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1  |  INTRODUC TION

Inflammation plays an important role in the defense mechanisms of 
hosts against microbial infections. It includes the phagocytic activ-
ity of macrophages and neutrophils during bacterial infections, and 
the recognition, activation, and cytotoxic functions of T cells and B 
cells in response to viral infections. These immune cells are essen-
tial for eliminating microbes. Further, inflammation that is not in-
volved in pathogen infection is important. Independent of pathogen 

infection, abnormal, excessive, or suppressed inflammation is com-
monly observed in various pathologies, including cancer,1 cardiovas-
cular diseases,2–4 diabetic kidney disease,5 and pulmonary disorders.6 
Inflammation without evident pathogenic infection, referred to as 
sterile inflammation, involves the collaboration of the innate and ac-
quired immune systems to regulate inflammatory reactions. These 
inflammatory abnormalities are often triggered by exogenous non-
pathogenic agents, such as silica, asbestos, and particulate matter 
2.5 (PM 2.5).7 Thus, inflammation, whether due to infection or not, 
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Abstract
Background: Several conditions such as infertility, repeated implantation failure, and 
recurrent pregnancy loss can pose challenges in early pregnancy. These issues can be 
caused by the abnormal inflammatory response with various factors, including exog-
enous and endogenous agents, and pathogenic and nonpathogenic agents. In addi-
tion, they can be exacerbated by maternal immune response to the abovementioned 
factors.
Methods: This review aimed to assess the detrimental inflammatory effects of 
chronic endometritis, endometrial microbiota disturbance, and maternal immune sys-
tem abnormalities on early pregnancy. Further, essential details such as ovulation, 
implantation, trophoblast invasion, and placental formation, were examined, thereby 
highlighting the beneficial roles of inflammation.
Main Findings: Excessive inflammation was associated with various early pregnancy 
disorders. Meanwhile, a lack of appropriate inflammation could also contribute to the 
development of different early pregnancy complications.
Conclusion: Excessive inflammation and insufficient inflammation can possibly lead to 
abnormal conditions in early pregnancy, and appropriate inflammation is required for 
a successful pregnancy.
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serves as a biological response that maintains homeostasis in the 
body in response to various stimuli.

Inflammatory responses are generally triggered by alarmins, which 
include infection-related molecules and microparticles. Pathogen-
associated molecular patterns (PAMPs), such as lipopolysaccharide 
(LPS), peptidoglycan, flagellin, and viral particles, can function as 
alarmins.8,9 These molecules are recognized by the immune system, 
which then triggers an inflammatory response that alerts the body to 
the presence of pathogens. As alarmins, PAMPs activate immune cells 
and initiate a cascade of immune responses, helping in the defense 
against infections. When cells are damaged, endogenous molecules, 
such as high-mobility group box 1 (HMGB1), interleukin (IL)-1α, IL-33, 
heat shock proteins, and S100 proteins, are released into the extracel-
lular space. These molecules, known as damage-associated molecular 
patterns (DAMPs), play a critical role in triggering and inducing inflam-
mation. They are also referred to as inflammatory alarmins.9 Various 
factors can trigger the release of DAMPs during pregnancy, including 
hypoxia, ischemia, vascular dysfunction, and oxidative stress associ-
ated with placental insufficiency.10 Additional factors include mater-
nal alcohol consumption, smoking, poor nutrition, and trauma. The 
abovementioned nonpathogenic exogenous nanoparticles, such as 
asbestos, silica, PM 2.5, microplastics, also act as alarmins. Recently, 
the concept of resolution-associated molecular patterns (RAMPs) 
has gained attention. Proteins such as heart shock protein (HSP)10, 
HSP27, HSPA5, HSPB5, and phosphatidylserine have been shown to 
be a type of RAMPs.11 While HMGB1 is considered a DAMP, oxidized 
HMGB1, in which the cysteine of HMGB1 has been oxidized, has anti-
inflammatory properties as a RAMP.12 RAMP stimulation can resolve 
excessive inflammation induced by DAPMs and PAMPs.13

Alarmins are detected by pattern recognition receptors (PRRs) 
such as Toll-like receptors (TLRs), C-type lectin receptors, NOD-
like receptors, and receptors for advanced glycation end-products 
mainly in antigen-presenting cells, macrophages, and dendritic cells 
(DCs).14–17 If these cells detect antigens via their PRRs, they can in-
fluence T cells and other effector cells either via direct interaction 
between the T-cell receptor and the major histocompatibility com-
plex or via indirect pathways involving cytokine networks. Various 
inflammatory responses in  vivo are induced, starting with the re-
sponse of alarmins and the PRRs that receive them.

