
Source-Receptor Relationships Between Precursor Emissions 
and O3 and PM2.5 Air Pollution Impacts

Kirk R. Baker*,
U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, USA

Heather Simon,
U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, USA

Barron Henderson,
U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27709, USA

Colby Tucker,
U.S. Environmental Protection Agency, Washington, DC, 20460, USA

David Cooley,
Abt Associates, Durham, NC, 27703, USA

Emma Zinsmeister
U.S. Environmental Protection Agency, Washington, DC, 20460, USA

Abstract

Reduced complexity tools that provide a representation of both primarily emitted particulate 

matter with an aerodynamic diameter less than 2.5 microns (PM2.5), secondarily formed PM2.5, 

and ozone (O3) allow for a quick assessment of many iterations of pollution control scenarios. 

Here, a new reduced complexity tool, Pattern Constructed Air Pollution Surfaces (PCAPS), that 

estimates annual average PM2.5 and seasonal average maximum daily average 8-hr (MDA8) 

O3 for any source location in the United States is described and evaluated. Typically reduced 

complexity tools are not evaluated for skill in predicting change in air pollution by comparison 

with emission changes predicted by more sophisticated modeling systems. Here, PCAPS was 

compared against multiple types of emission control scenarios predicted with state-of-the-science 

photochemical grid models to provide confidence that the model is realistically capturing the 

change in air pollution due to changing emissions. PCAPS was also applied with all anthropogenic 

emissions sources for multiple retrospective years to predict PM2.5 chemical components for 

comparison against routine surface measurements. PCAPS predicted similar magnitudes and 

regional variation in spatial gradients of measured chemical components of PM2.5. Model 
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performance for capturing ambient measurements was consistent with other reduced complexity 

tools. PCAPS also did well at capturing the magnitude and spatial features of changes predicted by 

photochemical transport models for multiple emissions scenarios for both O3 and PM2.5. PCAPS 

is a flexible tool that provides source-receptor relationships using patterns of air quality gradients 

from a training dataset of generic modeled sources to create interpolated air pollution gradients 

at new locations not part of the training database. The flexibility provided for both sources 

and receptors make this tool ideal for integration into larger frameworks that provide emissions 

changes and need estimates of air quality to inform downstream analytics, which often includes an 

estimate of monetized health effects.
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INTRODUCTION

Ambient ozone (O3) and particulate matter with aerodynamic diameter less than 2.5 microns 

(PM2.5) both negatively impact human health1–3. Both pollutants are regulated by the 

United States Environmental Protection Agency (U.S. EPA) with National Ambient Air 

Quality Standards (NAAQS) (85 FR 87256 and 85 FR 82684). Many areas in the U.S. 

have historically been unable to meet these standards. Sophisticated air quality models that 

represent complex atmospheric processes (like complex gas phase chemistry) are often used 

to provide a quantitative estimate of the change in O3 and PM2.5 based on changes in 

emissions that reflect emission control plans intended to improve air quality in areas not 

compliant with the NAAQS. Photochemical grid models have also been used to quantify 

the impacts on air quality due to planned implementation of alternative energy strategies or 

changes in human activity to understand population health impacts regardless of NAAQS 

attainment status4, 5. In addition, there are a variety of reduced form tools with a range of 

capabilities and limitations intended to provide a much faster solution.
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The application of photochemical grid models requires specialized knowledge and can be 

resource intensive especially for assessments that include a multitude of simulations or 

those with simulations covering a large area or time period. Numerous tools have been 

developed that provide a simplified representation of emissions, dispersion, and chemical 

processes to quickly provide an estimate of air quality change and human health impacts 

to avoid the costs associated with photochemical grid model application6. Some of these 

tools were based on a climatological dispersion model applied at the continental scale with 

a simplified representation of chemical transformation7, 8 and some based on air quality 

impacts predicted by a photochemical transport model9–13. These reduced complexity 

tools have been used extensively to provide an estimate of PM2.5 air quality and related 

monetized health impact {Buonocore, 2021 #39;Chan, 2018 #32;Goodkind, 2019 #29;Luo, 

2022 #33;Strasert, 2019 #28;Thind, 2022 #34} but few provide an estimate of O3 air 

quality impacts11, 13. Fewer still provide a quantitative evaluation against air quality changes 

due to changing emissions predicted by a more sophisticated modeling system (such as a 

photochemical grid model), which is the fundamental purpose of these tools11.

Here, a new reduced complexity tool is described that creates source-receptor relationships 

using patterns of air pollution gradients estimated with a photochemical transport model 

for generic sources placed in a range of different chemical and physical environments 

in the United States. Model predicted air quality for these generic sources (the training 

dataset) were extrapolated to areas not part of the training dataset to provide representation 

of source-receptor combinations for all areas in the United States. This new model is 

called Pattern Constructed Air Pollution Surfaces (PCAPS) version 1.0. PCAPS provides an 

estimate of annual average PM2.5 sulfate ion, PM2.5 nitrate ion, primarily emitted PM2.5, 

primarily emitted coarse fraction PM, and seasonal average maximum daily average 8-hr 

(MDA8) O3 that results from a change in precursor emissions.

