e“ Conservation S _®_ B

’ PhyS|OlOgy Volume 12+ 2024 10.1093/conphys/coae081 SOCIETY FOR EXPERIMENTAL BIOLOGY

Research Article

Physiological response of longfin smelt to
changing temperatures and turbidities

Christina Pasparakis''2 "/, Felix Biefel*>, Francine De Castro''2, Alexandra Wampler*, Dennis E. Cocherell?,
Evan W. Carson®, Tien-Chieh Hung® "', Richard E. Connon?, Nann A. Fangue® "’ and Anne E. Todgham’"*

Department of Environmental Toxicology, University of California Davis, 1 Shields Ave., Davis, CA 95616, USA

2Bodega Marine Laboratory, University of California Davis, 2099 Westshore Rd., Bodega Bay, CA 94923, USA

3Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave., Davis,

CA 95616, USA

4Department of Wildlife, Fish and Conservation Biology, University of California Davis, 1 Shields Ave., Davis, CA 95616, USA

>U.S. Fish and Wildlife Service, San Francisco Bay-Delta Fish and Wildlife Office, 650 Capitol Mall, Sacramento, CA 95814, USA

SFish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California Davis, 1 Shields Ave.,
Davis, CA 95616, USA

’Department of Animal Science, University of California Davis, 1 Shields Ave., Davis, CA 95616, USA

*Corresponding author: Department of Animal Science, University of California Davis, 2251 Meyer Hall, 1 Shields Ave., Davis, CA 95616, USA.
Tel: +(530)-752-1252. Email: todgham@ucdavis.edu

Coastal estuaries globally, including the San Francisco Estuary (SFE), are experiencing significant degradation, often resulting
in fisheries collapses. The SFE has undergone profound modifications due to population growth, industrialization, urbaniza-
tion and increasing water exports for human use. These changes have significantly altered the aquatic ecosystem, favouring
invasive species and becoming less hospitable to native species such as the longfin smelt (Spirinchus thaleichthys). With
longfin smelt abundance declining to <1% of historical numbers, there is a pressing need for laboratory-based experiments
aimed at investigating the effects of varying environmental conditions on their stress response and physiology. This study
explored the impact of temperature (11 and 14°C) and turbidity maintained with algae (1, 4 and 11 nephelometric turbidity
units (NTU)) on the physiological condition of juvenile longfin smelt. Fish were sampled after 2 and 4 weeks in experimental
conditions and analysed for whole-body cortisol, glucose, lactate and protein. Condition factor was calculated using length
and weight measurements. Critical thermal maximum trials were conducted to assess how prior rearing conditions affected
upper thermal tolerance. Cortisol levels were significantly higher in fish held in low-turbidity conditions, whilst glucose levels
were significantly greater at lower temperatures and higher turbidities. Protein-to-mass ratios were significantly greater
in higher turbidity conditions, with a significant interaction between temperature and turbidity further influencing these
ratios. Moreover, 14°C led to diminished condition factors but increased upper thermal tolerances (26.3 + 0.05 vs 24.6 + 0.18)
compared to longfin smelt at 11°C, highlighting a potential trade-off between the induction of defense mechanisms and
subsequent reductions in energy and growth. Data suggest that cooler temperatures (11°C) and elevated turbidities (11
NTU) can benefit juvenile longfin smelt by reducing stress and enhancing growth and energy. These findings hold significant
implications for informing and optimizing future endeavours in the culturing and conservation of this species.

Lay Summary

Juvenile longfin smelt displayed increased stress at lower turbidity levels and reduced energy at both elevated temperatures and
lower turbidity. Elevated temperatures increased upper thermal tolerance and reduced condition factor. Cooler temperatures
and higher turbidities improved physiological condition and should be considered for future rearing and supplementation
efforts.
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Introduction

The global issue of fisheries collapses is escalating in both fre-
quency and severity, particularly in coastal regions (Jackson
et al., 2001; Worm et al., 2006). The San Francisco Estuary
(SFE), the largest estuary on the US Pacific coast, known
for its diverse habitats and rich biodiversity, exemplifies this
troubling trend (Myers et al., 2000; Healey et al., 2016).
Significant alterations within the SFE began in the 19th
century during California’s Gold Rush, rendering it one of the
most modified and controlled estuaries in the world (Nichols
et al., 1986). Continued population growth, urbanization and
increased water demands prompted extensive infrastructure,
channelization and dredging (Moyle et al., 2010). These mod-
ifications irreversibly transformed the SFE, removing 95% of
historical wetlands, disrupting salinity gradients, decreasing
turbidity and fostering a pronounced increase in invasive
species (Cohen and Carlton, 1998; Kimmerer, 2004; Cloern
and Jassby, 2012). For decades, state and federal agencies
have collaborated under the Interagency Ecological Program
(IEP) to conduct continuous fish population monitoring in
the SFE, resulting in one of the longest and most comprehen-
sive fish abundance datasets globally (Honey et al., 2004).
Beginning in 2000, declines in four major fisheries within

the estuary, including delta smelt (Hypomesus transpacificus)
and longfin smelt (Spirinchus thaleichthys), were observed by
the IEP (Baxter et al., 2008). The term ‘Pelagic Organism
Decline’ (POD) was coined in 2004 to describe the escalating
population declines as delta smelt and longfin smelt reached
unprecedented low abundances (Sommer ez al., 2007). This
POD has been attributed to multiple interacting stressors,
adding complexity to conservation efforts aimed at protecting
these fisheries from the threat of extinction.

