
Biochem. J. (1977) 163, 45-57
Printed in Great Britain

Stereochemical Considerations for Constructing a-Helical Protein
Bundles with Particular Application to Membrane Proteins

By A. KEITH DUNKER* and DAVID J. ZALESKEt
*Program in Biochemistry and Biophysics, Washington State University, Pullman,

WA 99163, U.S.A., andtMassachusetts GeneralHospital, Fruit Street, Boston,MA 82114,
U.S.A.

(Received 12August 1976)

The stereochemical constraints originally used to construct two- and three-stranded
a-helical coiled-coils were generalized for aggregates of a-helices containing from 4 to 14
a-helices in tubular bundles. Certain features of bacteriorhodopsin show excellent corre-
lations with these stereochemical constraints.

Formation of multistrand cables from protomer
molecules seems to bea general feature offibrous struc-
tures, as for example in muscle (Huxley & Brown,
1967; Pepe, 1967, 1971; Harrison et al., 1971), in
a-keratin (Astbury & Street, 1931; Bragg et al.,
1950; Pauling et al., 1951; Crick, 1952) and in
collagen (Rich & Crick, 1955, 1961). A recent
interesting example of this phenomenon is provided
by glutamine synthetase, in which hexagonal mole-
cules are induced by Co2+ ions to form long strands;
the long strands in turn form three-stranded and six-
around-one-stranded cables (Frey et al., 1975). Six-
around-one cables and three-stranded coiled-coils
are both structures that had been proposed as
possible ways of aggregating a-helical protomers
(Pauling & Corey, 1953; Crick, 1953). Of course the
sizes of the proposed a-helical coiled-coils and the
glutamine synthetase cables are very different; the
repeating unit in glutamine synthetase has a mol.wt.
of about 600000 whereas the a-helix repeating unit
consists ofjust a few amino acids. This large disparity
in size points to the concept that the same general
principles are operating in both cases (Frey et al.,
1975).

Crick (1953) explained coiled-coil formation by
noting that helical strands can have regular repeated
favourable interstrand contacts if the strands coil
about each other. He worked out in detail the conse-
quences of this principle for the case of two- and
three-stranded ac-helical coiled-coils. Since the original
work of Pauling & Corey (1953) and Crick (1953), it
has become evident that there may be structures
containing more than three a-helical chains in tubular
aggregates. Thus it would be useful to work out the
consequences of the packing principles devised by
Crick to aggregates with more than three a-helices.
In addition to certain ofthe a-helical fibrous proteins,
a possibility of particular interest to us is that trans-
membrane protein channels are formed by aggregates
of a-helices. This concept, originally proposed on
general grounds by several workers (Wallach &
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Zahler, 1966; Lenard & Singer, 1966), was recently
used as the basis for construction ofmolecular models
containing up to 18 molecules of murein-lipoprotein
in a-helical bundles (Inouye, 1974). In addition, the
concept of transmembrane a-helical aggregates has
received considerable support from work showing
that protein from the purple membrane of Halo-
bacterium halobium consists of seven aggregated
transmembrane a-helical segments (Henderson,
1975; Unwin & Henderson, 1975; Henderson &
Unwin, 1975). Especially because of these recent
findings and suggestions with regard to membrane
proteins, we have extended Crick's (1953) original
analysis to tubes of a-helices containing up to 14
a-helices. Rather than presenting this work in the most
general form possible, we have included constraints
that seem to us to be reasonable for particular kinds of
membrane proteins. The present stereochemical
principles have been applied to several membrane-
protein sequences to suggest possible structures for
these aggregates and further, to propose a model for
membrane transport through such aggregates (A. K.
Dunker & T. Jones, unpublished work; Dunker et
al., 1976).

In addition to our particular interest in membrane
proteins, the glutamine synthetase example suggests
that our work may have potential application
beyond the confines of membrane proteins and even,
if suitably generalized, beyond the particular case of
cr-helical aggregates.
A preliminary account of these results has been

published (Dunker et al., 1976).

Theory

Tubes of a-helices

Crick (1953) proposed a method for packing two
and three a-helical chains together so that the side
chains of one a-helix fit into the spaces between the
side chains of its neighbour. Crick called this knobs-
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tube and the angle between the a-helix and tube axis.
(b) The number of a-helices in a tube is determined by
which sets of side chains in a lateral plane are in-
volved in the knobs-into-holes packing. The packing
arrangement in turn specifies which sets ofside chains
are located to the interior and exterior of the tube.
(c) The requirement that the same set of knobs-into-
holes interactions be used over-and-over throughout
the tube provides the basis for a fitting index (f),
which is determined by the relative longitudinal
packing of neighbouring a-helices.
The first category of structural principles treats the

proteins as smooth cylinders; the second and third
categories take into account the knobs and holes
resulting from the arrangement of the side chains
in the structure.