At the fetal–maternal interface, different immune cells are pres-
ent. Further, each type of cells is skillfully orchestrated, and they work 
together to maintain pregnancy. Therefore, if this immune imbalance 
occurs, various pregnancy complications are triggered. The onset of 
preterm labor/birth is significantly strongly associated with both patho-
genic and nonpathogenic excess inflammation.18–21 Preeclampsia, which 
is characterized by hypertension, proteinuria, and edema, involves an 
excessive maternal inflammatory response without microbial infec-
tion.22–25 Excessive inflammation can also cause infertility, repeated im-
plantation failure (RIF), recurrent pregnancy loss (RPL), and miscarriage 
in the early pregnancy period.26–28 Notably, excessive inflammation 
induces these pregnancy complications. However, an appropriate level 
of inflammation is also required for a successful offspring production. 
Labor onset is caused by uterine inflammation.29 Hence, an extremely 

powerful inflammation is required in late pregnancy and parturition. In 
early pregnancy, an appropriate level of inflammatory response is re-
quired for the attachment and implantation of an embryo, infiltration 
of trophoblast cells into the maternal tissue, and placentation (Figure 1 
and Section 2.2).30–32 Hence, the retention of a semiallogenic fetus in 
the maternal body requires the establishment of an anti-inflammatory 
environment (i.e., maternal immune tolerance). However, an insuffi-
cient inflammation also occasionally contributes to the development 
of early pregnancy complications (Figure 1 and Section 2.2.3). Further, 
the mother must have a good immune system to eliminate infectious 
pathogens to protect the fetus. Thus, during the limited gestation pe-
riod, the maternal immune system requires prompt alteration in the in-
flammatory/anti-inflammatory environment in response to pathological 
conditions.33

This review aimed to assess the beneficial and harmful effects of 
inflammation in the pathogenesis of various diseases in early pregnancy.

2  |  BENEFICIAL EFFEC TS OF 
INFL AMMATION

2.1  |  Role of inflammation in ovulation

2.1.1  |  Appropriate inflammation in ovulation

The notion that ovulation involves an inflammatory response was 
first proposed by Espey34 and has since become widely accepted.35 

F I G U R E  1 Dual nature of inflammation and its associated 
pathologies/phenomena during pregnancy. Excessive/insufficient 
inflammation leads to pregnancy complications. However, an 
appropriate degree of inflammation is required for a normal 
pregnancy process.
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Ovulation is triggered by a surge in luteinizing hormone (LH). This 
surge leads to the invasion of blood vessels into the granulosa cell 
area and disrupts the basal lamina of these cells, thereby allowing 
the infiltration of theca cells and leukocytes. After the dilation and 
increased permeability of these vessels, the cumulus–oocyte com-
plex detaches from the surrounding granulosa cells and expands (cu-
mulus expansion). The follicle eventually deteriorates and ruptures, 
releasing the cumulus-enclosed oocyte. Then, the damaged tissue 
is repaired.

