within eight growth conditions in E. coli. Though sev-
eral studies have interrogated relationships between each 
of these traits and mean expression noise (Fraser et al. 
2004; Sánchez and Kondev 2008; Wang and Zhang 2011; 
Silander et al. 2012; Sharon et al. 2014; Wolf et al. 2015; 
Urchueguía et al. 2021), knowledge of their contributions 
to variation in expression noise across conditions can shed 
light on the role of selection in moderating expression 
noise. In particular, pinpointing differences among these 
conditions can elucidate how selection may act to mini-
mize expression noise variation in diverse environments, 
shaping our understanding of the plasticity of this critical 
biological trait.

Results and Discussion

As a first step toward understanding condition-dependent 
selection on expression noise, we examined how expres-
sion noise changes as a function of expression level across 
and within the eight growth conditions in E. coli (Fig.  1; 
see Methods). In particular, because our expression noise 
estimates account for the natural dependency between 
expression level and noise due to measurement error (see 
Methods) (Urchueguía et al. 2021), this analysis enabled 
us to assay the relationship between expression level and 
the remaining “biological” noise. Consistent with a prior 
genome-wide analysis in E. coli (Silander et al. 2012), we 
observed a weak positive nonlinear correlation between 
expression level and noise across conditions (Fig. 1A; 
see Methods). However, a White test (White 1980) also 
uncovered strong evidence of non-constant variance, or 
heteroskedasticity (James et al. 2021), in expression noise 
as a function of expression level (Fig. 1A; see Methods). In 
particular, despite its small increase in magnitude, expres-
sion noise becomes much less variable as expression level 
increases. Heteroskedasticity is an important statistical 
property, as it indicates that the variance of one variable 
is dependent on the value of another, violating a common 
assumption of regression analysis (James et al. 2021). In 
this case, heteroskedasticity signals a negative relationship 
between expression level and variation in expression noise, 
suggesting that noise is more tightly controlled in highly 
expressed genes. As highly expressed genes tend to evolve 
slowly at the sequence (Pál et al. 2001; Krylov et al. 2003; 
Subramanian and Kumar 2004; Pál et al. 2006; Drummond 
and Wilke 2008; Marek and Tomala 2018; Shibai et al. 
2022) and expression (Lemos et al. 2005; Liao and Zhang 
2006; Gu et al. 2019) levels, it is not surprising that their 
expression noise is also constrained. Stronger constraint on 
such genes may be due in part to their ubiquity and there-
fore importance in many cellular processes (Krylov et al. 
2003), particularly as expression noise is often deleterious 
(Barkai and Leibler 2000; Fraser et al. 2004; Wang and 
Zhang 2011; Schmiedel et al. 2019).

To glean insight into which conditions drive the 
observed relationships of expression level with expression 
noise and with expression noise variation, we explored 
associations between these variables in individual condi-
tions (Fig. 1B). Our analysis revealed that the relation-
ships of expression level with expression noise and with 
expression noise variation are both condition dependent 
(Fig. 1B). Specifically, expression level and noise are 
weakly positively correlated in five of the eight condi-
tions: stationary phase 30 h, glucose, glycerol, lactose, 
and ciprofloxacin. Comparisons of the magnitudes of cor-
relation coefficients suggest that glycerol and ciprofloxacin 
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are the two major contributors to the correlation observed 
across conditions (Fig. 1A), as they are not significantly 
different from each other but significantly larger than those 
of all other conditions aside from stationary phase 30 h 
(Table  S1; see Methods). Intriguingly, heteroskedasticity 
is only evident for these two conditions (Fig. 1B), which 
have White test statistics that are not significantly differ-
ent from each other but significantly larger than those of 
all but one condition for glycerol and all other conditions 
for ciprofloxacin (Table S2; see Methods). Thus, glycerol 
and ciprofloxacin appear to be the primary or sole drivers 
of the heteroskedasticity observed when considering all 
conditions together (Fig. 1A) and therefore, the stronger 
constraint on expression noise of highly expressed genes. 
Indeed, both substances perturb the cell—glycerol is an 
inefficient nutrient source that triggers a carbon stress 
response (Martínez-Gómez et al. 2012), and ciprofloxa-
cin is an antibiotic that causes irreversible cellular dam-
age and death (Smirnova et  al. 2017; Adamus-Białek 
et al. 2019). Hence, perhaps growth of E. coli in these 
conditions initiates stress-related pathways that naturally 

increase fluctuations in expression noise, which must then 
be tightly controlled to ensure stable expression of highly 
expressed and presumably biologically important genes.