(a) Packing of smooth cylinders. In Fig. 1 on the
surface of a cylinder of radius ro are drawn two
helices L1 and L2 with the same pitch, representing the
axes of two helically distorted smooth cylinders.
A line perpendicular (on the cylindrical surface of
radius ro) to helix L1 can be drawn from point P1 to
the point P2 on helix L2. The crossing angle e between
the adjacent cylinder axes is then defined by the
angle between the unit-length tangents T1 drawn
through point P1 and T2 drawn through point P2. If
0 is the angle between points P1 and P3 as shown in
Fig. 1, then one can use the dot product between unit
vectors T1 and T2 to show that:

COSE= sin2 ZCOS 8+COS2 a (1)
where a is the pitch angle of the helices L1 and L2 as
shown in Fig. 1.
From Fig. 1 construction shows that:

Fig. 1. Packing ofsmooth cylinders
On the surface of a cylinder of radius ro are drawn
two helices L1 and L2 representing the axes of two
smooth cylinders. Drop a perpendicular (on the
cylindrical surface) from point P1 on helix L1 to point
P2 on helix L2. Draw the radii from points P1 and P2
to the cylindrical axis and project the radius from
P2 on the plane P1OP3, which is perpendicular to the
cylinder axis. This projected line makes an angle 8=
P1OP3 at the axis with the radius to point P1. Draw
tangents T1 and T2 to helices L1 and L2 at points P1
and P2. The angle e is the angle between the (non-
intersecting) lines T1 and T2, and is thus the angle
at which two neighbouring a-helices cross.

8' =8+ (P3 P4/ro) (2)
where P3P4 is the line segment connecting points P3
and P4.
But from Fig. 1:

P3 P4 = P2 P4 sin a (3)
but

P2 P4 = P1 P4 sin a (4)
therefore:

P3P4 P1P4sin2 a
rO rO (5)

Since
P1P4 8'
rO

into-holes packing. We have extended the principle
of knobs-into-holes packing to bundles containing
from 4 to 14 a-helices.
The structural principles fall logically into three

categories. (a) The crossing angle between adjoining
a-helices depends on the number of a-helices in the

it is evident that:

0' =8+8'sin2 a

or
0 = '(1- sin2 a) = 0' cos2 a

(6)

(7)

(8)
1977
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Fig. 2. Crossing angle versus pitch angle
Values of E, the crossing angle of neighbouring
a-helices, is plotted versus ax, the pitch angle as
defined in Fig. 1, for various values of S (in paren-
theses), the number of cylinders in the bundle.

For S equally spaced strands in the cylinder:

0' = (27/S) (9)

and therefore

cos e = sin' a * cos (27r/S *cos2 a)+ cos2 a (10)

By using the relationship cosx = 1-2sin2(x/2) and
then substituting 27r/S-cos2 a for X, the above
expression can be rewritten as:

cos e= 1-2 sin2 a. Sin2 (7f/S* COS2 a) (I 1)

Thus, for a given number of strands (S) in a tube,
one can graph E versus ax (Fig. 2).
A row of knobs and holes of an undistorted a-helix

forms a gentle left-handed helix with an angle of
about 100 with respect to the helix axis (see Crick,
1953; see also below). Crick (1953) showed that the
consequence of knobs-into-holes packing would be
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that aggregated a-helices should form a gentle right-
handed coiled-coil such that adjacent a-helices should
cross at about twice the 100 pitch angle or at about
200. From Fig. 2, it is readily evident that relatively
undistorted a-helices could have crossing angles of
approx. 200 only for bundles with S values of seven or
below. However, if the a-helix is distorted some-
what, smaller crossing angles can be obtained. Thus,
for a-helices distorted such that the row ofknobs and
holes lies at an angle ofabout 7.5° so that e is approx.
15°, structures up to nine a-helices would be allowed,
and so on. It should be evident that the same prin-
ciples could be applied to protomers other than
a-helices; all that is required is a repeating set of
contacts forming a gentle helix about the axis of the
protomer strand. Then bundles of such protomers
could form with the appropriate local crossing angle.

(b) Side-by-side packing considerations. First con-
sider the simplest case in which the a-helix axis is
nearly parallel to the bundle axis, that is a approx.
00. An a-helix contains seven equally spaced sets of
rows of knobs and holes (Crick, 1953; see also
below). Each row can be labelled by the residue
number of the first amino acid residue in that row.
Since the rows are equally spaced, the angle between
adjacent rows is 3600/7 or 51.4°. The rows involved in
the knobs-into-holes packing define the contact line,
Cl, which can be specified by the numbers C1, C2, C3,
C4, C5, C6, and C7 corresponding to the seven rows of
knobs and holes. Thus the angle between C1 and C5 is
51.4°; the angle between C1 and C2 is 2x (3600/7) =
102.90; the angle between C1 and C6 is 3 x (3600/7) =
154.30. The angle between C1 and C3 is 4x (3600/7) =
205.70, which is equivalent to an internal angle of
360°-205.7° = 154.30. Thenumber of a-helices inthe
bundle can be used to define which rows ofknobs will
interleave simply by considering which polygon has
an internal angle closest to 51.40, 102.90 or 154.30.
These results are given in Table 1; a 14-sided polygon
has an internal angle exactly the same as that between
C1 and C6, and thus 14 was chosen as the upper limit
for the present analysis. Obviously, this is an
arbitrary choice since side-chain flexibility would
permit an even greater number of a-helices to form
knobs-into-holes packed tubular bundles. Some
representative packing arrangements for a approx. 00
are shown in Fig. 3.
For example, since 900 is close to 2 x (3600/7), a four-

fold aggregate with a approx. 00 should have
knobs-into-holes packing between C1 and C2, which
we choose to call a C1 x C2 interface. Fig. 3 also shows
an alternative set of interactions in which the contact
line is halfway between the lines of knobs-and-holes;
these arrangements correspond to a second type of
knobs-into-holes packing originally proposed by
Crick (1953). Since for the fourfold aggregate the
alternate packing arrangement leads to contact lines
halfway between residues 1 and 5 and halfway
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Table 1. Comparison ofpolygon internal angles with angles
between rows ofknobs andholes

For details of terminology see the text.

