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Abstract
Motivation: The prediction of the T-cell receptor (TCR) and antigen bindings is crucial for advancements in immunotherapy. However, most cur-
rent TCR-peptide interaction predictors struggle to perform well on unseen data. This limitation may stem from the conventional use of TCR 
and/or peptide sequences as input, which may not adequately capture their structural characteristics. Therefore, incorporating the structural in-
formation of TCRs and peptides into the prediction model is necessary to improve its generalizability.
Results: We developed epiTCR-KDA (KDA stands for Knowledge Distillation model on Dihedral Angles), a new predictor of TCR-peptide binding 
that utilizes the dihedral angles between the residues of the peptide and the TCR as a structural descriptor. This structural information was inte-
grated into a knowledge distillation model to enhance its generalizability. epiTCR-KDA demonstrated competitive prediction performance, with 
an area under the curve (AUC) of 1.00 for seen data and AUC of 0.91 for unseen data. On public datasets, epiTCR-KDA consistently outper-
formed other predictors, maintaining a median AUC of 0.93. Further analysis of epiTCR-KDA revealed that the cosine similarity of the dihedral 
angle vectors between the unseen testing data and training data is crucial for its stable performance. In conclusion, our epiTCR-KDA model rep-
resents a significant step forward in developing a highly effective pipeline for antigen-based immunotherapy.
Availability and implementation: epiTCR-KDA is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR-KDA).

1 Introduction 
Immunotherapy has become a preferred treatment for certain 
types of tumors by harnessing the body’s immune system to 
recognize and destroy cancer cells. One approach to immuno-
therapy focused on immune checkpoint blockade (ICB), 
which employs monoclonal antibodies to block checkpoint 
proteins—such as PD-1, PD-L1, or CTLA-4—from binding 
to their ligands, thereby allowing T cells to target cancer cells 
(Shiravand et al. 2022, Yin et al. 2023). While ICB has dem-
onstrated success in treating several solid tumors, patient 
responses can vary, likely due to differences in T cell recogni-
tion of tumor antigens (Sun et al. 2023). Emerging research 
suggests that enhancing the activity of reactive T cells target-
ing patient-specific tumor neoantigens could significantly im-
prove the efficacy of checkpoint inhibitors, marking a 
promising new direction in cancer immunotherapy (Zhu 
et al. 2021). As a result, accurately predicting the interaction 
between T cell receptors (TCRs) and neoantigens presented 
by human leukocyte antigen molecules is essential for identi-
fying therapeutic peptides used in immunotherapy.

Multiple attempts have been made to create prediction 
tools for TCR-peptide binding using diverse computational 

approaches. There are simple models such as Bayesian ap-
proach [TCRGP (Jokinen et al. 2021), TCR-Pred (Smirnov 
et al. 2023)], Random Forest [TCRex (Gielis et al. 2019), 
epiTCR (Pham et al. 2023)], and clustering-based models 
[TCRdist (Dash et al. 2017)]. More complex models (Moris 
et al. 2021, Sidhom et al. 2021) are also proposed for the 
classification task. Many deep learning models [NetTCR 
(Montemurro et al. 2021), DeepTCR (Sidhom et al. 2021), 
ImRex (Moris et al. 2021), tcrpred (Koyama et al. 2023)] rely 
on convolutional neural networks (CNN) to learn the TCR 
and peptide patterns in each interaction. Some other tools, 
particularly ERGO-I (Springer et al. 2020) and pMTnet (Lu 
et al. 2021), use long short-term memory to learn the sequen-
tial information of TCR and peptides, and autoencoder layers 
to simultaneously improve the data understanding and re-
duce the feature space. Also extracting sequence information, 
BERTrand (Myronov et al. 2023), a language model-based 
model, learns the amino acid position and composition in the 
TCR and peptide sequences contributing to the binding. 
Despite many machine learning and deep learning algorithms 
that have been applied to predict the interactions between 
TCR and peptides, predicting the TCR-peptide binding is still 
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a challenge, especially when applying to unseen data where 
either the sequences of TCR or peptide or both are not pre-
sented in the training dataset.