Because TFs are thought to be key drivers of expression 
noise (van Zon et al. 2006) and contribute to condition-
dependent expression noise in E. coli (Urchueguía et al. 
2021), we hypothesized that TFs may also play a role in 
the observed condition-dependent constraint on expres-
sion noise. To evaluate this hypothesis, we next examined 
relationships of the number of regulatory inputs from TFs 
with expression level and with expression noise across and 
within the eight growth conditions in E. coli (Fig. 2; see 
Methods). Across conditions, we observed weak-positive 
nonlinear correlations for the number of regulatory inputs 
with expression level (Fig.  2A) and with expression noise 
(Fig.  2B), suggesting that both expression level and noise 
only increase slightly as the number of regulatory inputs 
increases. There is also support for heteroskedasticity in 
the relationship of the number of regulatory inputs with 
expression level (Fig. 2A), but not with expression noise 
(Fig. 2B). These relationships are consistent with constraint 

Fig. 1  Relationships of expression level with expression noise across 
(A) and within (B) eight conditions in E. coli. Spearman correlation 
coefficients ( � ) and White test statistics (LM) are shown in the upper 

right corner of each plot. * P < 0.05 , **P < 0.01 , ***P < 0.001 , NS 
not significant (see Methods)
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on expression level but not on expression noise of highly 
regulated genes. The observed constraint on expression 
noise of highly expressed, but not highly regulated, genes 
suggests that genes that are highly expressed tend not to be 
highly regulated. Hence, perhaps highly expressed genes and 
highly regulated genes compose two distinct classes of genes 
whose noise is constrained in different ways.

We next examined the condition dependence for observed 
relationships of the number of regulatory inputs with expres-
sion level and with expression noise (Fig.  2A and B). We 
found that conditions manifesting changes in expression 
level and noise as a function of the number of regulatory 
inputs (Fig. 2C and D) differ from those identified for the 
relationship between expression level and noise (Fig.  1B). 
In particular, there is a weak positive correlation between the 
number of regulatory inputs and expression level in only one 
condition (stationary phase 30 h; Fig.  2C), whereas there are 
weak-positive correlations between the number of regula-
tory inputs and expression noise in all conditions (Fig.  2D). 
Additionally, there are no significant differences between 
correlation coefficients in any pair of conditions for either 
expression level (Table  S3) or noise (Table  S4), suggesting 

that there is likely no condition dependence for the corre-
lation between the number of regulatory inputs and either 
trait. When considering heteroskedasticity, we obtained no 
statistical support for an association between the number of 
regulatory inputs and variation in expression level in any of 
the conditions (Fig.  2C). Although the NaCl condition dem-
onstrates heteroskedasticity in the relationship between the 
number of regulatory inputs and expression noise (Fig.  2D), 
there are again no significant differences between White test 
statistics in any pair of conditions (Table S5). Thus, unlike 
highly expressed genes, highly regulated genes do not appear 
to experience condition-dependent noise constraint, support-
ing the hypothesis that they represent a different class of 
genes with unique evolutionary constraints.

Last, inspired by studies demonstrating that essential 
genes often display high expression levels and low noise 
(Fraser et al. 2004; Bhardwaj and Lu 2005; Wang and Zhang 
2011; Silander et al. 2012; Wang et al. 2015; Wu et al. 
2017), we considered associations of gene essentiality with 
expression level and with noise across and within the eight 
conditions in E. coli (Fig.  3). Across conditions, our find-
ings mirror prior studies (Fraser et al. 2004; Bhardwaj and 