Number
of sides

of
polygon

3
4
5
6
7

8
9
10
11
12
13
14

Polygon
internal
angle
60.00
90.0

108.0
120.0
128.6

135.0
140.0
144.0
147.3
150.0
152.3
154.3

Nearest
packing
interface
angle
51.4
102.9
102.9
102.9
102.9
or 154.3

154.3
154.3
154.3
154.3
154.3
154.3
154.3

Packing interface
C1 x C5 or C115 x C5/2
C1 x C2 or C115 x C2/6
Ci x C2 or Cl/S x C2/6
Ci x C2 or C1/5 x C2/6
C1x C2 or Cl/5x C216
orC1 x C6 or C115 x C3/6
C1x C6 or C5/s x C3/6
Clx C6 or C1/5 x C3/6
C1X C6 orC115 x C3/6
C1 x C6 or C/5 xC316
C1 x C6 or C/15 x C3/6
Cl x C6 or Cl/5 x C3/6 i
C., x C6 or C1/S X C3/6 ISt

between residues 2 and 6 in the drawing as shown, we
would denote such a packing interface as C1/1 x C2,6.
For each packing interface, seven homologous
packing arrangements can be generated by sevenfold
rotations of each c-helix about its own axis. Thus,
for example, the C5 X C6, C2 X C3, C6 X C7, C3 X C4,
C7 xCl, and C4x C5 are alternate possibilities for
fourfold ac-helical bundles of the C1x C2 type.

In addition to the C1 x C2 and C1/5 x C2/5 contacts
there is in theory a continuity of interactions, with
contact lines anywhere between the C1 x C2 and
C1/5 x C2/5 extremes. Whether the C1 x C2 and
C1/5 x C2/5 contacts would have special stability
compared with the intermediate contacts is un-

certain, but for reasons ofconvenience in the sections
below we will consider only these two limiting
examples.
For the C1 x C2 type of interaction there are three

adjacent rows of interleaving knobs (a 'triple inter-
leaving' type of packing). With more than three a-
helical strands, these rows are on the outside, along
the contact line, and on the inside of the bundle.
Notice that for the twofold and threefold bundle
there are only outside and contact rows. For the
C1/5x C2/6 type of interaction, there are just two
adjacent rows of interleaving knobs (a 'double inter-
leaving' type of packing); for structures with three or
more c-helices, these are outside and inside rows; with
two strands, both are outside rows.
As the bundles are drawn, the rows of knobs sym-

metrically to the exterior of the tube are solid
coloured. We propose that in membranes these
residues should be exclusively hydrophobic so that
there would be no hydrogen donor or acceptor pro-
jecting directly into the lipid. The side chains indicated
by an X could be either hydrophilic or hydrophobic.

The key to the structure of membrane proteins may
be that the lipid-adjacent interactions, which are
usually confined to outside rows, but could also
include the inside rows if the interior channel is filled
with lipid, contain several hydrogen bonds extending
from the side chains ofone a-helix to the side chains of
its neighbour (Dunker et al., 1976; A. K. Dunker &
T. Jones, unpublished work). Such hydrogen bonds
would stabilize the a-helical bundle into the proper
configuration. Of course there could also be
important hydrophobic interactions that serve to
stabilize the bundle. Thus the structure of the bundle
would be determined by the amino acid sequence of
the protein.
For structures with the a-helix axes inclined at

angles relative to the axes ofthe bundles, the concepts
described above also apply but with an additional
complication. That is, rather than employing 51.4°,
102.90 or 154.30 as described above, the relevant
angles are the projections of 51.40, 102.90 or 154.30
on to a plane perpendicular to the axis of the bundle.
The projected angles, which are equal to 51.4cos a,
102.9cos a, 154.3 cos a, indicate the most likely
number of strands in the bundle by the same argu-
ments as given above. Fig. 4 shows these three
projected angles as functions of a. The horizontal
lines on this graph are the internal angles of various
polygons of up to 14 sides. If, as implied above for
a approx. 00, knobs-into-holes packing permits a
range of angles between adjacent a-helices for each
perpendicular packing interface, then the points of
intersection between the projected angles and the lines
defining the polygon internal angles would not have
any special significance. That is, for example, an
S=6 bundle with a approx. 80 would be stereo-
chemically feasible even though the projected angles
and the polygon internal angle do not lie at a point of
intersection. Of course, it is probable that, other
factors being equal, structures closer to points of
intersection would be preferred to structures farther
from such points. Also, in a more general context,
the more restrictive the geometry of interaction
between two protomer strands, the closer to such
points of intersection would lie the regions de-
limiting the allowed structures.