In essence, ovulation represents a complex interaction involving 
the oocyte, granulosa cells, theca cells, endothelial cells, and both 
resident and infiltrated immune cells. This process is accompanied 
by the secretion of various inflammatory mediators, including pros-
taglandins, reproductive hormones, matrix metalloproteinases, cy-
tokines, and chemokines. The preovulatory follicle contains several 
inflammatory cytokines such as IL-1, IL-2, IL-6, TNF-α, granulocyte–
macrophage colony-stimulating factor, and macrophage colony-
stimulating factor.36–41 The LH surge stimulates the production of 
chemokines that attract immune cells including neutrophils, mono-
cytes, macrophages, natural killer (NK) cells, B cells, and T cells.42–47 
Macrophages release cytokines and chemokines that help in the mi-
gration of other immune cells. Thus, they are essential for follicular 
growth and rupture.48–50 Ovarian DCs are important for cumulus 
expansion, ovulation, and management of ovulation-related inflam-
matory response.51 Neutrophils, which are recruited by bone mor-
phogenetic protein 6, secrete cytotoxic peptides and proteases that 
degrade the follicular wall.52 NK cells and their chemokine receptors 
play roles in ovulation and angiogenesis.42,53

2.1.2  |  Inappropriate inflammation in ovulation

Luteinized unruptured follicle (LUF) is a common condition in individu-
als with infertility. It is characterized by the lack of follicular rupture 
that results in ovulatory dysfunction.54–56 LUF may be associated 
with disruptions in the inflammatory processes involved in ovulation. 
In humans, the granulocyte-colony stimulating factor (G-CSF) levels 
in the peripheral blood increase during the late follicular phase of a 
normal ovulatory cycle.57 Further, LUF can be alleviated by administer-
ing G-CSF during a clomiphene citrate cycle.58,59 In animal models, the 
systemic depletion of neutrophils leads to a reduced ovulation rate.60 
These findings indicate that an inappropriate inflammatory response 
by granulocytes can contribute to LUF development (Figure 1).

Nevertheless, excessive inflammation of course has a harmful 
effect on ovulation. Polycystic ovary syndrome (PCOS), a major 
cause of infertility, is associated with endocrine abnormalities, poly-
cystic ovarian morphology, and ovulatory dysfunction.61 Further, it 
is characterized by systemic low-grade inflammation.62,63 Patients 
with PCOS have elevated levels of C-reactive protein and inflam-
matory cytokines.64–66 The high levels of HMGB1 in adolescents 
with PCOS can be reduced by anti-inflammatory treatments such 
as myo-inositol and alpha-lipoic acid.67 Excessive inflammatory re-
sponses may contribute to the ovulatory dysfunction observed in 

PCOS (Figure 1). The inflammation involved in ovulation is typically 
sterile. However, infections caused by pathogens can impair follic-
ular growth. Granulosa cells, which express LPS receptors such as 
TLR4, CD14, and MD-2, exhibit disrupted estradiol production and 
follicular growth failure when exposed to LPS in animal models.68,69

2.2  |  Appropriate inflammation in early pregnancy

2.2.1  |  Appropriate inflammatory cytokine

As mentioned in the previous text, a maternal immune tolerant and 
anti-inflammatory environment is essential for retaining a fetus with 
semi-allogeneic antigens. However, recent findings have revealed 
that, in addition to maternal tolerance to fetal allogeneic antigens, 
an adequate level of inflammation is also required for success-
ful embryo attachment, implantation, and placentation during the 
early pregnancy period. Previously, inflammation represented by the 
secretion of IL-1, IL-6, IL-17, interferon gamma (IFN-γ), and tumor 
necrosis factor alpha (TNF-α) is believed to have a harmful effect 
on the maintenance of pregnancy. However, attachment, implanta-
tion, and placentation require adequate levels of these inflamma-
tory cytokines.30,31 In humans, proinflammatory responses, such 
as the secretion of IL-6, IL-8, and TNF-α, are essential for achieving 
uterine receptivity.70–72 In addition, increased levels of IL-12, IL-1β, 
TNF-α, IL-6, and nitric oxide facilitate embryo attachment to the de-
cidua.32 Elevated levels of IFN-γ, a key Th1 cytokine, are associated 
with early pregnancy complications.73–75 Excessive IFN-γ produc-
tion caused by increased inflammation can result in fetal rejection. 
Nevertheless, IFN-γ also plays a role in modifying uterine vasculari-
zation.76,77 Further, patients with RPL present with a reduced pro-
portion of IFN-γ-  and TNF-α-positive cells in the endometrium.77 
Therefore, IFN-γ can also have beneficial effects in sustaining a suc-
cessful pregnancy. Human chorionic gonadotropin, a glycoprotein 
hormone produced by the placenta, significantly increases during 
early pregnancy. It stimulates IL-8 secretion from monocytes and 
helps in endometrial differentiation and implantation by modulating 
immune cell activity.78,79