The SFE is home to a genetically distinct population of
longfin smelt, a planktivorous forage fish native to coastal and
estuarine waters in the Northeastern Pacific and distributed
from SFE to the Aleutian Islands in Alaska (Garwood,
2017; Saglam et al., 2021). Longfin smelt are semelparous,
typically living for ~2 years (Moyle, 2002). Exhibiting a semi-
anadromous life history, longfin smelt inhabit the coastal
Pacific Ocean and migrate to low-salinity tidal habitats in the
upper estuary to spawn during the winter months (Moyle,
2002; Rosenfield and Baxter, 2007). Once one of California’s
most abundant fish species, longfin smelt supported a small
commercial fishery prior to the 1970s (Skinner, 1962; Lewis
et al., 2020). However, over the past few decades, the longfin
smelt population in the SFE has plummeted to <1% of
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pre-1980 levels, leading to its classification as ‘threatened’
under the California Endangered Species Act in 2009 (CDFG,
2009; Nobriga and Rosenfield, 2016). These population
declines culminated in a near-complete collapse in 2015 when
only three longfin smelt were captured in the Fall Midwater
Trawl (FMWT) in December, during their peak spawning
period (Hobbs et al., 2017). This decline is particularly
worrisome given that the longfin smelt population in the
SFE likely serves as a source of genetic diversity for adjacent
populations (Saglam ez al., 2021).

Declines in longfin smelt populations, along with other
Osmeridae species, are believed to result from a combina-
tion of interacting factors. These include habitat degrada-
tion, changing environmental conditions such as elevated
temperatures, reduced turbidity, and decreased freshwater
outflows, increased water pollution, and alterations to the
food web due to invasive species introductions (Kimmerer,
2002; Brown et al., 2016; Fong et al., 2016; Hammock et al.,
2019). In response to significant reductions in longfin smelt
abundance, the University of California Davis has under-
taken efforts to establish a captive culture program aimed
at advancing research and conservation initiatives for this
species. Protocols for longfin smelt rearing and maintenance
are modelled after methodologies developed for delta smelt
(Baskerville-Bridges et al., 2005; Lindberg et al., 2013). How-
ever, longfin and delta smelt, whilst similar, have distinct
differences that necessitate further study for the development
of an optimal rearing program tailored specifically to the
unique requirements of longfin smelt (Aghbolaghi e al.,
2024). They exhibit different life histories, such that the delta
smelt exclusively inhabits and completes its life cycle in fresh-
water and low-salinity habitats, whereas only young longfin
smelt rear in these conditions. Juvenile longfin smelt migrate
to marine habitats in the San Francisco Bay and coastal
Pacific Ocean and return to the upper SFE for spawning as
adults (Yanagitsuru et al., 2021). Furthermore, longfin smelt
exhibit a lower upper thermal tolerance compared to delta
smelt, potentially limiting their suitable habitat in natural
environments (Jeffries et al., 2016).

As aquatic ectotherms, fish conform to ambient water
temperatures, rendering them highly susceptible to sudden
and substantial temperature fluctuations (Beitinger et al.,
2000). Increases in temperatures due to climate change induce
multi-faceted and complex consequences in fish, leading to
alterations across all levels of biological organization, ranging
from cellular- to ecosystem-level effects, ultimately impacting
distribution and survival (Perry et al., 2005; Graham and
Harrod, 2009). Over the last 50 years, water temperature in
the upper SFE has increased by an average of 0.017°C per
year (Bashevkin ez al., 2022). As a migratory species, longfin
smelt are particularly vulnerable to the impacts of climate
change and increased temperatures (Robinson et al., 2009).
Their reliance on suitable habitat across multiple locations
and life stages makes them highly sensitive to environmental
shifts. Elevated temperatures can significantly influence cru-
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cial life history events, including the timing and challenges
associated with seaward migration (Taylor, 2008). Despite
considerable research into the upper thermal tolerance and
physiological response of early life stages of longfin smelt to
increased temperature, there remains a data gap regarding
later life stages, particularly the juvenile stage (Jeffries et al.,
2016; Yanagitsuru et al., 2021, 2024). Physiological lab-
based experiments are essential for predicting the sensitivity
of longfin smelt to climate change, by providing insights into
their response to temperature change at later life stages as
well as their capacity to adjust thermal tolerance through
acclimation. As temperatures continue to rise and anomalous
climatic events continue to intensify, this knowledge will
be invaluable for implementing cost-effective and proactive
conservation management actions (Cooke et al., 2022).