(c) Longitudinal packing considerations. A number
of a-helices with axes on the surface of a cylinder will
form a regular tube if every a-helix has the same
packing environment; the same sets of knobs and
holes must be used over-and-over. Therefore there
must exist a symmetry axis coincident with the axis
of the cylinder. If the S strands are all identical, the
symmetry axis can be used to generate the whole
tube by repeated operations of an S-fold screw on
one a-helix. In other words, if the strands are all
identical, the packing relationships between strands
(t+ 1) and (t+2) must be the same as that between
the strands t and (t+ 1); also, the relationship
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(a) (b)

Fig. 3. Packing interfaces between neighbouring a-helices
Various clusters of a-helices (values in parentheses), viewed from the N-terminal end are shown. The first seven

residue numbers are indicated, for details of shading see the text. In (a) the contact lines are directly through rows of
knobs and holes; in (b) the contact lines lie half-way between adjacent rows of knobs and holes, corresponding to the
two types of packing originally proposed by Crick (1953).

between strand S and strand 1, as one closes the
cylindrical surface, must be the same as that between
strands t and (t+ 1). If the tube contains a non-
identical strands, then the requirement for repeated
use of the same bonding interfaces will be satisfied
only if there exists an S/a-fold screw axis; there-
fore S/a must equal an integral value, including 1.
In this limiting case, the bundle would be made up
ofS non-identical strands.

Repeated application of a screw operator usually
results in very long structures. Thus, for the short
segments of a-helical bundles appropriate for mem-
brane bilayers, the polypeptide segments should
probably be related by an S-fold axis of rotation
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rather than by an S-fold screw. Obviously, the fore-
going comments are merely suggestive and not
rigorous and so imposing a requirement for rotational
rather than screw symmetry must be regarded as

somewhat arbitrary. Nevertheless, for convenience,
the additional requirement for rotational sym-
metry will be imposed here and in the following
sections of this paper.

Generation ofself-consistent structures

Development of the quantitative rules for the
restrictions imposed by the requirement for sym-
metrical packing and then combining the results with