Most TCR-peptide binding predictors struggle to general-
ize the interaction of TCR and peptide (Lu et al. 2021, 
Sidhom et al. 2021, Grazioli et al. 2023). The first reason is 
the datasets used to train and test predictive models are lim-
ited in size or diversity, particularly when it comes to the 
number of peptides. It was demonstrated with NetTCR that 
there was a positive correlation between the model perfor-
mance and the size of the training dataset (Montemurro et al. 
2021). The available data may not represent the full spectrum 
of peptide variability or skewed towards certain peptide se-
quence patterns (Grazioli et al. 2022). Furthermore, some 
studies (Montemurro et al. 2021, Springer et al. 2021) suf-
fered from overoptimistic classification performance when 
using random data split for training and testing, inadvertently 
resulting in data leakage due to the presence of the same pep-
tide sequences in both training and testing data even though 
the TCR-peptide pairs are not overlapping (Grazioli et al. 
2022). Therefore, careful attention is needed in dataset con-
struction and validation, with a special focus on using unseen 
peptides for testing, to prevent data leakage and ensure the 
development of robust predictive models. The second reason 
is the insufficient information for the models to learn from 
the input pair of the amino acid sequences of the TCR 
CDR3β region and the peptide, of which the linear sequences 
do not represent the spatial information of the TCR-peptide 
interactions. In fact, two different TCR-peptide sequence 
pairs can share similar spatial information and, therefore, can 
interact in the same manners (Moris et al. 2021). This lack of 
spatial information might prevent models from generalizing 
the TCR-peptide interactions, leading to low performance on 
unseen data.

Many protein structure prediction tools, such as 
AlphaFold (Jumper et al. 2021), ESMFold (Lin et al. 2023), 
PEP-FOLD3 (Lamiable et al. 2016), and OmegaFold (Wu 
et al. 2022), can transform linear amino acid sequence to spa-
tial information, which better represents the biological inter-
action of TCRs and peptides [TCR-Pred (Smirnov et al. 
2023)]. However, the full 3D structure data for every single 
atom of each amino acid is a complex, high-dimensional set 
of data for model input, which can exponentially complicate 
the learning process. To address this, the dihedral angles, in-
cluding the phi (ϕ) angle around the backbone N-Cα bond 
and the psi (ψ) angle around the backbone Cα-C bond, can 
be used to represent the 3D shape of a peptide (Knapp et al. 
2008, Ferber et al. 2012). These dihedral angles can serve as 
effective features to capture the structural information of 
both the TCR CDR3β and peptide, guiding the models to 
learn the patterns of spatial interactions.

In this study, we present epiTCR-KDA (KDA stands for 
Knowledge Distillation model on Dihedral Angles), a novel 
approach to predict the TCR-peptide binding based on a 
knowledge distillation model (KD) (Hinton et al. 2015), 
which learns the spatial information from dihedral angles of 
both the TCR CDR3β and peptides. The epiTCR-KDA was 
trained on a dataset of diverse TCR and peptides, with addi-
tional known non-binding peptides (wild type) sourced from 
public databases. The model consistently outperformed other 
currently available TCR-peptide binding prediction tools. 
Furthermore, our epiTCR-KDA also demonstrated outstand-
ing generalization ability on unseen data.