PCAPS utilizes 12 km meteorology which is comparable to some reduced complexity 

tools9, 11 like the source apportionment-based air quality surfaces (SABAQS) tool11 but 

finer scale than others such as the Intervention Model for Air Pollution (InMAP)12, The 

Estimating Air pollution Social Impact Using Regression (EASIUR) model10, and TM5-

FAst Scenario Screening Tool (TM5-FASST)13. The source group scale used in PCAPS 

(12 km grid structure) is finer than most of these tools, some of which are much coarser 

with source groups being defined by states11 or larger13 and sometimes with limited sector 

representation11. Models using a source and receptor scale based on U.S. counties such as 

Air Pollution Emission Experiments and Policy analysis (APEEP)8 and CO-Benefits Risk 

Assessment Health Impacts Screening and Mapping Tool (COBRA; epa.gov/cobra) have 

a similar scale for some parts of the eastern U.S. but much coarser representation of the 

western U.S. where counties can be very large and irregularly shaped.

Typically, documentation for reduced complexity tools provide methodological details and 

an illustrative example demonstrating the range of intended capability. Sometimes the air 

quality or monetized health impacts from these tools are intercompared for the same 

set of emissions but they have not traditionally been compared to air quality predictions 

estimated by a more complex modeling system like photochemical transport models. This 

new approach relating precursor emissions with downwind seasonal average MDA8 O3 and 
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annual average PM2.5 impacts is compared with photochemical grid model predictions of 

O3 and PM2.5 resulting from multiple complex emission control strategies and with other 

reduced complexity tools. Photochemical models treat complex meteorology, emissions, 

chemistry, and physical removal processes in the atmosphere and are considered the best 

approximation of the change in air quality due to changes in emissions14. The emission 

control scenarios used here for evaluation provide spatially varying magnitudes of precursor 

emissions across the United States for a ground level source sector (onroad mobile) and the 

electrical generating sector that releases pollutants aloft. Additional sector-specific scenarios 

(cement kilns, pulp and paper, and refineries) were used to understand how well the model 

captures spatially distinct sources.

PCAPS was also applied with total anthropogenic emissions representing multiple historical 

years (2007, 2011, and 2016) to estimate total speciated PM2.5 components that were 

compared with ambient measurements made at routine surface monitors. This evaluation 

is intended to ensure the model does not provide a physically unrealistic representation 

of the magnitudes or spatial features of PM2.5 chemical components. It is intended that 

the comparison against ambient measurements and predicted change in air quality with a 

photochemical transport model provide confidence in this approach and illustrate situations 

where further development may be needed.

METHODS

This reduced complexity tool uses a training database of air pollution surfaces (spatial 

pattern of air quality impacts) for generic emissions sources located in chemically 

and physically diverse locations in the United States. These source-specific air quality 

predictions were generated using the source apportionment feature of a photochemical grid 

model. The training dataset consists of generic surface level and tall stack (height = 90 

m) sources, which are referred to here as training sources. Air quality impacts at each 

unique generic source location were normalized by emission rate and used to inform new 

source-receptor relationships at locations that were not part of the training database. PCAPS 

provides flexibility for defining source locations or source areas which could be defined as 

a single location, counties, or states and generate air quality impacts at similarly defined 

receptors (e.g., specific location, county, etc.).

The training dataset locations were largely based on areas with existing industrial emissions 

sources and not intended to provide a systematic representation of all areas of the contiguous 

United States (Figure S1). The approach for developing a training dataset by modeling 

specific sources with photochemical model source apportionment is similar to that used for 

other reduced complexity tools9, 10, 15 but source placement and approach for using the 

source specific air pollution surfaces to represent new sources are substantively different. 

The training dataset was developed to support permit related program applications and not 

for this specific purpose but was chosen since it provided a rich dataset that would be very 

time and resource intensive to develop from scratch.
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Training Dataset Overview

The Comprehensive Air Quality Model with Extensions (CAMx) version 7 

(www.camx.com) was applied for a domain covering the contiguous U.S. with square 12 

km sized grid cells for the entire year of 2011 and 2016. The photochemical model treats 

emissions, transport, chemical transformation, and removal through wet and dry deposition 

processes. The troposphere was vertically resolved with 35 layers that were thinnest nearest 

the surface to best resolve temporal variability in the surface mixing layer. Chemical inflow 

into the model domain was time and space variant extracted from a same year hemispheric 

scale photochemical model simulation. Meteorological inputs were generated with the 

Weather Research and Forecasting model16 for the same grid specifications and time 

period modeled with the photochemical model. Emissions inputs included representation 

of anthropogenic (e.g., electrical generating units, industrial facilities, mobile sources), 

biogenic, and geogenic (e.g., fires and oceanic) sources17.

Photochemical model predicted O3 and speciated PM2.5 were compared to measurements 

made as part of routine surface monitoring networks18. The model replication of MDA8 

O3 and speciated PM2.5
19 was consistent with performance for other photochemical model 

simulations applied for the contiguous U.S. for policy and scientific assessments4, 5.

CAMx was applied with source apportionment which tracks the contribution of predefined 

emission sources to model predicted primary and secondarily formed pollutants including 

O3, PM2.5, and coarse fraction particulate matter20. Photochemical grid model source 

apportionment tracks the contribution of precursor emissions through all chemical and 

physical processes in the model from predefined specific sources, sectors, and geographic 

regions9, 10, 15, 21–27. Source apportionment of specific facilities has been shown to compare 

well with source specific in-plume measurements of primary and secondary pollutants28, 29. 

The source apportionment feature was used to track generic sources added to the standard 

model inputs which varied by stack height and emission rate30. The combination of emission 

rate (500, 1000, or 3000 tpy), stack height (surface or 90 m release height), and location 

varied (Figure S1) because the original database was not intended to provide a systematic 

representation of these parameters over the contiguous U.S.