Turbidity, defined as the quantification of light scattered
and absorbed by suspended particles within the water
column, can have significant impacts on fish health and
abundance (Kirk, 1985). Factors, such as water depth,
light intensity and the physical characteristics of suspended
materials, collectively influence the level of turbidity in a body
of water (Davies-Colley and Smith, 2001; Davies-Colley and
Nagels, 2008). Turbidity levels can naturally increase through
processes like soil erosion and sediment transport following
precipitation events, leading to suspended sediment or algal
growth driven by increased nutrient availability (Henley et al.,
2000; Kang et al., 2013). Anthropogenic activities, such as
deforestation, mining and urbanization can lead to sudden
increases in turbidity by accelerating sediment transport
(Rodrigues et al., 2023). The source of turbidity can cause
varied physiological effects on fish. For example, suspended
sediments may interfere with gill function, causing epithelial
damage and increased mucus production, which could impair
respiratory efficiency over time (Sutherland and Meyer,
2007). Elevated turbidity can also negatively impact fish by
causing diminished visual acuity, reduced feeding and growth,
limited mobility and altered diets and habitats (Gardner,
1981; Hecht and Van der Lingen, 1992; Ortega et al., 2020;
Rodrigues et al., 2023). Conversely, low turbidity levels may
induce heightened stress, increased predation and reduced
feeding and growth (Boehlert and Morgan, 1985; Rieger and
Summerfelt, 1997; Pasparakis et al., 2023). Turbidity’s effects
on fish are complex and diverse, depending on factors such as
life history traits, life stages, feeding strategies, physiologies
and interacting environmental variables (Utne-Palm, 2002;
Hasenbein et al., 20165 Rodrigues et al., 2023). Consequently,
many fish species exhibit an optimal turbidity range, above or
below which they begin to encounter adverse consequences.

Turbidity levels in the SFE and Delta vary significantly
across different locations, with values ranging from 1 to
220 nephelometric turbidity units (NTU), with peaks often
associated with storm events (Werner et al., 2010). The
SFE has experienced a notable decrease in turbidity over
recent decades, with a 36% reduction in suspended sediment
observed between water years 1991-98 and 1999-2007,
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attributed in part to the depletion of erodible sediment
from hydraulic mining practices and sediment entrapment
in reservoirs and dams (Wright and Schoellhamer, 2004;
Schoellhamer, 2011). This decrease in turbidity is considered
one of several contributing factors to the POD, with longfin
smelt populations exhibiting a notable decline in abundance
in the SFE when turbidity levels drop to lower values (Sommer
et al., 2007; Grimaldo et al., 2017). Turbidity in the SFE is
composed of a dynamic combination of suspended particles,
including sediments, organic matter and algae. Although our
treatments do not replicate the full range of environmental
combinations, they align with conditions used for culturing
and rearing smelt. In this study, turbidity was maintained
using Nannochloropsis algae, as outlined in established
protocols (Tigan et al., 2020; Hung et al., 2024).

The interactive effects of multiple stressors, such as temper-
ature and turbidity, can have significant implications for fish
physiology and overall health. For example, a recent study
on adult pugnose shiner (Miniellus anogenus) found that fish
exposed to both warmer and more turbid water exhibited a
lower critical thermal maximum (CTMax) and reduced ther-
mal safety margin when compared to those held in warmer,
clear water, indicating that turbidity can exacerbate ther-
mal stress responses (Fortin-Hamel and Chapman, 2024).
Similarly, research from our group on juvenile delta smelt
demonstrated that both elevated temperatures and lower
turbidity levels led to diminished whole-body free glucose,
with the highest available energy observed in fish reared
under cooler temperatures and higher turbidity (Pasparakis
et al.,2023). These findings highlight the need to consider the
combined effects of multiple, ecologically relevant stressors
when evaluating fish species’ physiological resilience, growth
and survival in rapidly changing environments.

The primary aim of this study was to investigate how
varying environmental conditions affect the physiology and
upper thermal tolerance of juvenile longfin smelt, aiming
to provide insights for aquaculture and future population
supplementation practices. Juvenile longfin smelt were reared
at fixed temperatures of 11 and 14°C, and under three
turbidity levels (1, 4 and 11 NTU) for a period of 5 weeks.
Our first objective was to evaluate how varying tempera-
ture and turbidity conditions impacted the stress response,
physiological condition and growth of juvenile longfin smelt.
Fish were sampled after two and four weeks in treatment
conditions, with subsequent measurements of whole-body
cortisol, glucose, lactate, protein-to-mass ratios and condi-
tion factor to assess overall health and growth. Our second
objective was to determine the ability of longfin smelt to
increase their upper thermal tolerance through acclimation to
warmer water, using CTMax trials conducted after five weeks
in treatment conditions. Given their natural preference for
cooler waters and higher turbidities, we predicted that longfin
smelt would show reduced stress and increased growth and
energy at 11°C and 11 NTU. Additionally, we anticipated
that rearing in warmer water would increase CTMax through
thermal acclimation. Considering the limited research on the
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juvenile stage in longfin smelt, the data from this study
addresses critical knowledge gaps and has the potential to
significantly contribute to the development of effective con-
servation strategies for this endangered species.