2 Methods
2.1 Data collection and generation of non-binding 
TCR-peptide pairs
The CDR3β loop plays a key role in the TCR-peptide interac-
tions (Reiser et al. 2002, Tsuchiya et al. 2018, Croce et al. 
2024), and public data mostly contains CDR3β-peptide inter-
actions. Previous study also highlighted CDR3β as a good 
representative for TCRs (Moris et al. 2021, Grazioli et al. 
2023, Pham et al. 2023, Ji et al. 2024). Therefore, in this 
work, we continue to use the information from the CDR3β 
loop to improve the prediction of TCR-peptide binding. 
Binding and non-binding CDR3β-peptide pairs were collected 
from McPAS-TCR (Tickotsky et al. 2017), TBAdb (Zhang 
et al. 2020), VDJdb (Shugay et al. 2018), IEDB (Vita et al. 
2019), and 10X (A New Way of Exploring Immunity— 
Linking Highly Multiplexed Antigen Recognition to Immune 
Repertoire and Phenotype j Technology Networks, 2020). 
The combined dataset contains 70 083 (2.5%) binding pairs 
and 2 689 709 non-binding pairs that were formed by 1681 
unique peptides and 126 841 unique CDR3β sequences. 
Among 1681 unique peptides, only 7 are exclusively found in 
non-binding pairs, significantly lower than the number of 
peptides exclusively found in binding pairs (1637 unique pep-
tides). The small number of unique peptides in non-binding 
pairs highlighted the data imbalance, leading to bias towards 
the positive “binding pairs” predictions (Pham et al. 2023). 
To address this issue, we augmented the data by constructing 
additional non-binding CDR3β-peptide pairs. We first 
extracted wildtype peptide sequences from TSNAdb (Wu 
et al. 2023a), Neodb (Wu et al. 2023b), and NEPdb (Xia 
et al. 2021), and then randomly combined them with CDR3β 
sequences from previously collected data. This resulted in ad-
ditional 174 944 CDR3β-peptide pairs with 2506 unique 
peptides for the non-binding dataset. On the other hand, we 
further combined 71 CDR3β sequences from tumor- 
infiltrating T cells (TIL) (Pham et al. 2024) with the extracted 
wildtype peptides to make additionally 132 979 non-binding 
CDR3β-peptide pairs. Details can be found in Fig. 1A.

2.2 Input data representation
The phi (ϕ) and psi (ψ) torsion angles were used to represent 
the structural information of both the CDR3β and peptide 
sequences. The CDR3β/peptide sequences were first used to 
predict their 3D-structures using OmegaFold (version v1.1.0) 
(Wu et al. 2022). The phi and psi angles were then calculated 
using the PDBParser function implemented in the biopython 
package (version 1.75) (Bio.PDB.Internal_coords Module– 
Biopython 1.84.Dev0 Documentation, n.d.), resulting in 
(l � 2, 2) matrices, with l corresponding to the length of the 
sequence. The first and the last amino acids in the sequence 
can rotate freely around the peptide backbone, therefore, 
their phi and psi angles were excluded. The CDR3β-repre-
senting matrix and the peptide-representing matrix was cal-
culated separately, then zero-padded to the dimension of the 
longest amino acid sequences of CDR3β and peptides. The 
two matrices were then concatenated vertically to form a 
(l � 2, 4) matrix, with l corresponding to the longest amino 
acid sequence (l¼ 17 in this study) (Supplementary Fig. S1). 
The resulting phi and psi matrix was provided to the learning 
model as input (Fig. 1B).
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2.3 Data organization for model training and testing
The training data consisted of 1 632 614 CDR3β-peptide 
pairs, including 94 725 unique CDR3β sequences, and 2000 
unique peptides. The testing data comprised of 1 428 951 
pairs, including 89 850 unique CDR3β sequences and 3589 
unique peptides. Of the unique peptides in the testing data, 
1948 (54.2%) were seen peptides (peptides paired with other 
CDR3β in the training data), and 1641 (45.8%) were unseen 
peptides (peptide sequences only found in the testing data, 
Supplementary Table S2). The testing data were randomly 

split into ten testing sets, allowing the benchmark of epiTCR- 
KDA against other predictors. A “7 unseen dominant 
peptides” dataset consisting of 447 398 CDR3β-peptide pairs 
derived from 7 unseen peptides (Supplementary Table S7) 
was also randomly split into 10 subsets and used to testing 
the models.

2.4 Model training
The model structure followed a knowledge distillation ap-
proach (Hinton et al. 2015), akin to a teacher-student 