2.2.2  |  Inflammatory role of macrophages and DCs

Macrophages exhibit plasticity, and they are classified into M1 and 
M2 subtypes, each with different inflammatory effects. M1 mac-
rophages have proinflammatory effects, and M2 macrophages have 
anti-inflammatory effects. The presence of M1 macrophages is detri-
mental to the maintenance of pregnancy. However, emerging evidence 
shows that M1 macrophages may play an important role in initiating an 
appropriate inflammatory response during parturition and early preg-
nancy.32 During the implantation period, macrophages are predomi-
nantly polarized toward the M1 phenotype, which is associated with 
the production of proinflammatory cytokines.71 After implantation, to 
help prevent maternal rejection of the fetus as pregnancy progresses, 
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macrophages transition to a mixed M1/M2 phenotype and then to a 
predominantly M2 phenotype.32,80 Toward the end of pregnancy, the 
re-emergence of M1 macrophages, which secrete proinflammatory cy-
tokines, becomes essential for parturition.32,81

In clinical cases, mechanical injury induced by endometrial bi-
opsy leads to an increased production of macrophage inflammatory 
protein 3 beta, TNF-α, CXCL1, osteopontin, and IL-15, accompanied 
by an abundance of macrophages and DCs.82 The induction of DC 
and macrophage accumulation via the upregulation of proinflam-
matory cytokines enhances implantation rates, in vitro fertilization 
(IVF) outcomes, and clinical pregnancy rates in patients experiencing 
unexplained infertility.82–86 DCs are recruited to the uterus before 
implantation, and they play an important role in modulating the cy-
tokine profile at the fetal–maternal interface.87–90 Adequate inflam-
mation driven by DCs is essential for successful implantation and for 
reducing the risk of miscarriage during the first trimester.91

Our recent study found reduced levels of DC1s (CD141+ DCs), 
which are responsible for promoting Th1 polarization, in the uter-
ine septum of patients with a septate uterus with low chemokine 
levels.92 Considering that a septate uterus is generally a significant 
risk factor of RPL, we assumed that a diminished accumulation of 
DCs with an inflammatory phenotype can result in failed appropriate 
inflammatory response that creates an immune environment unfa-
vorable for implantation in the uterine septum in early pregnancy.

2.2.3  |  Approaches according to the endometrial 
immune profile

Systemic and utero-local reactions are extremely different; therefore, 
it is important to investigate the immune profile of the endometrium. 
The application of various biomarkers is recommended for assess-
ing the immune profile of the human endometrium in patients with 
RIF.93,94 The IL-18/tumor necrosis factor-like weak inducer of apoptosis 
(TWEAK) mRNA ratio is a useful endometrial biomarker of angiogen-
esis and Th1/Th2 balance during implantation.93,95 The IL-15/fibroblast 
growth factor-inducible molecule 14 (Fn-14) mRNA ratio is a biomarker 
of uterine NK cell activation and maturation.93 Interestingly, neither 
over-immune activation (extremely high) nor low-immune activation 
(extremely low) that was evaluated using the IL-18/TWEAK and IL-15/
Fn-14 ratio is favorable for pregnancy outcomes. Hence, individualized 
treatment based on the patient's endometrial condition is required.