Materials and Methods

Longfin smelt (49.44+0.3 mm fork length, 0.68+0.01 g)
were acquired from the University of California Davis Fish
Conservation and Culture Laboratory (FCCL) located in
Byron, CA. Methodologies employed for rearing and spawn-
ing longfin smelt are similar to those utilized for delta smelt
and can be found in Lindberg ez al. (2013), Tigan et al. (2020),
and Hung et al. (2021). Juvenile longfin smelt (~170 days
post-hatch (dph)) were transferred from FCCL to UC Davis
Putah Creek Aquaculture Facility (PCF) in early July 2020.
Upon arrival, fish were immediately introduced into 24 15-
gallon black polyethylene tubs (hereafter, sub-tanks), with
30 fish per sub-tank. The PCF consists of a recirculating
aquaculture system with 8 400-1 tanks (hereafter, holding
tanks) that serve as experimental water baths and are main-
tained by external temperature control units. Each holding
tank contained three sub-tanks (Supp. Fig. 1). To optimize
holding conditions and maintain turbidity and salinity, sub-
tanks received running flow-through treatment water from
outdoor reservoir tanks via the recirculating system. Excess
water overflowed through a 1-inch hole in sub-tanks covered
in mesh to prevent fish from escaping. In addition, each sub-
tank included its own external biofiltration unit, where sub-
tank water was channeled through the unit filled with k1
biomedia (Evolution Aqua Ltd) and returned via an airlift
mechanism. The airlift mechanism also ensured the mainte-
nance of sufficient dissolved oxygen.

Longfin smelt were acclimated to ambient conditions of
12.5°C, 7 psu and 1.4 NTU for two weeks prior to the
start of experimentation. Due to known light sensitivities of
longfin smelt, care was taken to ensure low-light conditions
throughout the acclimation period. Mesh lids were placed
over sub-tanks, and additional lids made from thick light-
blocking Styrofoam covered holding tanks. Lights in the
building were kept off at all times. The only light in the room
came from a small window on the top of the ceiling under
a natural photoperiod. Fish were fed twice daily to satiation
with freshly hatched Artemia franciscana (Argent Chemical
Laboratories, WA).

To monitor water quality, temperature (°C), dissolved oxy-
gen (mg Oy/1) and salinity (psu) were measured daily using a
handheld YSI 556 MPS meter (YSI Inc., Yellow Springs, OH).
Ammonia, nitrite and nitrate concentrations, as well as pH,
were measured biweekly. pH was measured using a pinpoint
pH monitor (American Marine Inc., Ridgefield, CT) or com-
mercial pH strips. Ammonia concentrations were determined
only in control groups after the acclimation period, as the
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Figure 1: Whole-body cortisol measurements (ng g~') in juvenile longfin smelt held at two temperatures (11 or 14°C) and three turbidities
(low (1), med (4) or high (11) NTU) for two and four weeks. Cortisol levels were significantly greater in fish exposed to lower turbidity conditions
(1 NTU) compared to high turbidity (11 NTU) and decreased significantly over time. No significant effect of temperature was observed. Data

(n=13-20) are presented as mean + SEM.

colour of Nannochloropsis algae used to make treatment tur-
bidities interfered with the measurement method. Ammonia
measurements were conducted using a Hach pocket colorime-
ter (Hach Company, Loveland, CO), whilst a marine care
multi-test kit (Red Sea, Houston, TX) was utilized for ammo-
nia, nitrite and nitrate measurements. Mortality was quanti-
fied daily, with any dead fish immediately removed from sub-
tanks. All handling, care and experimental procedures used
were reviewed and approved by the UC Davis Institutional
Animal Care and Use Committee (IACUC Protocol #16591).

Juvenile longfin smelt were held at one of two temperatures
(11 and 14°C) and one of three turbidities (1,4 and 11 NTU)
for a duration of five weeks. There were four holding tanks
per experimental temperature, and within each holding tank,
three sub-tanks were randomly assigned to each turbidity
level. This set-up resulted in four replicates per treatment
(Supp. Fig. 1). Prior to the start of the experimental period,
acclimation temperatures and turbidities were gradually tran-
sitioned to treatment levels over a three-day period, with
increments of 0.5°C and 3 NTU per day. Each of the 12
Styrofoam lids covering the holding tanks contained embed-
ded LED light bulbs. Light fixtures were activated (12:12
photoperiod) at the beginning of the experimental period and
once the desired temperature and turbidity treatments were
achieved. Light intensity within the sub-tanks was measured
using a portable digital light meter (LX1330B; Dr meter)
and ranged from 7 to 120 lux, indicating the potential for
fish to behaviourally avoid light by favouring areas with

lower light conditions. Temperatures were maintained using
a recirculating water system, with each row of holding tanks
connected to a separate chiller/heater. Nannochloropsis algae
(Nanno 3600—High-yield grow-out feed; Reed Mariculture
Inc., USA) were added to individual sub-tanks to achieve the
desired turbidity levels. This is the same algal suspension used
by the FCCL to rear larval longfin and delta smelt in increased
turbidities (Tigan ez al., 2020; Hung et al., 2024). To maintain
treatment turbidity throughout the experimental period, sub-
tanks were connected to three outdoor reservoir tanks held
at 1,4 and 11 NTU, respectively. These turbidity levels were
selected for their ecological relevance in the SFE and for their
alignment with rearing conditions (Werner ez al., 2010; Tigan
et al., 2020). Continuous flow of fresh algae-spiked water
was ensured by connecting the reservoir tanks to individual
sub-tanks via PFA standard tubing (inner diameter =0.5 cm)
connected to a standpipe located in the middle of each sub-
tank. Salinity (7 psu) was maintained in a similar manner,
by adding Instant Ocean (Aquarium Systems, Mentor, OH)
to reservoir tanks every 2-3 days, ensuring that sub-tanks
received fresh saline water via the same PFA standard tubing.
Turbidity was measured daily using a Hach 2100q portable
turbidimeter (Hach Company, Loveland, CO). A nephelo-
metric turbidimeter is a standard instrument employed for
turbidity measurement, determining scattered light at a 90-
degree angle from the incident light beam through a water
sample (Henley et al., 2000; Rohan et al., 2021). These find-
ings are expressed in nephelometric turbidity units (NTU).
In addition to daily temperature measurements, eight HOBO
temperature loggers (Onset Computer Corporation, Bourne,
MA) were swapped between sub-tanks every couple of days
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and recorded temperatures every 15 min. Temperature and
turbidity conditions during acclimation and experimental
periods are reported as mean + standard error of the mean
(SEM) in Supplementary Tables 1 & 2.