(2) (3)

~~~~~~~~~~~~~~~~~~~~~~~~~~I
C1xCI C, X

(4) (6)

CXC2 C2 (

(9)

625xC6

~62

C1 xC6

(2) (3)

~56

C, 5 x C, ,5 C, ,5X C5/2
(4) (6

36ssxc2/6 Cl/5X6 2I6

C I5XC3I6
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Fig. 4. Projected angle versus pitch angle
The projections of the three optimum internal angles
are 51.4 cos ac (curve a), 102.9 cos a (curve b), and
154.3 cos ac (curve c). The horizontal lines numbered
from 3 to 14 indicate the various internal angles of
the corresponding polygons, having from 3 to 14
sides.

the two categories of structural principles outlined
above to generate self-consistent structures is a fairly
complex task. To simplify the explanation of this
process, the overall scheme is presented in Fig. 5.

Step (1). Requiring regular packing between the
a-helices leads to equations for a (the pitch angle of
the a-helices in the bundles) interms of n (the number
of units per turn of the ac-helix), P (the pitch of the
a-helix), S (the number of a-helices in the bundle),
f (a longitudinal packing index), a (the number of
distinguishable sequences in the bundle) and rr (the
average packing radii of the a-helices). Thus,
assuming values for n, P, S, f, a, and rc, a value for a
can be calculated.

Step (2). The smooth-cylinder-packing equation is
then used to estimate s, the crossing angle, from the
values of a and S.

Step (3). Crick's (1953) hypothesis for knobs-into-
holes packing is generalized so that the crossing angle
E can be used to specify a new n value for the a-helix.
If the new value, n(1 + m), is the same as the assumed
value, nm, then a self-consistent structure has been
generated.

Step (4). When n(mi+ 1) does not equal nm, the struc-
ture is not self-consistent. In this case the equations
developed and used previously by many workers

(Ramakrishnan & Ramachandran, 1965; Schellman
& Schellman, 1964; Arnott & Wonacott, 1966;
Dickerson & Geis, 1969) provide a new value for the
pitch, P(j + m). The n(l + m), P(1 + m) values are then used
to initiate reiterations of steps (1), (2), (3) and (4),
until n(1 + m) approx. equals n(m). A few examples of
tubes generated by this algorithm are given in
Table 2.

Determination of a from the packing considerations

For purposes of illustration, we will derive the
equations for a for the tube with C1x C2, S = 6; the
equations for the other tubes were determined in a
similar fashion and are presented in Tables 3 and 4.
The radial projection of a tube with S strands is

shown in Fig. 6 for S= 6.
By construction:

tan a = h/l (12)

For a= 00, 1= 27rro, where ro as before is the radius
of the bundle. It is simple to show that r0=r
sin (180/S), where r, is the packing radius of the in-
dividual a-helices. Therefore, for a = 00, I= 27rr,/
sin(180/S). As a varies from zero, the curvilinear
length of 1 remains very nearly constant.
For C1 x C2, positioning the knobs symmetrically

into the holes requires that strand S"+1 must be
raised by an increment (x) relative to strand S,,. (For
certain other contact with faces, the S, + 1 strand must
be lowered relative to strand S..) From Fig. 6 it is
evident that h must obeystheequationh = (K2P-Sx)+
2Pf', where K is a fixed integer such that K2P is the
smallest possible value greater than Sx, and f' can
take on any integral value. The value for x can be
determined by positioning two a-helixes next to each
other in the proper relative orientation; for C1 x C2
packing, it then becomes evident that x = P(1 -1/n).
For n=3.6 and S=6, Sx=4.33P; since 2x2P
<4.33P and 3x3P>4.33P, it is determined that
K=3 (forS=4or 5,K=2; for S=6 or7,K= 3).
Thus by substituting for K and x and rearranging
terms:

tan a = P[2(f'+ 3)-S(1 - 1/n)]
27rrc/sin(180/S) (13)

This derivation assumes that the a-helices are
identical and have identical knolbs and holes along
their lengths. In general the second condition is not
true for real proteins. We argued above that for a tube
containing S a-helices with a distinct sequences,
there should be an (S/a)-fold symmetry axis, thus,
with a = 1, there should be a 6-fold symmetry axis;
with a = 2, there should be a 3-fold symmetry axis,
with a = 3, there should be a 2-fold symmetry axis.
Thef'= -3 structure in Fig. 6(c) has 2-, 3- and 6-fold
symmetry axes and thus would be suitable for a= 1,
2, 3 or 6. Fig. 6(b) shows that thef' = 0 structure has a
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Assume nm, Pm, S, a, f, and r,

m = 1

|Step (1) packing-symmetry l
m + 1 - m

Ste (1): equations

am

I_
Step (2): smooth-cylinder-

packing equation

Em

Step (3): Em determinesn(1+m)

n(1 + m)

A self-consistent
structure has
been generated

Assume = -600

Step (4): n<(+m,) and 0 determine P(1+m)

Fig. 5. Schematic representation of the method used to generate self-consistent structures
For detailed explanation see the text.

3-fold axis, suitable for a = 2, and Fig. 6(a) shows
that thef'= +1 has a 2-fold axis, suitable for a = 3.
From these particular examples, it can be deter-
mined that the allowed f' values are given by the
expression:

f'=-3 +f(S/a) (14)
where f is any integer.
The expressions defining the allowed f' values for

the various structures are given in Table 4. The
importance offis thatfdefines which knobs pack into
which holes along the length of the a-helices. For
example, forf= 0 with the C1x C2 packing interface,
the side chain of residue 8 on one helix is in the space
defined by residues 2, 5, 6 and 9 of its neighbour;
for f= 1, the relative positions of the a-helices are
shifted by one set of knobs and holes with the result
that the side chain of residues 8 is in the space defined
by 9, 12, 13 and 16.
Vol. 163

Determination of Efrom a

From the equations given in Tables 3 and 4, the
angle a is determined once nm, Pm, S, a, f, and r, are
specified. The next step, determining a from u, is
accomplished analytically by using eqn. (11), or
graphically from Fig. 2.

Determination ofn from e

Fig. 7 is a radial projection of an a-helix (viewed
from the outside). Crick (1953) showed that the con-
dition for knobs-into-holes packing is that the
crossing angle - is equal to twice the value ofthe angle