3  |  HARMFUL EFFEC TS OF 
INFL AMMATION

3.1  |  Chronic endometritis (CE)

The concept of CE is now commonly recognized in clinical prac-
tice. CE is defined as inflammation of the endometrium. Clinically, 
patients with CE are usually asymptomatic or present only subtle 
symptoms.96 However, previous studies have revealed that CE is 

associated with implantation failure and pregnancy loss.97–100 The 
incidence rates of CE in patients with infertility and RPL are approxi-
mately 2.8%–39% and 60%, respectively.101 CE induces endometrial 
dysfunction and reduces the endometrial receptivity of embryos. 
Hysteroscopic examinations typically detect stromal edema, thicken-
ing of the uterine lining, micropolyps, and focal or diffuse hyperemia 
in affected patients.98,102,103 The pathological feature of CE is the in-
filtration of CD138 (syndecan-1)-positive plasma cells into the endo-
metrial tissue.98,104–107 Classically, CE is diagnosed by identifying the 
presence of CD138-positive plasma cells in the endometrial stroma 
through immunohistochemical staining for CD138108; however, 
this finding is not specific, and its effectiveness can vary depend-
ing on the menstrual cycle. Given these limitations, complementary 
methods such as hysteroscopy and microbial culture are frequently 
used.101 Bacterial infections, such as Escherichia coli, Streptococcus 
spp., Staphylococcus spp., Enterococcus faecalis, Corynebacterium, 
Mycoplasma, and Ureaplasma, are major causes of CE.98,103 Oral 
antibiotic therapy is the first-line treatment for CE in patients with 
pregnancy complications. Notably, antibiotic therapy has been ef-
fective in improving implantation, clinical pregnancy, and live birth 
rates.102,109 This finding supports the role of microbial infection in 
the pathogenesis of CE. However, the most frequently detected in-
fectious agents at the endometrial level are common bacteria, such 
as E. coli, Streptococcus spp., and Staphylococcus spp.103 A previous 
study evaluated the presence of various pathogens in patients with 
infertility, with or without CE, using reverse-transcription polymer-
ase chain reaction. No significant differences were found in the 
percentage of these pathogens between patients with and without 
CE.101 These results indicate that no specific pathogen is responsible 
for CE development. In general, the dominance of Lactobacillus in 
the uterus indicates a healthy status (Section 3.2). However, patients 
with CE had a higher detection rate of Lactobacillus than healthy 
women.110 According to these findings, the pathogenesis of CE may 
involve not only a direct attack by pathogens on the endometrium 
and embryo but also an abnormal interaction between these patho-
gens and the immune system in the endometrium. Several theories 
regarding the immune response related to CE have been proposed. 
Patients with CE and RIF presented with an abnormal distribution 
of a NK cell subsets,111 and patients with CE exhibited elevated lev-
els of IL-6 and TNF-α in menstrual effluents.112 Other studies have 
reported that autophagy dysregulation promotes the production of 
proinflammatory cytokines and Th17-dominant milieu in patients 
with CE113 and the accumulation of Th1 cells surrounding CD138-
positive cells in patients with CE.114 Abnormalities in maternal im-
mune responses toward pathogens may contribute to reproductive 
failure.

Patients often do not respond to various antibiotic regimens, 
indicating the involvement of additional factors. Reports indicate 
that infections caused by viruses, such as herpes simplex virus,115,116 
Epstein–Barr virus,117 and human immunodeficiency virus,118,119 are 
correlated with CE. Furthermore, other nonpathogenic exogenous 
agents and endogenous alarmins related to immune disorders may 
also contribute to CE development.
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Collectively, pathogens and the abnormal immune response of 
the endometrium induced by these pathogens can be responsible 
for CE development (Figure 2). Further detailed analysis may be re-
quired to achieve a more precise understanding of the pathogenesis 
of CE.

3.2  |  Endometrial microbiota disturbance

Previously, the uterine cavity is considered a sterile organ under 
normal conditions. Next-generation sequencing of the 16S rRNA 
gene (16S analysis) is widely used to analyze the microbiota in the 
reproductive tract. Thus, there is now a consensus that the uterus is 
not a sterile environment.120–122 The endometrial microbiota, in nu-
merous bacterial species are present, significantly affect pregnancy 
outcomes. The Lactobacillus dominant microbiota is associated with 
favorable pregnancy outcomes, pregnancy rate, implantation rate, 
and live birth rate. Meanwhile, the low abundance of endometrial 
Lactobacillus is associated with poor reproductive outcomes.123–125 
Thus, investigating the endometrial microbiota has become a more 
frequent component of infertility evaluations. However, the notion 
that Lactobacillus dominance is beneficial for pregnancy outcomes 
remains controversial. The pregnancy outcomes, pregnancy, and 
implantation or miscarriage rates did not significantly differ in pa-
tients undergoing IVF between the Lactobacillus dominant (>80% 