Reduced Complexity Model Development

The training database of generic source specific air pollution surfaces was used to develop 

new air pollution surfaces for sources that were not part of the original database (Figure 

S1). New air pollution surfaces were developed using the normalized air quality surfaces 

of nearby generic sources modulated to reflect the new source emission rate. A distance 

weighting approach was used to emphasize generic sources closest to the new source since 

those would be most similar in terms of chemical and physical environment.

Air quality surfaces for specific generic sources predicted with a photochemical grid model 

using source apportionment were averaged for the entire year for PM2.5 and the warm 

season (April through September) for MDA8 O3 and then normalized by annual emission 

rate. In situations where a single location was modeled with multiple emission rates the 

normalized surfaces were averaged. Separate normalized air quality surfaces were generated 
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for each location differentiated by emission release height (surface level and 90 m) and 

precursor for annual average PM2.5 and seasonal average MDA8 O3. Equation 1 shows how 

gridded normalized air quality surfaces (f with units of ppb for O3 or μg/m3 for PM2.5) 

where generated for each training source (t) based on air quality (C) normalized by generic 

source emission rate (E, tpy). The number (N) of generic sources varies based on how many 

different emission rates were modeled for a particular generic source location and release 

point (surface or aloft).

ft = N−1∑e = 1
N Ct, eEt, e

−1

Eq (1)

Multiple steps were needed to generate a new air quality surface. First, normalized air 

quality surfaces estimated with Equation 1 associated with training data sources within 

1000 km of the new location were centered over the new location. Since far distant generic 

sources do not get used for the calculation, the number of training data sources used varies 

for each new location. Second, the normalized air quality surfaces were averaged together 

using a weighting function inversely proportional to the distance (distance1.5 in km) between 

the training dataset source and new location to place greater emphasis on nearby sources and 

minimize the influence of sources further away. The form of the distance term is a general 

interpretation of the primary and secondary pollutant dispersion coefficient estimated using 

a regression equation to describe single source pollutant impacts9. These steps are described 

mathematically in Equation 2.

fn = ∑i ft, iwt, i

∑i wt, i
: i ∈ training sites within 1000 km of n

Eq (2)

Cn = Enfn

Eq (3)

Where f and C are 300 by 300 squares of grid cells (3600 × 3600 km area) and w is a 

weighting parameter. In this work, w is the distance of the training dataset generic source 

location to the new source location to the power of negative one and a half (wt,I = dt,n
−1.5). 

The distance weighting approach is intended to retain important regional characteristics 

related to wind patterns and air quality chemical regimes. However, highly localized features 

not captured by the training data set would not be realized as part of this approach.

Equation 2 estimates a gridded distance weighted normalized air quality surface for new 

sources not in the training dataset. Equation 3 estimates a gridded air pollution surface 

(units of ppb for O3 and μg/m3 for PM2.5) by multiplying the emission rate (E, tpy) for 

the new source by the gridded distance weighted normalized air quality surface estimated 

with Equation 2. The number of training sources varies depending on the number of training 
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sources within 1000 km of the new source and how many training sources were available 

for a particular pollutant and stack height (surface or aloft) combination. Emissions inputs to 

PCAPS can be gridded or using specific coordinates and outputs are gridded.

PCAPS includes an adjustment to capture the highly localized areas of urban VOC limited 

chemistry where NOX emissions destroy O3 faster than it can be produced. The training 

dataset includes generic sources located largely in NOX limited areas (rural and suburban). 

Modeled O3 formation regime estimated with a photochemical model for 2007 and 201631 

was used to remove O3 formation from NOX emissions in areas considered NOX saturated 

or transitional to better represent situations where NOX emissions destroy O3 faster than it 

is produced (Figure S2). In these situations, O3 impacts from NOX emissions sources were 

set to zero to provide a simple approach to represent areas that likely experience O3 titration 

effects.

Normalized air quality relationships were developed for each grid cell to other grid cells in 

the 12 km modeling domain (shown in Figure 1) used for the photochemical grid model 

simulations. Separate normalized air quality relationships were developed for NOX to O3, 

VOC to O3, primarily emitted PM2.5, SO2 to PM2.5 sulfate ion, and NOX to PM2.5 nitrate 

ion. No relationships were developed for VOC to PM2.5 due to the small amount of PM2.5 

mass expected from semi-volatile partitioning of gases to aerosol phase and the evolving 

science describing processes such as the semi-volatile nature of primary organic aerosol 

emissions and secondary organic aerosol enhancement in the presence of other chemicals32, 

33. The training dataset did not include NH3 emissions so a relationship to PM2.5 ammonium 

ion could not be developed. Ambient measurements were not used to adjust modeled 

surfaces or normalize emissions to air quality impacts. Ambient measurements were only 

used for model performance evaluation to provide context about how well the model 

captures these measured values.