given as fi in Fig. 7.
By construction:

tan fl= y/g (15)

but since the rise/residue is simply P/n, g = 7Pmn. The
horizontal displacement/residue is simply 27rr,/n;

51
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Table 2. Representative tubes
The values of a are to the nearest 0.1 ; the values of inside diameter and outside diameter to the nearest 0.01 nm (0.1 A).
The values for a were calculated by using the equations given in Table 3. Inside diameter and outside diameter were
calculated from the relations:

Inside diam. = 2ro-2r,
Outside diam. = 2ro+2r.,

where ro is the radius of the tube as defined by the axes of the a-helices, and r0 is the packing radius of the a-helix,
taken to be 0.52nm (5.2A) for these calculations.
By construction from Fig. 6:

cos a = 27rr,/sin(180/S)
2xr0

therefore

2ro = 2r,/sin(180/S)
cos a

The values for n are to the nearest 0.05; the values for P, to the nearest 0.002nm (0.02A), and the values for w to the
nearest 0.50. Assuming b = -60°,Pand y/ were estimated from graphs ofP versus n and y/ versus n constructed from the
equations below (Fraser & MacRae, 1973).

P=n-d
360

n=
0

cos(0/2) =-0.817 sin[(q +r)/2]+0.045 sin[(0- )/2]
dsin(0/2) = +2.967cos[(O+y/)/2]-0.664cos[(b-W)/2]

Parameters of the bundle

S f' ac

C1xGC 2 -1 0
2 0 9.5

C1xCs 3 0 3.5
3 1 18.6

C1xC2 4 -1 -5.8
4 0 7.5

Cl x C5 5 -0 2.4
5 +1 13.1

C1xC5 6 -1 -1.4
6 0 7.6

C1x C5 7a -2 -12.5
C1x C6 7b 0 12.0
C1xC6 8 0 12.2

8 2 24.9
C1xC6 10 0 12.4

10 2 22.8
C1xC6 12 0 12.5

12 2 21.3
ClxC6 14 0 12.5

14 2 20.3

Inside
diam.
0

0.1
1.6
2.3
4.4
4.4
7.3
7.7

10.4
10.6
14.2
14.1
17.4
19.5
24.0
26.1
30.7
32.7
37.5
39.4

Outside
diam.
20.8
20.9
22.4
23.0
25.2
25.2
28.1
28.5
31.2
31.4
35.0
34.9
38.2
40.3
44.8
46.9
51.5
53.5
58.3
60.2

Parameters of the a-helix

n P
3.50 5.52 -41.0
3.60 5.40 -45.5
3.55 5.46 -43.0
3.70 5.26 -48.5
3.45 5.58 -39.5
3.55 5.44 -43.5
3.50 5.52 -42.0
3.60 5.40 -45.5
3.50 5.52 -41.0
3.55 5.46 -43.0
3.45 5.60 -38.5
3.55 5.44 -43.5
3.55 5.44 -43.5
3.60 5.40 -45.0
3.55 5.46 -43.0
3.70 5.42 -44.0
3.55 5.46 -43.0
3.55 5.44 -43.5
3.55 5.48 -42.6
3.55 5.46 -43.0

thus the sum of the horizontal displacements is
7(27rr0/n). But y is given by the difference between
this value and twice the circumference, or y=
2 x 27rr0-7(27rr0/n). Thus by substituting for y and g
and reorganizing:

8= 2 tan-1 47rr(l1-7/2n) (16)
7Pmn

Pairs of n and P values were calculated for the
allowed ranges for the a-helix by using formulae
developed previously (Ramakrishnan & Rama-
chandran, 1965; Schellman & Schellman, 1964;
Edsall et al., 1966a,b; Fraser & MacRae, 1973; the
formulae are given in Table 2). From these pairs of
n and P, eqn. (16) was used to plot a versus n; it was
found that, to a very good first approximation, a
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Table 3. Equations specifying ac
Equations for ac were determined by construction as outlined in Fig. 5; 1= 27rrc/sin(180/S). Range of ac is from Fig. 4.
It is apparent that a given contact interface will be appropriate for a given S-fold aggregate only for certain values of a.
Although there is no clear-cut division, to a first approximation low values for a refer to approx. 0 20°, medium values
refer to approx. 15-35', and high values refer to approx. 30-45°.

Packing interface

Cl x Cl and C1/ x C1/5

Cl X C5

C115 X C5/2

C1 X C2

Cl X C2

Cl/5 X C2/6

Cl X C6

C1,5 X C3/6

C1/5 X C316

C1/5 X C3/6

S Equations for a

2 oc=tan-P(f'+1)

3 c =tan- IP(2f'+iSIn)

3 a = tan-' P[2(f'+ 2)-S(1 -1/2n)]

4,5 a = tan-' P[2(f'+ 2)-S(1 -1/n)]

6,7 o =tan-' P[2(f'+ 3)-S(l-ln)]
I-7 a = tani1 P(2f'+3S/n)

7-14 a = tan-'P(2f+35n)
1

7-10 oc = ta-~1P[2(f'+3)-5S( -3S/n)]
1

11-13 a = tan-1 ,P[2(f'+ 4)-S(1 -3S/n)]
1

14 oc tan1P[2(f'+5)-S(1 -3I/n)]
1

(c)
(b)

(a)
1 2 3

Fig. 6. Radialprojections ofS = 6 tubes ofa-helices
If the cylinder on which lie the axes of the a-helices is cut parallel to the cylinder axis and the cylinder is opened and
laid flat, a radial projection results; we are using the convention that the view is from the outside. The six numbered
lines correspond to the axes of the six a-helices. The various symbols are explained in the text. The dots represent the
spacings of every seventh residue along the axis. (a) f' = 1 packing; (b) f' = 0; (c) f' = -3.

depends on r0 and n only (Fig. 8). This is particularly
significant because it allows a test of whether a given
structure, with a definite e, has a value for n which is
within therange allowed for a-helices.
From several proteins of known structure, a-

helical stretches of more than 3 turns have n values
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that range from 3.4 to about 3.8 (R. Henderson,
personal communication). Also, this range for n is in
fair agreement with that predicted, by theory (Rama-
krishnan & Ramachandran, 1965; Fraser & MacRae,
1973).
Given a choice for S, f, a and r0, it turns out that ac

Range of oc

All

All

All

High

Low, medium

All

High, medium

Low, medium

Low

Low, medium

S3
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Table 4. Selection rules for f'
For details see the text.

Contact
Cl X Ci
C1,2 X C1/2
Cl X C5
Cl,5 X C5/2
Cl X C2
Cl,5 X C2/6
Cl X C2
Cl X C2
Cl,5 X C3/6
Cl X C6
Cl/5 X C3/6
C1,5 X C3/6
Cl/5 X C3/6

S
2
2
3
3
3

3-7
4, 5
6, 7
4-6
4-14
7-10
11-13
14

Selection rule
f' = -1 +f(S/a)
f'= -1 +f(S/a)
f' =f(S/a)
f' = -2+f(S/a)
f'= -1 +f(S/a)
f' =f(SIa)
f' = -2+f(S/a)
f'= -3 +f(Sla)
f' = -2+f(S/a)
f' =f(S/a)
f'= -3+f(S/a)
f' = -4 +f(S/a)
f' = -5+f(S/a)

4 --

6_-- - -_

t9
77-.---.-

_- - Xl 8

_--~~~~- --4-

_- 0 A

II~~~~~~~~2

127

33 -_- A

H 2 grI

19~~~~~~~~~~~~1

21

31 ~ ~ 23 -

2~~~~~~2

e 20 Ep

16-

12-

8-

41
o(
3.50 3.58 3.66 3.74

n

Fig. 8. Crossing angle as afunction ofnumber of units per
turn

The calculations leading to this graph are explained
in the text. The various points were calculated for
constant q as w varied; the symbols are = -70O
(A); 4=-650, (El); 0q=-600 (0); 0=-550 (-). The
numbers 0.4 and 0.55 refer in nm to different choices
for rc. For a given choice of rc, E versus n is actually
described byafamilyoflinesthathaveslopesdepending