Lactobacillus) and Lactobacillus nondominant (<80% Lactobacillus) 
groups.126 Moreover, pregnancies are maintained even if the per-
centage of Lactobacillus is extremely low in some cases.126 However, 
improving intrauterine dysbiosis, which is an environment with 
low abundance of Lactobacillus, with antibiotics and prebiotic and 
probiotic preparations did not improve pregnancy outcomes.123 As 
mentioned in Section  3.1, patients with CE who are likely to pre-
sent with poor pregnancy outcomes have higher Lactobacillus detec-
tion rates.110 Given these conflicting reports, further investigations 
are needed to understand the effect of Lactobacillus on pregnancy 
outcomes.

Lactobacillus genus contains some species, L. crispatus, L. gasseris, 
L. iners, and L. jensenii. A recent in vitro study revealed that L. crispa-
tus promotes trophoblast invasion into the maternal myometrium.127 
L. iners is the most common microbe detected in the endometrium 
during early pregnancy, and its presence is associated with defense 
mechanisms and essential functions.125 However, a study reported 
that individuals with L. iners as the dominant microbe had the lowest 
implantation rate after IVF.128 Lactobacillus produce different iso-
mers of lactic acid. L. crispatus and L. gasseri produce both d-lactic 
acid and l-lactic acid; however, L. iners produces only l-lactic acid, 
whereas L. jensenii produces only d-lactic acid.129 Importantly, these 
lactic acids have different acidity and resistance to bacterial infec-
tions. L. crispatus induces a lower pH in the vaginal environment 
and has a strong antibacterial effect on Gardneralla, which causes 

F I G U R E  2 Schematic drawing 
of complications in early pregnancy 
via abnormal immune/inflammatory 
responses. Abnormal immune/
inflammatory responses are involved 
in early pregnancy complications such 
as chronic endometritis, endometrial 
dysbiosis, and maternal immune balance 
disruptions. Alarmins may be deeply 
involved in triggering these immune/
inflammatory abnormalities.
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bacterial vaginosis. These structural differences in lactic acid may 
induce different immune responses and contribute to changes in 
the vaginal and uterine environment. To prove the effectiveness of 
Lactobacillus, the characteristics of pregnancy outcomes must be 
studied for each of these species.

The uterine cavity contains various innate and acquired im-
mune cells that recognize these bacteria and trigger diverse 
immune responses. Thus, even with the same bacterial spe-
cies, differences in individual immune responses are expected 
(Figure 1). Therefore, pregnancy outcomes may differ even with 
the same endometrial microbiota. Further investigations should 
be performed explore the correlation between endometrial dys-
biosis and abnormal immune responses, CE, and decidualization 
and invasion disruptions.

3.3  |  Immunological disorder

A successful pregnancy requires a delicate balance in the maternal 
immune system (i.e., the mother's immune tolerance) to the pater-
nal semi-alloantigens of the fetus.130,131 Disruption of this maternal 
tolerance can lead to infertility, implantation failure, miscarriage, 
and premature birth. Thus, maintaining an appropriate balance be-
tween Th1 and Th2 cells is crucial during pregnancy.132–136 Recently, 
the balance between Th17 and regulatory T (Treg) cells, the Th1/
Th2/Th17/Treg paradigm, the cytotoxic potential of NK cells, and 
the involvement of various cytokines have also been identified as 
important factors.137–143 Patients experiencing complications, such 
as infertility, implantation failure, and early miscarriage often ex-
hibit excessive inflammation characterized by Th1 dominance, Th17 
dominance, and elevated NK cell cytotoxicity. Therefore, accurate 
diagnosis and treatment for these conditions during early pregnancy 
are essential. To obtain a diagnosis, the Th1/Th2 ratios, Th17/Treg 
ratios, NK cell activation, immune profiles of the endometrium, and 
levels of various autoantibodies in peripheral blood must be evalu-
ated (Section 2.2.3).94