Model Response Evaluation Approach

PCAPS was evaluated by comparing predicted change in seasonal average MDA8 O3 and 

annual average PM2.5 for spatially and temporally heterogenous emission control scenarios 

with predictions made for those same scenarios using a photochemical grid model. The 

generic sources tracked with source apportionment used in the training dataset were not 

based on or used to inform these emission control scenarios. The emission scenarios focus 

on electrical generating units (EGUs), cement kilns, pulp and paper facilities, refineries, 

and onroad mobile sources34. The mobile and EGU emission control scenarios represent 

non-uniform changes in emissions across these sectors and in the case of the EGU scenario 

some facilities have increases in emissions and some have decreases (Figure S3). The pulp 

and paper and refinery sectors have uniform changes in emissions but represent very specific 

geographic locations. These complex emission control scenarios were not used to inform the 

development of PCAPS and only provide out-of-sample evaluation. Emission totals for each 

scenario are shown in Table S1. The surface level generic sources were used for the mobile 

emission scenario and elevated release generic sources were used for the other scenarios. For 

these emissions scenarios, emissions inputs and outputs were gridded to match the 12 km 

model domain used by the photochemical grid models.
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Performance (Table S2) metrics used to compare the change in model prediction for 

each emission scenario between the reduced complexity model and photochemical model 

simulations were based on predictions made at each model land-based grid-cell cover 

the contiguous U.S. Performance metrics included in this assessment were mean bias 

(MB), normalized mean bias (NMB), fractional bias (FB), fractional error (FE), and 

Pearson correlation coefficient (r)4, 5. These metrics (shown in Table S2) were chosen to 

match recommendations for air quality models5 and to facilitate comparison with other 

assessments.

Additional context is provided with metrics published elsewhere that compare three reduced 

complexity tools with photochemical model predicted components of PM2.5 representing the 

year 200535: EASIUR10, APEEP8, and InMAP12. Performance metrics for O3 and PM2.5 

published for the source apportionment-based air quality surfaces (SABAQS) tool applied 

for multiple EGU emission control scenarios (one of which is the same as presented here) 

were also included11. Other reduced complexity tools were applied for the same emission 

control scenarios as PCAPS to provide additional context for strength of performance.

Application of Other Reduced Complexity Tools

A simple non-linear regression based tool that relates precursor emissions to air pollution9 

was applied to predict annual average PM2.5 and seasonal MDA8 O3 for these emissions 

control scenarios. Similar to PCAPS, this approach (Equation S1) uses photochemical 

grid model source apportionment predictions of air pollution from specific sources to 

build a more generalized relationship between emissions and downwind air pollution. 

This regression model approach relates emissions (β1), distance between the source and 

receptor (β2 and β3), and receptor air quality (β4) to generate a simple downwind pollution 

concentration gradient9. The training dataset for the nonlinear regression model was updated 

(presented here as NLIN2) to be consistent with the generic sources used for PCAPS. New 

beta coefficients were estimated for surface and aloft releases (Table S3). A spatial surface 

of ammonia concentrations was generated with a photochemical grid model and used to 

support the prediction of PM2.5 nitrate ion (Figure S3). The NLIN2 model was applied with 

gridded 12 km emissions inputs and provided output for the same 12 km model domain.

The CO-Benefits Risk Assessment Health Impacts Screening and Mapping (COBRA) 

(epa.gov/cobra) version 4.1 tool was applied for these emission scenarios to estimate 

change in annual average PM2.5. This tool does not provide an estimate of O3 or the 

speciated components of PM2.5, only total mass. The model was applied with county level 

emissions inputs. County level predictions were interpolated to the model domain grid 

specifications based on fractional county coverage in each grid cell for direct comparison 

with photochemical model predictions.

Ambient Measurements Evaluation Approach

Ambient measurements of major speciated components of PM2.5 (sulfate ion, nitrate 

ion, elemental carbon)18 were compared with PCAPS predictions as another type of 

evaluation to ensure model predictions were not physically unrealistic. For this comparison, 

emissions from all sources of anthropogenic pollution were input to PCAPS to provide an 
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estimate of annual average PM2.5 sulfate, nitrate, and elemental carbon in each model grid 

cell. Emissions were based on the National Emissions Inventory (https://www.epa.gov/air-

emissions-inventories/national-emissions-inventory-nei). PCAPS predictions were generated 

based on emissions from all sources of anthropogenic pollution representing 2007, 

2011, and 2016. Ambient speciated PM2.5 data was aggregated to annual average and 

compared with model predictions for 2007, 2011, and 2016. Model predictions from 

these retrospective years were paired in space and time (aggregated annually) with surface 

measurements of PM2.5 species.

Ambient measurements were not used to adjust PCAPS model predictions. The same 

performance metrics (Table S2) used to compare model response were used to compare 

model predictions of speciated PM2.5 with ambient data. These performance metrics were 

compared to other assessments using reduced complexity tools35 to provide context for how 

well this tool predicts annual average speciated components of PM2.5. This comparison 

against ambient measurements was done with and without an estimate of the contribution 

of lateral boundary inflow. The estimate of lateral boundary inflow was estimated using 

photochemical grid model source apportionment that was configured to specifically track 

this part of speciated PM2.5
21. Model predictions of seasonal average MDA8 O3 could not 

be directly compared to ambient measurements because a non-trivial component of seasonal 

average MDA8 O3 originates from sources that originate from locations outside the modeled 

domain and are not included in the NEI such as international anthropogenic emissions, 

international natural emissions, lightning and the stratosphere21, 36. This reduced complexity 

tool is based on U.S. anthropogenic emissions sources and was not designed to account for 

impacts from boundary inflow, biogenic, or geogenic sources.

RESULTS

Photochemical model predicted change in seasonal average MDA8 O3 and annual 

average PM2.5 for multiple complex emission scenarios34 were used to evaluate PCAPS. 

Performance metrics comparing PCAPS (aloft training sources for the EGU and sector 

scenarios and surface level training sources for the mobile source scenario) and 

photochemical grid model predicted changes in seasonal average MDA8 O3 are shown in 

Table 1 and for annual average PM2.5 in Table 2.