on 0 and that all pass through the point e = 0, n =
3.50. However, since the change in slope for these
lines is very small for 0 between -70° and -55°, this
family of lines can be replaced by a single line without
significant error. For example, when E= 350, n
changes by about 0.01 unit/tum as 6 varies from -70°
to -55°, and for smaller values of E, the uncertainty is
even less.T

Fig. 7. Radialprojection ofan a-helix
By using the rules set down in Fig. 6, a radial pro-
jection of an a-helix is drawn. The broken lines
connect successive residues, which are indicated by
circles. Note that a 'hole' is the space defined by
residues m, m+3, m+4 and m+7. The symbols are
explained in the text.

proposed bundle. If 3.4<n < 3.8, the bundle specified
by S, f, a, and r0 would be allowed; if 3.4>n or if
3.8 <n, the bundle would be forbidden.
Notice also that for 3.4 <n <3.5 the a-helix is

deformed to form a right-handed coiled-coil; the lines
of Fig. 6 can be extrapolated to determine E versus
n for this range; likewise eqn. (11) and Fig. 1 can also
be extended to these regions.

changes only 1% or so for changes in n and P; thus
one can use any allowed values for n andP along with
the choices for the other parameters to determine an
approximate a, which specffies E, which in turn
specifies an approximate value for n. Since further
refinement changes this n only slightly the approxi-
mate value can be used to test the feasibility of the

Determination ofPfrom n

Given a value for n, the equations given in Table 2
can be used to estimate the pitch; since there are four
equations relating to six variables, P is determined
only if two variables are specified. It is convenient to
specify q arbitrarily in addition to the value for n
[V/ and q are used as defined in Fraser & MacRae
(1973)]. By arbitrarily specifying 0, however, n de-
creases while P increases (see, e.g., Dickerson &
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Geiss, 1969, p. 28); this results in rather extreme
values for d, the rise per residue, whenever the values
for n approach upper and lower limits. This could be
corrected by optimizing the a-helix stereochemistry
rather than just arbitrarily specifying 0; however,
for reasons of simplicity and also for the reasons
given below, we have for the present chosen the much
easier option of simply specifying qs.
The equations in Table 4 were derived for straight

a-helices, but the a-helices in the coiled-coils are
gently curved. Errors arising from this discrepancy
are minimized if the number of units/turn and pitch
of the a-helix are made to refer to a curved frame of
reference based on the a-helix axis; the values of 0 and
qy are then found to vary systematically as the residue
of interest is chosen from the inside or outside of the
bundle.
Thus for the two reasons just presented the struc-

tures generated by the algorithm presented in Fig. 5
are not fully optimized. If required in any particular
application, the a-helical bundles could be further op-
timized by methods described previously (Diamond,
1966).

Discussion

We regard the structures derived in the present
paper only as guides; they demonstrate that given the
structural parameters of an a-helix, it is possible to
derive a set of tubular structures with knobs-into-
holes packing. Even if our approach is essentially
correct, for at least two reasons, real structures in
membranes can be anticipated to be slightly different
from our structures.

First, the parameters for our structures were in
effect derived for infinitely long a-helices, for which
even a slight mismatch between bundle and a-helix
parameters would lead to impossibly close contacts
between atoms if one travelled far enough along the
helix. However, membrane bilayers are only on the
order of 5-5.5nm (50-55 A) thick (Levine & Wilkins,
1971; Casper & Kirshner, 1971) and thus one needs
good packing over a short segment of only about
10-12 turns of the a-helix. Thus, even if the actual
crossing angle e does not mesh precisely with that
prescribed by the stereochemistry of the a-helix in
the bundle, the knobs-into-holes interactions could
still be acceptable over such a short length. This
point is illustrated by the work ofInouye (1974). By
using CPK molecular models of murein-lipoprotein
in an a-helical conformation, Inouye (1974) studied
the interactions between two a-helices positioned in
space so as to be members of a bundle containing six
ar-helices. From the interactions described in Fig.
1 of his paper, we deduce his packing arrangement to
be C1 x C6, f= 0; the pitch angle he used was +250.

First, the C1 x C6 interface would be appropriate
for an S = 6 bundle only for large values of a, but
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the choice off= 0 for this packing interface leads to a
small value for a. Therefore, the packing chosen by
Inouye (1974) is not suitable for an S = 6 bundle.
Secondly, for various bundles containing from 8-14
-a-helices, bundles that could employ the C1 x C6,
f= 0 packing scheme, the equations of Tables 3 and 4
lead to values of a near 12°, not 250. Further, from
Fig. 2, the appropriate a-helices would contain from
about 3.55-3.53 units/turn for bundles with 8-14
a-helices.
But despite the substantial deviation from the self-

consistent structures, in the packing actually observed
in the CPK models (Inouye, 1974), the knobs were
quite close to the appropriate holes. This observation
has special importance for structures near the
theoretical limits, since it suggests that the strain on
the a-helices could be relieved somewhat by allowing
a slight mismatch between the parameters of the
bundle and the parameters of the a-helices.
A second reason for anticipating slight differences

from our structures is that along the length of real
a-helices there are variations in the amino acid side
chains which in turn could lead to- concomitant
longitudinal variations in the crossing angle and
separation of the neighbouring a-helices. For
example, in the current best structure for the fila-
mentous bacterial virus, the crossing angle for