In recent years, various immunotherapeutic approaches aimed 
at inhibiting excessive inflammation in early pregnancy compli-
cations have been proposed. In clinical cases, heparin is used in 
patients with RPL associated with antiphospholipid antibody 
syndrome. Some studies have indicated that heparin improves 
live birth rates in cases of RIF.144,145 Steroid hormones possess 
powerful anti-inflammatory and immunosuppressive effects and 
can induce an increase in Treg expression,144 decrease in uNK cell 
expression,146 and increase in HLA-G expression in the tropho-
blasts.147,148 Intravenous immunoglobulin G (IVIg) has powerful 
immunomodulating functions. IVIg can decrease the frequency 
and activity of NK cells, antibody production of B cells, and ex-
pression of activator receptors in monocytes. In contrast, IVIg can 
increase the expansion and suppressive function of Tregs.149 Thus, 
IVIg has a powerful anti-inflammatory effect. Recent studies have 
revealed that high-dose IVIg administration in early pregnancy im-
proves pregnancy outcomes in women with four or more RPL of 

unexplained etiology.150 Intralipid, a fat emulsion containing soy-
abean oil, glycerol, and egg phospholipids, inhibits NK cell activity 
and has been found to be effective in patients with reproductive 
failure.151,152 Additionally, tacrolimus, a major immunosuppressive 
agent used to prevent organ transplant rejection, has been shown 
to improve pregnancy outcomes in patients with RIF who present 
with high Th1/Th2 ratios.153–155

As outlined, inflammation during pregnancy can have beneficial 
and harmful effects, and excessive inflammation and insufficient 
inflammation are risk factors for pregnancy complications. Table 1 
shows some representative studies on inflammation and immune 
function related to early pregnancy, focusing on beneficial/harmful 
inflammation and immune reaction.

The occurrence of disruptions in maternal immune balance re-
mains unclear. The disruptions of maternal immune balance may 
cause sterile inflammation induced by DAPMs, endometriosis, en-
vironmental factors, metabolic disorders, and pathogen-associated 
inflammation induced by CE and PAMPs (Figure 2 and Section 3.4). 
Maternal immune abnormalities caused by these alarmins may be as-
sociated with early pregnancy complications, necessitating further 
elucidation of the efficacy of the abovementioned therapies and 
their therapeutic targets.

3.4  |  Alarmins and complications in early 
pregnancy

Some abnormal immune responses are expectedly involved in 
CE development, endometrial microbiota disturbances, and 
immunological disorders. However, the initial triggering sub-
stances for these abnormal immune responses remain unknown. 
Stimulations by alarmins, PAMPs and DAPMs, are thought to be 
significant candidates involved in initiating these abnormal im-
mune responses. TLRs, which recognize PAMPs derived from 
pathogens during bacterial infections such as LPS, are expressed 
not only in maternal immune cells but also in trophoblasts and 
play an important role in miscarriage and early placental for-
mation.156,157 Given the involvement of bacterial kinetics in CE 
onset and endometrial microbiota disturbances, PAMPs derived 
from bacteria are likely responsible for these complications. 
Viral infections may also be involved in pregnancy complications. 
Trophoblasts express TLR3, which recognizes dsRNA, a PAMP of 
viral origin, and may contribute to pregnancy complications.158 
DAMPs, which are nonpathogenic, can also cause pregnancy 
complications.10 HMGB1, one of the DAMPs, is released from 
damaged cells to induce inflammation. Several reports have sug-
gested that an increase in HMGB1 negatively affects the early 
stages of pregnancy and is associated with miscarriages and 
implantation failure.159,160 Additionally, the S100A8 protein, 
which is a calcium-binding protein with a molecular weight of 
10–13 kDa having two EF-hand motifs, is present at high levels 
in the serum of patients with recurrent miscarriage.161 These 
DAMPs may contribute to maternal immunological disorders 
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TA B L E  1 Representative studies on inflammation and immune function related to early pregnancy.