Photochemical and PCAPS predicted change in seasonal average MDA8 O3 and annual 

PM2.5 are shown in Figures 1 and 2. Both Figures also show the difference in predicted 

change between the PCAPS approach and photochemical grid model. Figure 3 shows 

aggregated performance metrics (correlation coefficent, fractional bias, and fractional error) 

comparing PCAPS and photochemical model predicted change in components of annual 

average PM2.5, total PM2.5, and seasonal average MDA8 O3. This Figure also shows 

performance metrics for other reduced complexity tools (COBRA, NLIN2, and SABAQS) 

applied for these emissions scenarios. SABAQS was applied for the EGU scenario only. 

Additional context is provided in Figure 3 by presenting performance metrics published 

in the literature for model intercomparisons35 and other emissions scenarios not included 

here11.
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Predicted Changes in Seasonal Average MDA8 O3

The PCAPS predicted change in seasonal average MDA8 O3 compares well with 

photochemical model predictions (Figure 1 and Table 1): r=0.94 for the mobile scenario 

and r=0.92 for the EGU scenario. The spatial gradients and magnitude of seasonal MDA8 

O3 predictions using PCAPS were consistent with the photochemical grid model (Figure 

1). Performance was better for the PCAPS approach compared to non-linear regression 

model: r=0.90 for the mobile scenario and r=0.84 for the EGU scenario (Table S4). Regional 

performance features were similar for NLIN2 (Figure S4) compared to PCAPS but were 

more prominent. PCAPS (r=0.92, FB=−16%, FE=24%) showed similar correlation to the 

SABAQS tool (r=0.88, FB=57%, FE=58%) applied for the same EGU emissions scenario 

and better fractional bias and error metrics11.

The industrial sector emissions scenarios provide an opportunity to better understand how 

well PCAPS represents less ubiquitous sources. The pulp and paper sector is largely located 

in the southeast U.S. and refineries tend to be isolated into single facilities or small 

clusters34. PCAPS did best at capturing the change in O3 estimated by the photochemical 

model for the cement kiln (r=0.92, FE=16%) and pulp and paper sectors (r=0.96, FE=21%). 

The model was most challenged by the refinery sector (r=0.68, FE=25%), which has the 

smallest emissions and is the most geographically isolated of these emissions scenarios. 

The NLIN2 approach had similar correlations but worse fractional error for pulp and 

paper (r=0.98, FE=37%) and refineries (r=0.66, FE=40%) compared to PCAPS. Both 

correlation and fractional error compared less favorably for the cement kiln scenario (r=0.77, 

FE=40%). These sector scenarios suggest that while PCAPS does well at replicating more 

geographically isolated scenarios (e.g., refineries scenario), inadequacies in spatial coverage 

of the underlying training dataset becomes more important for certain locations where 

generic source are sparse (Figure S1). Overall, for the 5 emissions scenarios modeled with 

PCAPS none exceeded 25% for fractional bias or fractional error which is better than 

NLIN2 (none exceeded 40%) and SABAQS (FE=58%). These performance metrics were 

also comparable or better than the change in predicted PM2.5 shown here and elsewhere for 

similar tools predicting PM2.5 impacts (Figure 3).

Seasonal average MDA8 O3 was not always fully captured in urban areas with complex 

transitions between NOX limited and NOX saturated O3 formation regimes. This limitation 

was sometimes evident for the surface level mobile source emission scenario but not the 

EGU source scenario which largely includes facilities located in NOX limited areas outside 

of large urban centers. Areas known to be strongly VOC limited were much larger in 2007 

compared to 201631 which suggests this limitation will be less important as more recent 

years are modeled or for years projected into the future if NOX emissions continue to 

decline in urban areas.

Predicted Changes in Annual Average PM2.5

PCAPS captures the spatial gradients in annual PM2.5 over the contiguous U.S. predicted 

by the photochemical models but shows some regional scale underestimation (Figure 2). 

The correlation between the PCAPS predicted change in annual average PM2.5 and the 

photochemical grid model was strong for both the mobile (r=0.92) and EGU (r=0.90) 
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scenarios and comparable to the performance shown for seasonal MDA8 O3 impacts. 

PCAPS compared better to photochemical grid model predicted change in annual average 

PM2.5 for both emission scenarios than two additional methods applied here (Figure 3): 

the nonlinear regression model (r=0.91 for the mobile scenario and r=0.84 for the EGU 

scenario) and the existing COBRA tool (r=0.71 for the mobile scenario and r=0.58 for the 

EGU scenario). The COBRA tool showed substantial regional systematic biases compared 

to the photochemical grid model (Figure S5, Table S5) in areas where emissions changes 

were largest. The NLIN2 approach showed less bias compared to the photochemical model 

than the COBRA tool but often overpredicted PM2.5 impacts for the EGU scenario in areas 

such as the western U.S. and underpredicted PM2.5 impacts in the upper midwest for the 

mobile scenario (Figure S6, Table S6). The SABAQS (r=0.94, FB=31%, FE=35%) approach 

had a slightly better correlation for total PM2.5 change for the EGU scenario but worse 

fractional bias and error metrics than PCAPS (r=0.90, FB=−15%, FE=25%).

The comparison of photochemical model PM2.5 with PCAPS is more complex given that 

the chemical constituents making up PM2.5 can vary regionally and some forms of PM2.5 

involve more complex physical and chemical processes. The correlation between PCAPS 

and photochemical model predicted change in PM2.5 sulfate ion for the EGU scenario 

(r=0.96) and mobile scenario (r=0.52) compare well with multiple reduced complexity tools 

where the correlation ranged between 0.35 to 0.5835. The correlation for PM2.5 nitrate ion 

here (r=0.88 for the mobile scenario and 0.58 for the EGU scenario) is higher than shown 

for other similar tools (−0.035 to 0.054)35. Primary PM2.5 (represented as elemental carbon) 

estimated for these scenarios (0.92 to 0.70) was comparable to those estimated elsewhere 

(0.73 to 0.83)35.