Figure 1. Overview of epiTCR-KDA. (A) Diagram illustrating data collection for training and evaluation of epiTCR-KDA. Five public databases [IEDB (Vita 
et al. 2019), VDJdb (Shugay et al. 2018), TBAdb (Zhang et al. 2020), McPAS-TCR (Tickotsky et al. 2017), and 10X (A New Way of Exploring Immunity— 
Linking Highly Multiplexed Antigen Recognition to Immune Repertoire and Phenotype j Technology Networks, 2020)] were collected for TCR-peptide 
pairs, with publicly collected TCR labeled as (1) and publicly collected peptides labeled as (2) (Supplementary Table S1). Three databases [TSNAdb ( Wu 
et al. 2023a), Neodb (Wu et al. 2023b), and NEPdb (Xia et al. 2021)] were gathered for self-peptides (wildtype peptides), labeled as (3). These peptides 
were randomly combined with TIL TCR, labeled as (4), from public TCR-peptide pairs to form non-binding pairs [i.e. (3) combined with (4)]. Additionally, 
non-binding pairs were also generated from TIL CDR3β sequences with public wildtype peptides [i.e. (1) combined with (3)]. The data were divided into 
training data (Supplementary Fig. S2), and testing data covering various data sources, seen and unseen peptides (Supplementary Table S2). (B) Data 
preprocessing steps starting from the conversion of CDR3β/peptide amino acid sequences to 3D structures using OmegaFold, followed by the 
calculation of the phi and psi angles, and processing this information as input for the model (Supplementary Fig. S1). (C) Structure of the KD model. The 
CDR3β and peptide representation (phi and psi angles) were concatenated, padded, and served as input for the KD model. The KD model involved a 
student model learning from the information provided by the teacher model (soft loss) and ground-truth labels (hard loss). The model was trained to 
predict the binding or non-binding of CDR3β-peptide pairs.
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relationship (Fig. 1C). The input CDR3β and peptide sequen-
ces were individually represented by matrices of phi and psi 
angles, which were then concatenated and padded by zeros 
into a 17×4 matrix (where 17 rows representing the dimen-
sion obtained from the longest sequence, and 4 columns rep-
resenting the phi and psi angle pairs of the CDR3β then of 
the peptide, respectively). Taking this matrix as input, both 
the student and teacher models were built based on the 
CNNs framework. The teacher model was for binary classifi-
cation, started from a convolutional layer of 64 filters of size 
3× 3 [with the stride of (2, 2)], followed by a LeakyReLU ac-
tivation (α ¼ 0.2), and a MaxPooling2D with 2×2 filter and 
stride¼ 1. Two convolutional layers with 128 and 256 filters 
(with the same filter size and stride) were subsequently ap-
plied. The output from the last layer was flattened into a 1D 
vector, followed by a fully connected layer, and a single unit 
of sigmoid activation for binary classification. The student 
model replicates the teacher's prediction with reduced com-
plexity by reusing three convolutional layers of 16, 32, and 
64 filters, respectively, while other layers were kept similar to 
those of the teacher model. The distillation involved a 
Distiller object containing both models. During training, the 
Distiller object was compiled using Adam optimizer, with 
BinaryAccuracy metric for evaluation, BinaryCrossentropy 
loss function for the student, and KLDivergence for distilla-
tion loss evaluation. These parameters resulted from the 
model tuning process.

3 Results
3.1 Overview of epiTCR-KDA
To construct a predictive model for TCR-peptide binding, we 
tackled the problem from three main angles: data collection, 
data encoding, and model structure. Different training data-
sets can significantly impact the model's performance, so we 
focused on obtaining diverse CDR3β sequences and peptides 
with known binding status from multiple public sources 
(Fig. 1A). Additionally, we generated non-binding pairs to in-
crease the proportion of non-binding data, based on the as-
sumption that TCRs do not bind to or activate against 
human wildtype (self) peptides (Fig. 1A). For the training 
data, we generated a series of sets with an increasing number 
of peptides and corresponding CDR3β-peptide pairs and 
found that a set with 2000 unique peptide sequences exhib-
ited the best training performance (Supplementary Fig. S2). 
The final training data consisted of 1 632 614 CDR3β-pep-
tide pairs, comprising 94 725 unique CDR3β sequences and 
2000 unique peptides (Fig. 1A). We hypothesized that tradi-
tional amino acid sequence-based encoding methods, such as 
one-hot encoding or BLOSUM62, might not provide suffi-
cient insights into the 3D structures of the two binding part-
ners. Therefore, we used dihedral angles as input data to 
better capture the structural information of the CDR3β and 
peptides (Fig. 1B, Supplementary Fig. S1). Then, a knowledge 
distillation (KD) model was used to learn from the dihedral 
angle matrix input (Fig. 1C). The KD process involved a 
more complex “teacher” model, extracting deep-level details 
from the TCR and peptide structures, and then transferring 
that knowledge to a smaller, simpler “student” model. This 
allowed the student model to reduce any overfitting that 
might have occurred in the teacher model. Ultimately, the KD 
model was used to enhance the generalization capacity of the 
epiTCR-KDA approach.