Disease/pathology Author/years Description Roles of inflammation/findings

Ovulation Duffy (review)/201935 LHa surge and 
inflammatory response

Beneficial inflammation

Buyalos/199237 IL-6 level in the follicular 
fluid

Beneficial inflammation

Wang/199238 TNFα in the follicular 
fluid

Beneficial inflammation

Nishimura/199841 M-CSF in the follicular 
fluid

Beneficial inflammation

Al-Alem/201542 Leukocytes and 
chemokines

Beneficial inflammation

Kryczek/200546 Chemokine and T cells Beneficial inflammation

Nio-Kobayashi/201547 Chemokine and 
macrophages

Beneficial inflammation

Cohen-Fredarow/201451 Dendritic cells Both pro- and anti-inflammatory 
effects

LUFb Shibata/201659 Administration of G-CSF Beneficial effect of inflammation for 
preventing LUF

Brannstrom/199560 Neutrophils Beneficial effect of inflammation for 
preventing LUF

PCOSc Escobar-Morreale (review)/201163 C-reactive protein Harmful inflammation

Cirillo/202067 HMGB1d Harmful inflammation induced by 
HMGB1

Placenta formation/fetal growth Griffith/201731 Inflammation at 
attachment

Beneficial inflammation at 
attachment of embryo

Granot (review)/201270 Inflammatory cytokines 
and Th1 inflammatory 
response in implantation

Beneficial inflammation in 
implantation

Ashkar/200076 IFN-γ in placental 
formation

Beneficial role of IFN-γ

Valero-Pacheco/2022166 IL-33 in placental 
formation

Beneficial role of IL-33 in placenta 
formation and fetal growth

CEe Matteo/2009111 Abnormal distribution of 
NK cell subsets

Harmful inflammation

Tortorella/2014112 Elevation of IL-6 and 
TNF-α levels

Harmful inflammation

Wang/2019113 Autophagy dysregulation 
and Th17 dominancy

Harmful effects of Th17 dominanct 
in CE

Kitazawa/2021114 Accumulation of Th1 cells Harmful inflammation

Endometrial microbiota 
disturbance

Moreno/2016124 Dominancy of 
Lactobacillus

Beneficial effects of Lactobacillus

Hashimoto/2019126 Eubiosis and dysbiosis 
related to Lactobacillus

No differences between eubiosis 
and dysbiosis for implantation

Yoshida/2021127 L. crispatus Beneficial role of L. crispatus in 
trophoblast invasion

Kadogami/2023128 L. iners Low implantation rate in L. iners 
dominant state

Immunological disorder Saito (review)/2010137 Th1/Th2/Th17/Tregf 
balance

Pregnancy complications and 
disruption of immune balance

(Continues)
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that are unrelated to pathogen infections. DAMPs can also have 
beneficial effects on pregnancy outcomes. For instance, IL-33, 
an IL-1 family cytokine, is a representative DAMP associated 
with positive pregnancy outcomes.162–165 A recent study re-
vealed that appropriate maternal IL-33 secretion contributes to 
placental formation in early pregnancy, leading to healthy fetal 
growth.166 This suggests that certain DAMPs induce appropriate 
inflammation during pregnancy.

CE, endometrial microbiota disturbance, and maternal immune 
abnormalities induce excessive inflammation, which can lead to 
various pregnancy complications. Along with the direct stimulation 
of alarmins, infections, and the various risk factors of RPL and RIF, 
abnormal immune responses between the mother and fetus can be 
involved in this phenomenon (Figure 2).

4  |  CONCLUSIONS

Anti-inflammatory effects represented by maternal immune toler-
ance and an appropriate level of proinflammatory response are es-
sential for maintaining pregnancy and ensuring successful offspring. 
Therefore, rather than using a binary model of inflammation versus 
anti-inflammation, the specific functions of various cytokines and 
immune cells should be elucidated in detail.
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