Sampling occurred at two and four weeks following exposure
of juvenile longfin smelt to their respective treatments.
Prior to sampling, longfin smelt were fasted for 24 h.
Individual fish were netted from their respective sub-tanks
and immediately euthanized with an overdose of tricaine
methanesulfonate (MS-222; Finquel) buffered to a neutral
pH with sodium bicarbonate. Longfin smelt were weighed
(g), measured for fork length (mm), and snap-frozen in
liquid nitrogen for later analysis of whole-body cortisol,
glucose, lactate and protein. The entire sampling process
for all six fish from each treatment was completed in
<3 min to ensure handling stress did not affect cortisol
levels. Care was taken to catch fish as efficiently and
quietly as possible to minimize disturbance to surrounding
sub-tanks.

The upper thermal tolerance of juvenile longfin smelt reared
in different temperatures and turbidities was determined
using critical thermal maximum (CTMax) methodology as
previously described in Lapointe ez al. (2018) and Davis et al.
(2019). CTMax trials were conducted over a consecutive
three-day period on the remaining 132 fish, resulting in
69-93 fish per treatment. Fish were randomly netted from
sub-tanks and transferred to one of 12 glass mason jars,
which were painted black on the outside to reduce visual
stress. Mason jars contained 900 ml of treatment water,
were held in a water table for temperature control and
contained individual air stones to ensure adequate oxygen
supply throughout trials. Longfin smelt were given 30 min
in individual mason jars at their respective treatment
temperatures to recover from handling stress before the
start of trials. Temperature was increased at a rate of
0.3°C per min using four Finnex submersible heaters and
water pumps for circulation. Loss of equilibrium (LOE), a
common endpoint to assess upper thermal tolerance, was
determined by reporting the temperature at which fish first
lost equilibrium continuously for 10 s (Beitinger ez al., 2000;
Komoroske et al., 2014). Temperature at LOE was measured
using a calibrated immersion thermometer, and fish were
immediately transferred to recovery tanks at their respective
rearing temperatures. In general, recovery for CTMax trials
is determined after 24 h (Davis et al., 2019); however, due
to the extreme sensitivities of longfin smelt, recovery time
was reduced in our trials. We opted to assess the survival of
fish at three different recovery times: 3, 6 and 18 h post-trial.
This approach allowed us to investigate whether acclimation
temperature also influenced the recovery potential from heat
stress.

Conservation Physiology - Volume 12 2024

A total of 232 longfin smelt (four replicates per treatment and
four to six fish per replicate) were sampled for whole-body
cortisol, glucose, lactate and total protein analysis. The head
of each frozen fish was removed using a sterile razor blade
and the remaining body was ground to a fine powder, using
a mortar and pestle over liquid nitrogen. Whole-body fish
powder was weighed prior to homogenization. Using a hand-
held homogenizer (PRO Scientific, Oxford, CT), each sample
was homogenized in 4 ml ice-cold 1 x phosphate-buffered
saline (PBS buffer: 137 mM sodium chloride, 2.7 mM potas-
sium chloride, 10 mM disodium phosphate and 1.8 mM
monopotassium phosphate (pH 7.4)) with the addition of
protease inhibitors (Roche Molecular Systems, Inc). Samples
were then divided into four equal volumes for whole-body
cortisol, glucose, lactate and total protein measurements. Glu-
cose, lactate and protein homogenates (1 ml) were centrifuged
for 30 min at 14500 g at 4°C and the supernatant was
extracted and stored at —80°C for later analysis. Cortisol
homogenates were added to a 9-ml Pyrex glass tube for same-
day extraction.

Cortisol extraction followed methods outlined in Pasparakis
et al., 2022, 2023. Briefly, cortisol homogenates were spiked
with 2.5 ml of diethyl ether, vortexed for 1 min and then cen-
trifuged for 7 min at 3200 g at 4°C. The resulting supernatant
was carefully transferred to a new 9-ml Pyrex glass tube. To
ensure maximal cortisol extraction, this process was repeated
two more times, and the supernatant from all three washes
was combined. Samples were left in the hood overnight for
complete diethyl ether evaporation, resuspended the follow-
ing day in 200-pl 1 x PBS, vortexed and stored at —80°C
until later analysis. For whole-body cortisol quantification, an
enzyme immunoassay (EIA) kit (Salivary Cortisol Immunoas-
say, Salimetrics LLC) was employed. Samples were run in
duplicate, concentrations (png dl™') were calculated using a
four-parameter sigmoidal standard curve and values were
normalized to fish mass (ng g™').