Fig. 2  Relationships of the number of regulatory inputs from TFs 
with expression level (left) and expression noise (right) across (A, B) 
and within (C, D) eight conditions in E. coli. Spearman correlation 

coefficients ( � ) and White test statistics (LM) are shown in the upper 
right corner of each plot. * P < 0.05 , **P < 0.01 , ***P < 0.001 , NS 
not significant (see Methods)
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Lu 2005; Wang and Zhang 2011; Silander et al. 2012; Wang 
et al. 2015), showing that essential genes tend to be more 
highly expressed and less noisy than nonessential genes in E. 
coli (Fig. 3A and B). Consistent with a genome-wide study 
in yeast (Yu et al. 2004), essential E. coli genes also tend 
to have fewer regulatory inputs from TFs than nonessential 
genes (Fig.  S1), indicating that they are not highly regulated 
despite being highly expressed and therefore providing fur-
ther support for the hypothesis that highly expressed and 
highly regulated genes form distinct classes. For expression 
level, the association between essentiality and expression 
level appears to be condition independent, as essential genes 
are more highly expressed in all eight conditions (Fig.  3C). 
In contrast, the association between essentiality and expres-
sion noise is condition dependent, with no difference in 
expression noise between essential and nonessential genes 
in glycerol, lactose, and ciprofloxacin conditions (Fig.  3D). 
This result is interesting, as despite the relationship between 
essentiality and expression level across and within condi-
tions (Fig. 3A and C), significant associations between 
essentiality and expression noise (Fig. 3D) exist only for 
conditions with no evidence of heteroskedasticity between 

expression level and noise (Fig.  1B). That is, expression 
noise of essential genes is only lower in conditions where 
it is not constrained as a function of expression level. This 
result may point to an important role of gene essential-
ity in expression noise constraint, such that noise is only 
constrained in conditions where essential genes tend to be 
noisier. Intriguingly, the pertinent conditions in our study 
are glycerol and ciprofloxacin, which also demonstrate the 
strongest associations between expression level and noise. 
Taken together, our results suggest that these conditions 
generate extreme perturbations of the cellular environment 
that increase expression noise of essential genes, perhaps 
necessitating selection to constrain noise and minimize its 
deleterious effects on critical biological processes.  

Methods

Data Acquisition and Processing

We utilized the Urchueguía et al. (2021) estimations of 
expression level and noise for 1103 genes in E. coli grown 

Fig. 3  Distributions of expression level (left) and expression noise (right) for nonessential (“N”) and essential (“E”) genes across (A, B) and 
within (C, D) eight conditions in E. coli. * P < 0.05 , **P < 0.01 , ***P < 0.001 , NS not significant (see Methods)
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in eight conditions: synthetic-rich media with 0.2% glucose, 
M9 minimal media with 0.2% glucose for 16 h, M9 mini-
mal media with 0.2% glucose for 30 h, M9 minimal media 
with 0.2% glucose, M9 minimal media with 0.2% glycerol, 
M9 minimal media with 0.2% lactose, M9 minimal media 
with 0.4M NaCl, and M9 minimal media with 1.5 ng/ml 
ciprofloxacin. For simplification, we refer to these conditions 
in the manuscript as synthetic rich, stationary phase 16 h, 
stationary phase 30 h, glucose, glycerol, lactose, NaCl, and 
ciprofloxacin, respectively.

Urchueguía et al. (2021) used flow cytometry to measure 
the mean and variance of expression levels (log-fluores-
cence). To estimate expression noise, they decomposed each 
raw measurement of expression variance into two terms: a 
“Poissonian” term that decreases with expression level and 
appears to be primarily driven by measurement noise of the 
flow cytometer (Galbusera et al. 2020) and a “noise floor” 
term that is independent of expression level. They then 
extracted the noise floor component of expression variance 
and computed expression noise as the difference between 
the variance and the noise floor. As a result, these expres-
sion noise estimates do not depend on expression levels and 
are also likely to represent true “biological” noise because 
they do not incorporate variation due to measurement error. 
Additionally, similar to other methods (Barroso et al. 2018; 
Laloum and Robinson-Rechavi 2021), these estimates take 
into account mean expression level and neutralize the noise 
floor as a function of mean expression, which is important 
when comparing expression noise across conditions.