Spatial plots of regional performance by PM2.5 chemical component for each emission 

scenario are shown in Figures S7 to S9 (and Figures S10 to S12 for NLIN2). Performance 

metrics for speciated components of PM2.5 including sulfate, nitrate, and elemental carbon 

are provided in Tables S7–S9. The largest chemical components of the mobile source 

scenario were PM2.5 nitrate and primarily emitted PM2.5, both of which PCAPS slightly 

underpredicts (PM2.5 nitrate fractional bias = −9.7% and PM2.5 elemental carbon bias = 

−18.3%) even though the spatial nature of impacts were well characterized. SO2 emissions 

changes were not a substantial aspect of the mobile scenario34, but notably impacted the 

normalized aggregate performance metrics for total PM2.5 mass. In contrast for the EGU 

scenario, PCAPS did well at predicting both the magnitude and spatial nature of PM2.5 

sulfate ion (fractional bias = −1.3% and fractional error = 15.9%) and primarily emitted 

PM2.5 (fractional bias = 15.1% and fractional error = 27.6%) compared to the photochemical 

model.

The industrial sector emission scenarios provide an opportunity to understand how well 

PCAPS captures more regionalized (pulp and paper) and localized (refineries) air pollution 

impacts. PCAPS tended to overestimate PM2.5 for each of these scenarios in the eastern 

United States, but overall did well at capturing magnitudes and spatial patterns of emissions 

from each of these industrial sector emissions scenarios. Figure 3 shows how PCAPS better 

captures annual average PM2.5 than the other models applied as part of this assessment and 

against metrics published in literature for similar types of tools. In general, PCAPS tended 
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to perform poorest compared to changes in air quality predicted by the photochemical grid 

model in regions with complex terrain with sparsely spaced emissions sources such as the 

western United States. The source-receptor model was most challenged replicating PM2.5 

nitrate ion impacts compared to the photochemical grid model. Poor replication of PM2.5 

nitrate ion is common and has been illustrated in other similar tools35.

Predicted Total Ambient PM2.5 Compared with Measurements

PCAPS (equation 3) was applied with annual total gridded SO2, NOX, and primary PM2.5 

emissions representing 2007, 2011, and 2016 to develop grid cell specific predictions of 

annual average speciated PM2.5. These predictions were compared with measurements made 

at routine surface monitor networks including the Interagency Monitoring of Protected 

Visual Environments (IMPROVE) and the Chemical Speciation Network (CSN)18. Table 

3 provides model performance metrics for chemical constituents of annual PM2.5 for 

2007, 2011, and 2016. Performance metrics were calculated with and without contribution 

from lateral boundary inflow that was estimated with photochemical grid model source 

apportionment21. Spatial plots of PCAPS predicted components of PM2.5 with ambient data 

are shown in Figure 4. A comparison of model performance for predicting PM2.5 sulfate, 

nitrate, and elemental carbon with other studies doing similar comparisons for reduced 

complexity tools is shown in Figure 5. Overall, PCAPS provided a reasonable physical 

representation of the magnitude and spatial distribution of PM2.5 sulfate, nitrate, and 

elemental carbon. Performance metrics for PCAPS were similar to other reduced complexity 

tools (Figure 5).

PM2.5 sulfate ion predicted by PCAPS compared well with the magnitude and spatial 

nature of ambient measurements made in 2007, 2011, and 2016 (Figure 4). PM2.5 sulfate 

ion measurements and model predictions were highest in the Ohio River Valley and tend 

to decrease as distance from this region increases. PCAPS captured PM2.5 nitrate ion 

regional gradients as the model predicted the highest levels in the upper midwest which 

is consistent with ambient measurements. The model underpredicted PM2.5 nitrate ion in 

areas of the western U.S. known for complex topography, emissions, and meteorology that 

can result in periods of high wintertime levels37, 38. The PCAPS correlation to ambient 

measurements was better for PM2.5 sulfate ion and elemental carbon than other reduced 

complexity tools and comparable to those same tools for PM2.5 nitrate ion (Figure 5). 

PCAPS also compared similarly with the performance of other reduced complexity tools 

when considering fractional bias and fractional error metrics (Figure 5).

Model performance (Table 3) improved when the contribution of lateral boundary inflow 

was considered for PM2.5 nitrate and sulfate even though this amount is fairly small at most 

monitors21. This contribution becomes more influential in more recent years as emissions 

decrease from U.S. anthropogenic sources and shows that reduced complexity tools that do 

not consider lateral boundary inflow should systematically underestimate observation data at 

some locations. The discrepancy was most notable for PM2.5 sulfate performance for 2016, 

which has lower SO2 emissions and PM2.5 sulfate measurements at monitors compared 

to 2007 and 2011. Performance metrics improved with the addition of a contribution 

representing lateral boundary inflow.
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LIMITATIONS & NEXT DIRECTION

The generic sources used to train PCAPS did not include everywhere in the U.S. which 

means some localized features important for transport or chemical transformation may not 

be well represented. The generic sources were each modeled for a single year which may 

not fully represent all meteorological conditions in a particular area important for O3 or 

PM2.5 formation. The generic sources tracked for contribution represent typical industrial 

facilities and surface level sectors emitting at ambient conditions (e.g., mobile sources). The 

source-receptor relationships provided in this assessment would not be expected to provide 

realistic impacts for large wildfires, offshore sources, oceanic emissions, biogenic emissions, 

lightning, or volcanos.