For the analysis of whole-body glucose and lactate, frozen
tissue homogenates were first thawed on ice. Samples
were analysed using commercial test kits and following
the manufacturer’s instructions for glucose (glucose assay
kit, Sigma-Aldrich) and lactate (lactate assay kit II, Sigma-
Aldrich). Samples were run in duplicate, concentrations
(ng wl™') were calculated using a linear standard curve and
values were normalized to fish mass (pg g™').

The bicinchoninic acid method (BCA; Pierce, Thermo Fisher
Scientific Inc.) was employed to quantify whole-body protein
concentrations in juvenile longfin smelt. Samples were run in
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duplicate and concentrations (jLg ml™") were calculated using
a linear standard curve. Total protein was divided by mass of
fish (g) to calculate protein-to-mass ratios.

For all four assays, if samples fell outside the range of
standard curves, they were diluted and rerun. Those samples
that remained outside the range of standard curves after
dilution were eliminated from analysis. Standard curves of all
assays had r* values >0.98.

Longfin smelt mass and fork lengths were measured on both
days of sampling, as well as on the day of CTMax trials.
To calculate Fulton’s condition factor, the following equation
was employed: CF = (Wp/FL?) x 100, where Wy represents
the body mass (g) and FL denotes the fork length (cm).

Statistical analyses were conducted using R version 4.3.2 (R
Core Team, 2023), with the package ‘nlme’ (Pinheiro et al.,
2023). Non-parametric tests were employed to account for
the random effects of sub-tanks. Linear mixed effect models
(LMEs) were used to analyze whole-body cortisol, glucose
and lactate concentrations, protein-to-mass ratios, condition
factors and CTMax data in juvenile longfin smelt. Sub-tank
was included as a random effect in all models. Whole-body
cortisol, glucose, lactate and protein-to mass ratios were
normalized to fish mass. Fixed effects in these models were
temperature (11 and 14°C), turbidity (1,4 and 11 NTU) and
timing of exposure (two vs four weeks). Condition factor
was analyzed at two and four weeks to account for changes
in fish size due to growth, with temperature and turbidity
as the fixed effects. CTMax was measured at five weeks,
with temperature and turbidity as the fixed effects. Multi-
ple LMEs using singular, combined and interactive effects
of biological relevance were run and Akaike information
Criteria (AICc) were calculated to determine the model of
best fit for the data. Statistical output for these models can
be found in Supplementary Table 3, and AICc scores are
reported in Supplementary Table 4. The full model provided
the best fit for cortisol and glucose data, whereas the inter-
active effects of temperature and turbidity offered the most
robust explanation for lactate and protein-to-mass ratios.
For condition factor and CTMax, temperature alone was
identified as the strongest predictor. Detailed post hoc results,
using the Tukey method for the most parsimonious LME
models, are available in Supplementary File 2. Data were
tested for normality and homogeneity using the ‘shapiro.test’
function from the ‘stats’ package and the ‘leveneTest’ function
from the ‘car’ package, respectively. The Kruskal-Wallis rank
sum test was employed to test the effect of water condi-
tions (temperature and turbidity) on longfin smelt mortality.
The cortisol immunoassay yielded a few outliers that were
found to lack biological relevance. Employing a quantile
range outlier test (Tail Quantile =0.1; Q = 3) through JMP®
(Version 17.2., SAS Institute) led to the exclusion of four
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data points, evenly distributed across various turbidity and
temperature treatments. Data are presented as means = SEM
and differences between means were deemed significant at
P <0.05.

Results

Temperature and turbidity treatments had no effect on longfin
smelt survival after either two (H(5)=3.2861, P=0.656) or
four (H(5)=3.2336, P=0.664) weeks. This suggests that
treatment conditions resulted only in sub-lethal effects during
our study.

There was no effect of temperature on whole-body cortisol
levels in juvenile longfin smelt. However, cortisol levels were
significantly influenced by turbidity and the duration of expo-
sure. Specifically, fish exposed to low-turbidity conditions (1
NTU) exhibited significantly higher cortisol levels compared
to those in high-turbidity conditions (11 NTU; P <0.01).
Timing of exposure also had a significant effect, with cortisol
levels decreasing over time (P < 0.05) (Fig. 1; Supplementary
Table 3).

Glucose levels in juvenile longfin smelt were significantly
influenced by temperature, turbidity and time. Fish exposed
to lower temperatures exhibited significantly higher glucose
compared to those at higher temperatures (P <0.001). Tur-
bidity also had a significant effect, with fish in higher tur-
bidity conditions (11 NTU) displaying elevated glucose levels
compared to those in lower turbidity treatments (P < 0.05).
Additionally, glucose levels increased significantly over time,
with higher values observed after four weeks of exposure
compared to two weeks (P <0.01) (Fig. 2; Supplementary
Table 3).

No significant effects of temperature, turbidity or their
interaction were observed for lactate levels in juvenile longfin
smelt (Fig. 3; Supplementary Table 3).