3.2 epiTCR-KDA outperformed existing tools in 
predicting the binding of unseen peptides
To compare the performance of epiTCR-KDA with currently 
available tools, we chose a set of benchmarked predictors cov-
ering a wide range of data representation and learning 
approaches, including BERTrand (Myronov et al. 2023), 
TEIM-Seq (Peng et al. 2023), TEINet (Jiang et al. 2023), 
ImRex (Moris et al. 2021), epiTCR (Pham et al. 2023), and 
NetTCR (Montemurro et al. 2021), all of which use the 
CDR3β and peptide sequences as input. First, we used the orig-
inal published model of each tool to benchmark against 
epiTCR-KDA. Because the training data for each model was 
different, we designed 10 testing sets that were unseen by all 
models for fair comparison (see Supplementary Methods). In 
this benchmark, our epiTCR-KDA model achieved an average 
area under the curve (AUC) of 0.86, far exceeding the perfor-
mance of next model, TEIM-seq, at 0.62 (Fig. 2A, 
Supplementary Tables S4 and S5).

Second, to provide a better benchmark, we decided to retrain 
the models using the same training data as used for epiTCR- 
KDA before comparing their performance. Only three models, 
epiTCR, NetTCR and TEINet, were retrained thanks to the 
availability of training codes from the authors (Supplementary 
Methods). These three models were benchmarked against 
epiTCR-KDA using 10 non-overlapping testing sets, randomly 
sampled from the testing data consisting of 1 428 951 CDR3β- 
peptide pairs. Each testing set contained 60% seen data (pairs 
of CDR3β-peptide in which the peptide sequences were also 
found in the training set) and 40% unseen data (pairs of 
CDR3β-peptide in which peptide sequences were only found in 
the testing data). A significant drop in performance from seen 
to unseen data indicates the low generability of a model.

Overall, epiTCR-KDA performed the best, achieving an av-
erage AUC of 0.98 (Fig. 2B, Supplementary Figs. S3E and 
S4E). The second and the third best-performing tools were 
epiTCR and NetTCR, with average AUC values of 0.92 and 
0.91, respectively (Fig. 2B, Supplementary Figs. S3E and 
S4E). When evaluating their performance on seen data, 
epiTCR-KDA, epiTCR, and NetTCR showed comparable 
results with AUC values of 1.00, 0.95, and 0.94, respectively 
(Fig. 2C, Supplementary Figs. S3F and S4F). However, on un-
seen data, epiTCR-KDA clearly outperformed the others, 
achieving an average AUC of 0.91, compared to 0.58 and 
0.59 from epiTCR and NetTCR, respectively (Fig. 2D, 
Supplementary Figs. S3G and S4G). Our epiTCR-KDA 
showed a modest drop in AUC from seen data to unseen data 
(from 1.00 to 0.91), while the other tools exhibited signifi-
cant drops (0.95 to 0.58 in epiTCR and 0.94 to 0.59 in 
NetTCR), suggesting that epiTCR-KDA generalizes well.

To further challenge the models, we included a special test-
ing set of 447 398 CDR3β-peptide pairs derived from 7 un-
seen peptides, which hereafter referred to as the “7 unseen 
dominant peptides” (Supplementary Table S7). These domi-
nant peptides were known to significantly reduce the overall 
performance of prediction models (Montemurro et al. 2021, 
Pham et al. 2023), and here we reported the performance of 
each tool on the CDR3β-peptide pairs derived from these 
peptides. For all tools tested, the performances on the domi-
nant peptides were slightly lower than those on unseen data 
(Fig. 2E, Supplementary Figs. S3H and S4H), confirming that 
data derived from the 7 unseen dominant peptides are more 
challenging to predict. Despite that, our epiTCR-KDA still 
maintained a good performance with AUC of 0.92.
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To comprehensively evaluate the generalization capabilities 
of epiTCR-KDA, we categorized our dataset into different 
groups based on peptide sources, including virus, human, and 
other pathogen origins (Supplementary Table S6). We then 
assessed the performance of epiTCR-KDA in predicting 
CDR3β–peptide binding on both seen and unseen data. 
Notably, the AUC values for epiTCR-KDA predictions 
remained consistently robust across different peptide sources 
(Supplementary Fig. S5).