Areas where O3 is often VOC limited and NOX emissions destroy O3 faster than it can 

be produced may not always be well characterized. The chemical mix of pollutants from 

the year modeled for these sources may not represent other years in the distant past or 

future where emissions might be substantially different resulting in different preferential 

regimes for O3 or PM2.5 formation. However, areas with strongly VOC limited chemistry 

for O3 production may be better represented by this tool for more recent and future years as 

these areas become smaller31. This approach does not currently represent secondary organic 

aerosol formation from volatilized primary organic aerosol emissions, VOC partitioning to 

the particulate phase, or complex secondary organic aerosol enhancements related to the 

presence of NOX, SO2, or NH3 emissions32, 33, 39.

This reduced complexity tool would not have the capability to predict situations where 

the underlying photochemical grid model cannot capture certain complex processes that 

can lead to elevated PM2.5 or O3. These situations can happen in areas of complex terrain 

and emissions and can be associated with periods of intense wind stagnation, such as 

wintertime O3 and PM2.5 in areas of the western U.S. This tool is not intended to provide 

interactions between predicted O3 and PM2.5, such as increases in PM2.5 resulting in lower 

O3 predictions due to light attenuation or ammonia substitution that can happen from 

changing levels of NOX and SO2.

The PCAPS tool will be used to develop a new source-receptor matrix that relates emissions 

in specific counties to annual average PM2.5 and seasonal average MDA8 O3 impacts to 

each county in the contiguous U.S. These grid-to-grid source-receptor relationships will be 

estimated at the PCAPS 12 km grid scale then aggregated to county level for use in an 

upcoming version of the COBRA tool. The COBRA tool is publicly available and will be 

the mechanism for dissemination of the data and approach described in this assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SYNOPSIS

A new reduced complexity model was developed to estimate annual average PM2.5 and 

seasonal average O3, which allows regulating agencies to quickly quantify impacts of 

emission control plans.
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Figure 1. 
Spatial representation of photochemical (left panels) and PCAPS (center panels) model 

prediction of change in seasonal average MDA8 O3 for each of the emission scenarios. The 

difference between predicted change in air quality between these models is also shown (right 

panels).
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Figure 2. 
Spatial representation of photochemical (left panels) and PCAPS (center panels) model 

prediction of change in annual average PM2.5 for each of the emission scenarios. The 

difference between predicted change in air quality between these models is also shown (right 

panels).
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Figure 3. 
Performance metrics comparing PCAPS, NLIN2, COBRA, and SABAQS with 

photochemical grid model predictions for multiple emission control scenarios. Similar 

metrics are shown from Gilmore et al, 2019 comparing model predicted PM2.5 components 

between multiple reduced complexity models for an emission scenario representing all U.S. 

emissions in 2005. The solid trace on the left panel shows performance metrics for surface 

level (solid trace) and elevated emissions (dashed trace) scenarios.
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Figure 4. 
Annual average PCAPS predicted PM2.5 sulfate ion, PM2.5 nitrate ion, and PM2.5 elemental 

carbon with annual average ambient measurements from routine surface level networks. A 

comparison is shown for 2007, 2011, and 2016 using emissions and ambient data from those 

years.
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Figure 5. 
Performance metrics for three different years calculated without lateral boundary inflow 

contribution comparing model predicted PM2.5 sulfate ion, PM2.5 nitrate ion, and PM2.5 

elemental carbon with routine surface monitoring sites. Metrics are shown for PCAPS and 

other reduced complexity tools assessed in Gilmore et al, 2019.
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Table 1.

Performance metrics comparing PCAPS with photochemical model (CMAQ) predicted change in seasonal 

MDA8 O3 with two complex emission control scenarios for each grid cell in multiple regions and the entire 

U.S. Modeled means and mean bias (MB) expressed in ppb. Normalized mean bias (NMB), fractional bias 

(FB), and fractional error (FE) expressed as a percent.

Seasonal O3 Mobile Control Scenario EGU Control Scenario

SRM CMAQ SRM CAMx

Region mean mean MB NMB FB FE r mean mean MB NMB FB FE r

Northeast −0.31 −0.27 −0.04 15.4 14.3 18.3 0.93 −0.31 −0.26 −0.04 16.66 15.4 22.5 0.77

Northern 
Rockies −0.11 −0.13 0.03 −18.9 −20.9 21.1 0.94 −0.15 −0.16 0.01 −5.44 −5.6 13.6 0.92

Northwest −0.09 −0.12 0.03 −26.6 −30.7 38.9 0.70 −0.03 −0.05 0.02 −31.68 −37.6 43.9 0.93

Ohio Valley −0.48 −0.48 0.00 0.6 0.6 11.3 0.49 −0.35 −0.42 0.07 −15.83 −17.2 22.9 0.82

South −0.26 −0.31 0.05 −15.3 −16.5 20.5 0.88 −0.47 −0.58 0.11 −18.21 −20.0 24.3 0.93

Southeast −0.58 −0.58 0.00 −0.7 −0.7 11.1 0.80 −0.56 −0.70 0.14 −19.93 −22.1 26.7 0.85

Southwest −0.15 −0.21 0.06 −27.6 −32.1 33.1 0.81 −0.24 −0.27 0.03 −11.40 −12.1 19.1 0.88

Upper Midwest −0.26 −0.27 0.01 −3.9 −4.0 13.8 0.82 −0.25 −0.27 0.03 −10.02 −10.6 19.8 0.51

West −0.06 −0.07 0.02 −21.5 −24.1 30.6 0.94 −0.07 −0.12 0.05 −39.06 −48.5 53.1 0.47

US −0.25 −0.27 0.02 −8.7 −9.1 18.1 0.94 −0.29 −0.34 0.05 −15.16 −16.4 23.7 0.92
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Table 2.