Turbidity, but not temperature or timing of exposure, had a
significant effect on protein-to-mass ratios, with higher ratios
observed in high-turbidity conditions (11 NTU) compared to
low-turbidity conditions (1 NTU; P < 0.05). Significant inter-
actions between temperature and turbidity were also detected.
Specifically, fish held at 11°C in high turbidity (11 NTU) had
significantly greater protein-to-mass ratios compared to those
held at 14°C in either low (1 NTU) or medium turbidity (4
NTU) (P < 0.05) (Fig. 4; Supplementary Table 3).
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Figure 2: . Whole-body glucose measurements (j,g g~') in juvenile longfin smelt held at two temperatures (11 or 14°C) and three turbidities
(low (1), med (4), or high (11) NTU) for two and four weeks. Glucose levels were significantly greater at lower temperatures and higher turbidity
conditions (11 NTU compared to 1 NTU). Glucose also increased significantly over time. Data (n = 10-20) are presented as mean =+ SEM.
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Figure 3: Whole-body lactate measurements (j,g g~') in juvenile longfin smelt held at two temperatures (11 or 14°C) and three turbidities (low
(1), med (4), or high (11) NTU) for two and four weeks. Lactate levels were not significantly affected by temperature, turbidity or their interaction.

Data (n = 16-20) are presented as mean £ SEM.

Condition factor

There was no effect of temperature on juvenile longfin smelt
condition factor after two weeks of exposure. However, after
four weeks, a significant effect of temperature was observed,
with fish held at cooler temperatures (11°C) exhibiting sig-
nificantly higher condition factor compared to those at 14°C
(P <0.01) (Table 1; Supplementary Table 3).

CTMax

The upper temperature tolerance (CTMax) of juvenile longfin
smelt was measured after five weeks in treatment conditions.
Temperature had a significant effect on CTMax, with fish
held at higher temperatures (14°C) exhibiting greater CTMax
values compared to those held at 11°C (P <0.001). The
CTMax for juvenile longfin smelt was 26.3+0.05 for fish
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Figure 4: Protein-to-mass ratios (ug g~') in juvenile longfin smelt held at two temperatures (11 or 14°C) and three turbidities (low (1), med (4),
or high (11) NTU) for two and four weeks. Turbidity had a significant effect on protein-to-mass ratios, with fish held at higher turbidity (11 NTU)
exhibiting greater ratios compared to those at lower turbidity (1 NTU). Significant interactions between temperature and turbidity were also

observed. Data (n = 17-21) are presented as mean & SEM.

Table 1: Condition factor data for juvenile longfin smelt held at
different temperatures (11 or 14°C) and turbidities (1 (low), 4 (med), or
11 (high) NTU) for either two or four weeks. After four weeks in
treatment conditions, fish had significantly greater condition factor
when held at lower temperature of 11°C compared to 14°C. Values are
presented as mean + SEM

Treatment conditions Weeks held in treatment
conditions

held at 14°C and 24.6 +0.18 for fish held at 11°C. This
resulted in a gain in CTMax of 1.7 for a 2.75°C (13.8-
11.05°C) increase in temperature (Table 2; Supplementary
Table 3). Additionally, fish held at higher temperatures
had greater survival after recovery periods (Supplementary
Table 5).

Detailed post hoc comparisons for all treatment interac-
tions from the LME models are provided in Supplementary
File 2.

Table 2: CTMax data for juvenile longfin smelt held at different
temperatures (11 or 14°C) and turbidities (low (1), med (4), or high (11)
NTU). Longfin smelt had significantly higher upper thermal tolerance
when held at 14°C for five weeks compared to fish held at 11°C. Values
are presented as mean + SEM

Discussion

This study investigates how varying temperatures (11 and
14°C) and turbidities (1, 4 and 11 NTU) influence survival,
stress response and physiological condition of juvenile
longfin smelt over time. Whilst these treatments did not
impact survival, significant sub-lethal effects were observed
from variations in both temperature and turbidity. Fish
exposed to lower turbidity (1 NTU) experienced elevated
stress, as indicated by increased cortisol levels, as well as
reduced whole-body glucose and protein-to-mass ratios,
compared to fish at higher turbidity (11 NTU). Higher
temperatures resulted in significantly reduced whole-body
glucose and condition factor. However, higher temperatures
also yielded beneficial outcomes, including greater upper
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thermal tolerance and enhanced recovery post CTMax
trials. Whole-body lactate remained unaffected by either
temperature or turbidity treatments (Fig.2). Interactive
effects of temperature and turbidity were observed in juvenile
longfin smelt. There was a significant reduction in cortisol
from Week two to Week four driven largely by changes
in fish held at 11°C, indicating potential acclimation to
turbidity stress in fish in this group (Fig. 1). Additionally,
significant interactive effects were observed in protein-to-
mass ratios, with fish at lower temperatures and higher
turbidity exhibiting higher ratios compared to those at
higher temperatures and lower turbidity (Fig.4). These
results are consistent with our predictions and correlate
closely with observed longfin smelt abundances in the wild
(Grimaldo et al., 2017).

Investigating the generalized stress response in fish pro-
vides critical insight into optimal environmental and rearing
conditions (Iwama ef al., 1997). The stress response serves
as an adaptive mechanism, allowing fish to maintain home-
ostasis in response to perceived stressors (Barton, 2002).
Central to this process is the activation of the hypothalamic—
pituitary—interrenal (HPI) axis, which regulates the produc-
tion and release of cortisol, a steroid hormone (Wendelaar
Bonga, 1997). However, chronic stress and prolonged eleva-
tion of cortisol levels can have severe secondary and tertiary
effects, posing significant threats to fish populations, partic-
ularly those already endangered (Barton and Iwama, 1991;
Somero, 2010). Juvenile longfin smelt displayed significantly
elevated whole-body cortisol levels at low turbidity of 1
NTU compared to higher turbidity of 11 NTU (Fig. 1). These
findings are consistent with prior research on juvenile delta
smelt, which indicated significantly heightened stress levels at
lower turbidities (1-2 N'TU) compared to higher turbidities
(10-11 NTU) after a two-week period, irrespective of the
presence of a largemouth bass predator cue (Micropterus
salmoides) (Pasparakis et al., 2023).