3.3 Dihedrals played a pivotal role in maintaining 
consistently good performance of our epiTCR-KDA
We aimed to understand the factors contributing to the con-
sistent performance of epiTCR-KDA on both seen and un-
seen data. To achieve this, we evaluated the influence of 
training data on prediction outcomes, specifically focusing on 
the similarity between the TCRs and peptides in the training 
data versus those being predicted. We grouped each testing 
set into nine clusters based on their CDR3β dihedral angles. 
Nine representatives were used to represent the diversity of 
CDR3β sequences across the 10 testing sets. For each CDR3β 
representative, we split the training data into bins containing 

the CDR3β-peptide pairs, of which the respective CDR3β 
sequences maintained similar (i.e. in same range of cosine 
similarity of the phi-psi vectors) to the representative CDR3β 
(see Supplementary Methods). Next, we calculated the root 
mean squared error (RMSE) to measure the discrepancy be-
tween the labels (binding/non-binding) of the testing cluster 
and those of the corresponding training bin. We observed a 
reduction in RSME as the similarity increased across all nine 
tested CDR3β sequences. It was shown that the binding/non- 
binding CDR3β-peptide pairs predicted by the epiTCR-KDA 
in each testing cluster were more associated with those of the 
training bins exhibiting higher cosine similarity (Fig. 3A). We 
performed similar measurements for the peptides and ob-
served similar patterns (Fig. 3B). Overall, these findings sug-
gested that dihedral angles of both CDR3β and peptide could 
be the key features that determined the outstanding perform-
ances of the epiTCR-KDA.

3.4 Robust performance of the epiTCR-KDA across 
different testing scenarios
A challenge in the TCR-peptide binding prediction is the gen-
eralizability of the prediction models, which might be varied 

Figure 2. The performance of epiTCR-KDA, epiTCR, NetTCR, BERTrand, TEIM-Seq, TEINet, and ImRex across different benchmark settings: (A) original 
models tested on 10 datasets containing peptides unseen from training of all those models, (B) retrained models on 10 overall testing sets including both 
seen and unseen data, (C) retrained models on data derived from seen peptides, (D) retrained models on data derived from seen peptides, and (E) 
retrained models on data derived from 7 dominant unseen peptides (Supplementary Table S7). The performance was measured by AUC. Each bar 
indicates the mean performance from ten testing sets and the error bar indicates the standard deviation. The original models of epiTCR and NetTCR were 
also benchmarked on interactions of unseen peptides; however, epiTCR produced only positive predictions, while NetTCR gave only negative predictions 
for all interactions. Consequently, AUC was not calculated for epiTCR and NetTCR in this testing scenario (Supplementary Table S5).
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with respect to different testing sets. We demonstrated the 
potential generalizability and robustness of our epiTCR-KDA 
by testing its performance across various datasets from multi-
ple sources. The testing data were specifically designed to en-
compass diverse sources and varying ratios of non-binding to 
binding CDR3β-peptide pairs. The binding pairs were 
sourced from two studies: Panpep (Gao et al. 2023), with 
10 397 CDR3β-peptide pairs, and catELMo (Zhang et al. 
2023) with 85 020 CDR3β-peptide pairs. The non-binding 
pairs were generated as previously described (Fig. 1A) by 
combining public CDR3β sequences (A New Way of 
Exploring Immunity—Linking Highly Multiplexed Antigen 
Recognition to Immune Repertoire and Phenotype j
Technology Networks, 2020; Tickotsky et al. 2017, Shugay 
et al. 2018, Vita et al. 2019, Zhang et al. 2020) with wildtype 
peptides (Xia et al. 2021, Wu et al. 2023a, 2023b). The 
resulting non-binding sets (n¼402 732 and n¼ 313 161,  
Fig. 1A) contained no CDR3β-peptide pairs that were present 
in those used in the earlier benchmark (Fig. 2). These binding 
and non-binding CDR3β-peptide pairs were then combined 
to form nine new testing datasets (Supplementary Table S8). 
The performance (AUC) of epiTCR-KDA and six other pre-
dictors is shown in Fig. 4A and D, with epiTCR-KDA exhib-
iting the median AUC of 0.93 (ranging from 0.87 to 0.93), 
followed by original and retrained epiTCR both achieving 
the median AUC of 0.88 (AUC ranging from 0.76 to 0.86 by 
original models, and ranging from 0.76 to 0.89 by retrained 
models), and original and retrained NetTCR reaching the me-
dian AUC of 0.77 and 0.79, respectively (AUC ranging from 
0.7 to 0.81 by both models). It was observed that across the 
nine testing sets, different performances of the epiTCR-KDA 
were most likely attributed to the different ratios of unseen- 
to-seen data.