Performance metrics comparing PCAPS with photochemical model predicted change in annual average PM2.5 

with two complex emissions control scenarios for each grid cell in multiple regions and the entire U.S. 

Modeled means and mean bias (MB) expressed in μg/m3. Normalized mean bias (NMB), fractional bias (FB), 

and fractional error (FE) expressed as a percent.

Annual 
PM2.5 Mobile Control Scenario EGU Control Scenario

SRM CMAQ SRM CAMx

Region mean mean MB NMB FB FE r mean mean MB NMB FB FE r

Northeast −0.022 −0.023 0.001 −2.5 −2.5 20.5 0.89 −0.096 −0.102 0.005 −5.4 −5.5 18.2 0.93

Northern −0.006 −0.011 0.005 −48.6 −64.3 65.5 0.96 −0.021 −0.035 0.015 −41.4 −52.2 57.0 0.92

Northwest −0.004 −0.007 0.003 −45.9 −59.6 73.7 0.65 −0.002 −0.004 0.001 −37.0 −45.4 54.8 0.50

Ohio Valley −0.045 −0.062 0.018 −28.8 −33.6 35.0 0.85 −0.125 −0.144 0.018 −12.8 −13.7 22.2 0.66

South −0.016 −0.029 0.013 −43.7 −55.9 56.5 0.91 −0.123 −0.144 0.021 −14.7 −15.8 21.4 0.90

Southeast −0.035 −0.045 0.010 −21.8 −24.4 35.3 0.70 −0.203 −0.200 −0.003 1.6 1.6 16.1 0.77

Southwest −0.005 −0.009 0.003 −40.2 −50.3 57.3 0.81 −0.027 −0.032 0.004 −13.3 −14.3 26.1 0.85

Upper 
Midwest −0.032 −0.050 0.018 −36.5 −44.6 45.9 0.86 −0.081 −0.117 0.036 −30.9 −36.6 41.6 0.53

West −0.001 −0.002 0.001 −39.7 −49.6 57.9 0.75 −0.005 −0.009 0.004 −48.0 −63.2 67.5 0.77

US −0.017 −0.026 0.008 −33.0 −39.5 44.1 0.92 −0.076 −0.088 0.012 −13.9 −15.0 24.7 0.90
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Table 3.

PCAPS prediction of PM2.5 nitrate ion, PM2.5 sulfate ion, and PM2.5 elemental carbon using emissions from 

the 2007, 2011, and 2016 National Emission Inventories compared with annual average speciated PM2.5 

measurements made at routine surface monitor networks. Metrics for PM2.5 sulfate and nitrate were calculated 

with and without contribution from the lateral boundary inflow (BCON) estimated by a photochemical grid 

model. The mean bias (MB) is expressed in μg/m3. Normalized mean bias (NMB), fractional bias (FB), and 

fractional error (FE) expressed as a percent.

Specie Year N MB NMB FB FE r BCON

PM2.5 elemental carbon 2007 344 0.17 31.8 27.4 49.2 0.65 N

PM2.5 elemental carbon 2011 311 0.06 13.5 12.6 45.5 0.71 N

PM2.5 elemental carbon 2016 280 −0.04 −12.9 −13.7 41.2 0.71 N

PM2.5 nitrate ion 2007 344 −0.33 −26.5 −30.6 50.0 0.51 N

PM2.5 nitrate ion 2011 311 −0.14 −16.9 −18.5 43.2 0.64 N

PM2.5 nitrate ion 2016 280 −0.16 −26.4 −30.4 43.5 0.64 N

PM2.5 sulfate ion 2007 344 −0.51 −20.9 −23.3 27.8 0.95 N

PM2.5 sulfate ion 2011 311 −0.54 −35.0 −42.4 43.0 0.93 N

PM2.5 sulfate ion 2016 280 −0.51 −62.5 −90.9 90.9 0.87 N

PM2.5 nitrate ion 2007 344 −0.22 −17.7 −19.4 46.0 0.53 Y

PM2.5 nitrate ion 2011 311 −0.03 −3.9 −4.0 40.3 0.66 Y

PM2.5 nitrate ion 2016 280 −0.05 −8.7 −9.1 38.4 0.66 Y

PM2.5 sulfate ion 2007 344 0.04 1.6 1.5 14.4 0.96 Y

PM2.5 sulfate ion 2011 311 0.01 0.4 0.4 15.0 0.94 Y

PM2.5 sulfate ion 2016 280 0.05 5.9 5.7 22.3 0.91 Y

Environ Sci Technol. Author manuscript; available in PMC 2024 December 15.


	Abstract
	Graphical Abstract
	INTRODUCTION
	METHODS
	Training Dataset Overview
	Reduced Complexity Model Development
	Model Response Evaluation Approach
	Application of Other Reduced Complexity Tools
	Ambient Measurements Evaluation Approach

	RESULTS
	Predicted Changes in Seasonal Average MDA8 O3
	Predicted Changes in Annual Average PM2.5
	Predicted Total Ambient PM2.5 Compared with Measurements

	LIMITATIONS & NEXT DIRECTION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table 2.
	Table 3.