adjacent a-helices varied from 90 to 120 and the
packing distance 2r. varied from 0.95 to 1.05nm
(9.5 to 10.5A) (Marvin & Wachtel, 1975). Also, for
bacterial rhodopsin, crossing angles from 0° to 200
and 2r, values from 0.9 to 1.2nm (9 to 12A) were
observed although the larger 2rC values may indicate
helices that are not in contact (Henderson & Unwin,
1975).

It is interesting to compare our predicted structures
with that observed for bacterial rhodopsin. Each
bacterial rhodopsin contains seven membrane
spanning a-helical segments; three of the segments
are approximately perpendicular to the membrane,
the remaining four form a fan-shaped aggregate.
Together the seven a-helices form an irregular
bundle surrounding an irregular pore (Unwin &
Henderson, 1975; Henderson & Unwin, 1975). Such
aggregates are very different from the kinds of
structures predicted here. This is not surprising since
the assumption underlying our work is that the a-
helices would be in identical environments, but there
would be no requirement for the seven distinct ar-
helical segments to be in identical environments. On
the other hand, three bacterial rhodopsin molecules
aggregate via interactions between the three almost
perpendicular segments; the result is a nine-
membered bundle that is similar to, but not identical
with, the tubular bundles proposed here. The nine-
membered bundle contains three distinct internal
angles, -each centered on one of the three non-
identical chains. The three internal angles are
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Table 5. Possiblepackingfor S = 9, a = 3 bundles containing the specified non-homologous contact interfaces
For details see the text.

Theoretical Observed Total
Contact internal internal number per

Type of packing interface angle angle structure
Triple interleaving C1 x C6 154.30 1580 3

ClxC6 154.3 159 3
C1x C2 102.9 103 3

Double interleaving C1/5 x C3/6 154.3 158 3
C1/ x C3/6 154.3 159 3
C1/s x C2/6 102.9 103 3

Calculated values for a
Type of packing f f' a

Triple interleaving -1 -3 -18.5°
0 0 +1.5

+1 +3 +21.1
Double interleaving 0 -2 -8.7

1
2

+1
+4

+11.6
+29.5

approximately 1030+10, 1580±10, and 1590±1°;
these values are averages of three measurements from
Plate IV(a) of Unwin & Henderson (1975). These
values agree with those predicted for knobs-into-holes
packed a-helices. Unlike our simplified structures,
however, these angles imply that the non-identical
chains use non-homologous contact interfaces. We
had purposely ignored such a possibility in order to
decrease to a manageable size the number of struc-
tures to be considered. It would be very straight-
forward to modify our derivations to take into account
the general possibility of such structures, but for the
present it seems sufficient to present the necessary
modifications to fit the particular case of bacterial
rhodopsin. For this particular example, the defining
equation for a is given by:

9

Xi+k2P+2Pf'
tan a=

9
where k =O if E Xi > 0, but

1

9 9

Ik2PI- XiI>Oif EXi<O (seeFig. 6)
1=1 i-I

If the bundle were a perfect cylinder, then the value
for I would be defined by I= 27rc,/sin(I80/9); it turns
out that insignificant error is introduced by using this
relationship even though the bundle is not a perfect
cylinder. It is relatively easy to show that, from the
values of the internal angles, the contact interfaces
are either all double interleaving or all triple inter-
leaving. By substituting the appropriate values of xi
for these combinations ofcontact interfaces, carrying
out the summation and solving the k values gives the

following results. For triple-interleaving interfaces,
the relationship for a is given by:

tan a =
-3P+ 12P/n+2Pf'

wheref' = 3f.
For double-interleaving interfaces, the relationship
for a is given by:

-2P+ 12P/n+2Pf'
tan a =- I

where f' = -2+3f.
Table 5 presents several calculated values for a as

defined for different f and f' values. Since the
observed value for a ranges from about 2-3°
(R. Henderson, personal communication) it is evident
that only one ofthe packing arrangements (e.g. triple-
interleaving interfaces with f, f' = 0, a approx. 1.5)
seems to be appropriate for the central bundle in the
bacterial rhodopsin structure.
We wish to point out that the derivation leading

to the results of Table 5 does not consider the possi-
bility of contacts between the extremes represented
by double-interleaving and triple-interleaving con-
tact interfaces. The agreement between the observed
structure and our calculations suggests that such an
omission was warranted in this particular example.
The agreement between the theoretical internal

angles and the observed internal angles and between
the theoretical and observed values for a are
remarkable. This may be entirely coincidental or it
may suggest that our packing hypothesis does
indeed account for certain features of an observed
membrane protein.

1977

56



a-HELICAL PROTEIN BUNDLES 57

Superficially any a-helix would seem much like any
other, and thus one would argue that although there
may be bundles of a-helices in the membrane, such
simple structures cannot account for the various
functions of membrane proteins. However, we wish
to point out that about 35 amino acids are required
for an a-helix to cross the membrane, and thus with 19
amino acids (excluding proline), about 1935 different
permutations of sequence would be possible. Since
the sequence would determine the number of a-
helices in the bundle and the character of the
interior pore, it would seem that there is more than
sufficient polymorphism inherent in such models to
account for the various protein-mediated membrane
functions, including the many different types of
membrane transport.

This work is the direct outgrowth of unpublished work
(e.g. Figs. 1, 2, and 6a) of Dr. D. A. Marvin, whose con-
structive comments greatly improved this manuscript.
This work was completed in outline while A. K. D. was a
postdoctoral fellow in the Department of Molecular Bio-
physics, Yale University, 1970-1972, in the laboratory
of Dr. D. A. Marvin.
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