A COVID dataset (Koyama et al. 2023), consisting of 
2 120 140 CDR3β-peptide pairs (including 2 120 100 non- 

binding pairs, and 40 binding pairs), was also used in our 
subsequent benchmark (Fig. 4B and E). This dataset includes 
SARS-CoV-2 peptide sequences that were not used in the 
training data by the epiTCR-KDA. The ratios of seen versus 
unseen were found in the peptides 1:125.5 and in the CDR3β 
sequences 1:37.7 (Supplementary Table S8). Despite the 
more predominant unseen data in this COVID dataset, the 
epiTCR-KDA performed consistently well (AUC¼ 0.97) in  
Fig. 4B and E. The next two best-performing models epiTCR 
and NetTCR experienced a significant drop in performance 
(AUC to 0.641 and 0.534 by original models, and AUC to 
0.639 and 0.534 by retrained models, respectively). This re-
sult demonstrated the epiTCR-KDA generalizability on the 
unseen COVID data.

Subsequently, we assessed the performance of epiTCR- 
KDA and the other predictors using different ratios of the 
non-binding pairs versus the binding pairs (Fig. 4C and F, 
Supplementary Table S9). Generally, all the predictors (ex-
cept for ImRex) performed best when this ratio was 1:1 
(Fig. 4C and F). Interestingly, the top three predictors, 
epiTCR-KDA, epiTCR and NetTCR, consistently performed 
well even given the increasing ratios of the non-binding ver-
sus binding. It suggests that the epiTCR-KDA maintains 
its robustness.

4 Discussion
The potential of using neoantigens as personalized, cancer- 
specific markers for various therapeutic and preventative anti- 
cancer strategies has not been fully realized. This is partly due 
to the difficulties in identifying neoantigens individually 
for each patient. Numerous computational methods have 
been developed, employing a wide range of advanced deep 
learning models to predict TCR-peptide binding [NetTCR 
(Montemurro et al. 2021), TEIM-Seq (Peng et al. 2023), 

Figure 3. The influence of CDR3β and peptide structural information in training data on predictions by epiTCR-KDA. (A) Nine CDR3β and (B) nine peptides 
were chosen to represent nine clusters within the testing sets, and the predicted labels of their represented clusters were compared with the labels in 
training bins at different levels of dihedral angle-based cosine similarity using RMSE. The lower the RMSE, the more similar between prediction labels 
and training labels.
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TEINet (Jiang et al. 2023), (Myronov et al. 2023), and ImRex 
(Moris et al. 2021)]. However, these methods typically rely on 
amino acid sequences as input or attempt to convert those 
sequences using canonical encoding techniques, such as 
BLOSUM (Montemurro et al. 2021, Pham et al. 2023), one- 
hot (Jiang et al. 2023), and physicochemical properties (Yang 
et al. 2023). In this study, we proposed the dihedral angles, 
also known as Ramachandran angles (Ramachandran et al. 
1963), as input features to predict the TCR-peptide binding 
(Fig. 1). This approach is efficient and captures the three- 
dimensional structure of both the TCRs and peptides. 
Although the concept of dihedral angles is well established, to 
the best of our knowledge its application to predict the TCR- 
peptide binding pairs has not been reported previously. By pro-
viding the angular orientations of consecutive peptide bonds, 
we hypothesize that our model, epiTCR-KDA, could effec-
tively learn spatial information from CDR3β and peptide, 
which is crucial for differentiating non-binding from binding 
CDR3β-peptide pairs. In fact, our epiTCR-KDA model per-
formed consistently well across all testing scenarios (Figs. 2 
and 4). This was particularly evident in cases where the num-
ber of unseen peptides far exceeded the seen peptides, as dem-
onstrated in the COVID dataset (Fig. 4B). Our epiTCR-KDA 
also exhibited high generalizability.