We also obtained numbers of regulatory inputs from TFs 
for each of the 1103 E. coli genes from Urchueguía et al. 
(2021). They extracted all gene-TF regulation annotations 
from the RegulonDB database for E. coli (Santos-Zavaleta 
et al. 2019) and then counted the number of unique TFs 
known to regulate each gene. These values ranged from 
0 (no known regulatory inputs) to 14 for the genes in our 
study. Of the 1103 genes in our study, 644 do not have any 
known regulatory inputs and were therefore excluded from 
analyses utilizing the number of regulatory inputs. Addition-
ally, because only one gene (gadX) has more than ten known 
regulatory inputs, we assigned it to the group “ > 10 ” for 
easier visualization in Fig. 2. Note that the actual number 
of regulatory inputs (14) was used for statistical analyses.

Lists of essential genes were sourced from Dasmeh 
et al. (2017) and Goodall et al. (2018). Those from Goodall 
et al. (2018) were determined through transposon-directed 
insertion site sequencing (TraDIS), which combines trans-
poson mutagenesis with short-fragment DNA sequencing 
of transposon junctions (Gawronski et  al. 2009; Good-
man et al. 2009; Langridge et al. 2009; van Opijnen et al. 
2009). Because genes can be conditionally essential, they 
defined a gene as essential only if the transposon insertion 
data showed that at least a portion of the protein-coding 

sequence of the gene is required for growth in all four tested 
conditions (Goodall et al. 2018). To decrease false positives, 
they also implemented a statistical model to correct for both 
gene length and genome length when predicting essential-
ity (Goodall et al. 2018). To maximize our sample size, we 
considered a gene essential if it was defined as essential by 
at least one of the two studies (Dasmeh et al. 2017; Goodall 
et al. 2018). However, it is important to note that essentiality 
status may be dynamic, and it is therefore possible for a gene 
to be essential in some conditions and nonessential in others.

Statistical Analyses

All statistical analyses were performed in R (R Core Team 
2022) with the Posit Cloud IDE (RStudio Team 2024). 
Before performing any analyses discussed in the manuscript, 
we evaluated linearity in the relationships of expression level 
with expression noise (Fig. 1) and the number of regulatory 
inputs with expression level and expression noise (Fig.  2). 
Specifically, we first used the lm() function in the stats pack-
age (R Core Team 2022) to fit linear regression models to the 
data, and then we applied the shapiro.test() function in the 
stats package (R Core Team 2022) to evaluate normality of 
the residuals (errors) of the fitted models with Shapiro–Wilk 
tests (Shapiro and Wilk 1965). Because the null hypothesis 
of normality was rejected in nearly all cases (Figs.  S2 and 
S3), we conservatively chose to employ statistical tests that 
did not assume linearity for all analyses in our study.

We used the cor.test() function in the stats package (R 
Core Team 2022) to estimate (nonlinear) Spearman corre-
lation coefficients ( � ) (Spearman 1907) and evaluate their 
statistical significance for the relationships of expression 
noise with expression level (Fig. 1) and the number of reg-
ulatory inputs with expression level and expression noise 
(Fig.  2). Because the commonly used Breusch–Pagan test 
(Breusch and Pagan 1979) can only detect linear forms of 
heteroskedasticity, we instead used its nonlinear equivalent, 
the White test (White 1980), to evaluate heteroskedastic-
ity in these relationships. In particular, we performed boot-
strapped White tests with the white_test() function in the 
whitestrap package (Jeong and Lee 1999). The test statistic 
for the White test is the Lagrange multiplier (LM), which fol-
lows a chi-squared distribution. Two-tailed Mann–Whitney 
U tests (Mann and Whitney 1947), implemented with the 
wilcox.test() function In the stats package (R Core Team 
2022), were used to evaluate differences between expression 
level and expression noise distributions of nonessential and 
essential genes (Fig. 3), as well as differences between the 
number of regulatory inputs from TFs of nonessential and 
essential genes (Fig.  S1).

Two-tailed permutation tests were used to evaluate dif-
ferences between statistically significant Spearman correla-
tion and White tests depicted in Figs.  1B,  2C, and 2D and 
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those for all other conditions. Specifically, we used 10,000 
permutations to compare each pair of conditions, setting the 
test statistic as the mean difference between either computed 
values of � (for Spearman correlation tests) or LM (for White 
tests). Each permutation P value was Bonferroni-corrected 
for the seven comparisons performed with the p.adjust() 
function in the stats package (R Core Team 2022).
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