Knowledge distillation has proven effective in various 
domains, such as natural language processing (Hahn and 
Choi 2019), computer vision (Chawla et al. 2021), and 
speech recognition (Yoon et al. 2021). Its versatility stems 
from its capacity to distill the rich knowledge captured by a 
complex model into a more compact representation, which is 
suitable for deployment in environments with limited resour-
ces. In the prediction of CDR3β-peptide binding, where 

accurate modelling of complex molecular interactions is es-
sential, knowledge distillation offers a pathway to enhance 
the performance of simpler predictive models. By incorporat-
ing knowledge distillation with dihedral angles, our model 
learns from both CDR3β and peptide representations, en-
abling it to capture a broader range of structural features that 
influence binding interactions, e.g. our epiTCR-KDA exhib-
ited substantial association of both the CDR3β and peptide 
similarity between training and testing data (Fig. 3). In con-
trast, our previous model, epiTCR, demonstrated that only 
50% of the examined peptides had predicted labels similar to 
those of their corresponding groups of similar peptides in the 
training set. This finding affirms why epiTCR is less effective 
than epiTCR-KDA in predicting outcomes on unseen data 
(Fig. 2). Although we have not been able to determine 
whether this generalization capability is attributable to the di-
hedral angles input, the KD model, or a combination of both, 
our findings demonstrate that the epiTCR-KDA represents a 
promising and novel approach in the area of TCR-peptide 
binding prediction that has not been previously reported.

Nonetheless, several limitations remain in our current 
study. First, our data representation is dependent on the reli-
ability of the OmegaFold tool (Wu et al. 2022) to predict the 
3D structures of CDR3β and peptides. We however have not 
confirmed these resulting 3D models using some other tools 
such as AlphaFold (Jumper et al. 2021) and ESMFold (Lin 
et al. 2023) due to a few scenarios: (i) the short length of the 
CDR3β and peptide sequences do not satisfy the constraints 
by AlphaFold (≥16 residues), (ii) ESMFold consistently fails 
for certain of our sequences. Neither did we apply 
RosettaFold (Baek et al. 2021) due to our time and resource 
constraints. Second, our model search may not be exhaustive, 

Figure 4. The performance different models on diverse testing scenarios. (A) epiTCR-KDA and original models on nine combined datasets, (B) epiTCR- 
KDA and original models on the COVID-19 dataset, and (C) epiTCR-KDA and original models on four datasets with an increasing number of non-binding 
pairs, (D) epiTCR-KDA and retrained models on nine combined datasets, (E) epiTCR-KDA and retrained models on the COVID-19 dataset, and (F) epiTCR- 
KDA and retrained models on four datasets with an increasing number of non-binding pairs.
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hence the knowledge distillation model may not be the best 
model to fully capture the intricacies. Third, while our work 
has clearly demonstrated that incorporating 3D structure in-
formation in data representation can improve the generaliz-
ability of our model, there still remain other structural 
characteristics to be explored to devise more robust and ver-
satile prediction models for diverse CDR3β-peptide com-
plexes. Lastly, although the runtime of the epiTCR-KDA 
model is comparable with other tools in its class (67 seconds 
for 1 million input pairs), the complete process of epiTCR- 
KDA including transforming amino acid sequences to 3D 
structure requires much longer time (255601seconds for 1 
million input pairs). OmegaFold takes approximately three 
seconds per amino acid sequence and prediction on a large 
dataset leads to notably longer runtime (Supplementary Fig. 
S6). Future work is needed to build a model with enhanced 
interpretability and fast runtime to further advance our un-
derstanding of immune system dynamics and facilitate the de-
velopment of novel therapeutic strategies.

5 Conclusion
We presented epiTCR-KDA, a knowledge distillation model 
that uses dihedral angles for prediction of TCR-peptide bind-
ing. By capturing the structural information of both the part-
ners of the TCR-peptide complexes, epiTCR-KDA elicits its 
generalizability and robustness across diverse datasets. Given 
its generalizability, the epiTCR-KDA might pave the ways for 
future development in the areas of immunotherapy that faces 
low success rate of identifying multiple personalized neoanti-
gens capable of activating T cells.
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