The reduced stress observed in smelt in turbid conditions
may be attributed to their general preference for darker con-
ditions, as smelt are known to be light-sensitive and actively
avoid light in their natural habitats (Dembinski, 1971; Appen-
zeller and Leggett, 1995). Underscoring smelt’s preference
for low-light conditions, strobe lights were proposed as an
effective means to reduce rainbow smelt (Osmerus mor-
dax) entrainment losses through Oahe Dam by inducing
behavioural avoidance (Hamel et al., 2008). This behavioural
preference for low-light likely influences their distribution
and may contribute to habitat compression, as smelt seek out
areas with higher turbidity that provide these preferred condi-
tions (Heist and Swenson, 1983; Feyrer ef al., 2007). Indeed,
multiple studies have noted a strong correlation between
turbidity and longfin smelt abundance in their natural habitat,
suggesting that long-term declines in turbidity within the SFE
may have contributed to the drastic population declines in this
species (Grimaldo et al., 2017; Mahardja et al., 2017; Bever
et al., 2018; Brennan et al., 2022).
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Turbidity is also believed to alleviate stress in fish by
improving predator avoidance and offering protection
through visual cover (Gregory and Northcote, 1993; Sirois
and Dodson, 2000; De Robertis et al., 2003). Despite the
absence of predators or predator cues in our study, significant
interactions occurred during feeding and maintenance, with
longfin smelt being fed twice daily and water quality check
and mortality removal taking place once a day. These human
interactions closely resemble activities at an aquaculture
facility and may have induced considerable stress in the fish.
This could explain why longfin smelt in higher turbidities
perceived greater protection, resulting in significantly lower
whole-body cortisol levels compared to clearer waters (Fig. 1).
These findings align with a study on late-larval delta smelt,
which indicated minimal stress between 35 and 80 NTU and
elevated cortisol at low turbidities (5, 12 and 25 NTU) after
a 24-h exposure (Hasenbein et al., 2016).

Prolonged stress may redirect metabolic energy towards
maintaining homeostasis, ultimately reducing energy for
growth and other important biological functions (Wendelaar
Bonga, 1997). This relocation of energetic reserves could
explain the significantly reduced whole-body glucose and
protein-to-mass ratios observed in juvenile longfin smelt
(Fig. 2 and Fig.4). Glycogen, which was not measured
in this study, would provide valuable insight into the
energetic reserves of the fish, as it represents carbohydrate
stores. The whole-body glucose levels presented here reflect
the immediate energy status of the fish. Elevated cortisol
levels at lower turbidities suggest that longfin smelt were
experiencing prolonged stress, which likely led to increased
energy demands. Similarly, juvenile delta smelt, exhibiting
significantly increased whole-body cortisol levels in lower
turbidities, also displayed significantly reduced whole-body
glucose levels (Pasparakis ez al., 2023). The reduced protein-
to-mass ratio observed in juvenile longfin smelt may suggest
that energy was diverted from growth and protein synthesis
towards stress-induced maintenance processes, reflecting
physiological prioritization under prolonged stress.

Whilst feeding rate was not specifically evaluated in this
study, it is plausible that the heightened stress and dimin-
ished energy observed in longfin smelt in clear waters could
be attributed to increased difficulty and effort in locating
artemia. Turbidity is believed to enhance visual acuity of
small planktivorous or larval fish by increasing the contrast
between prey and its background, thereby aiding in feeding
(Utne-Palm, 2002). Longfin smelt are pelagic zooplankti-
vores, relying on their visual acuity to capture prey typically
consisting of species such as copepods, cladocerans and mysid
shrimp (Chigbu and Sibley, 1998; Barros et al., 2022). Field
studies indicate that the interplay between turbidity and light
alters predator—prey dynamics and interactions by influenc-
ing the depth of smelt and their prey (Horppila et al., 2004). In
a laboratory setting, larval delta smelt displayed significantly
reduced feeding in the absence of turbidity, with maximal
feeding responses observed at 11 NTU, the highest tested
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turbidity level (Baskerville-Bridges et al., 2004; Tigan et al.,
2020). Late-larval delta smelt displayed peak feeding rates
between 25 and 80 NTU, with reduced feeding at lower (5 and
12 NTU) and higher (120 and 250) turbidities (Hasenbein
et al.,2016). Juvenile delta smelt, on the other hand, exhibited
reduced feeding >250 NTU, consistent feeding between 12
and 120 NTU, and the highest feeding rates <12 NTU,
emphasizing the importance of investigating effects of turbid-
ity at different life stages (Hasenbein et al., 2013).

The turbidity treatments implemented in our study do not
precisely replicate the conditions found in the SFE, where
turbidity is composed of a diverse and variable amalgama-
tion of suspended sediment, dissolved organic matter and
algae. However, our turbidity conditions closely resemble
those applied at the FCCL for rearing both delta and longfin
smelt. At the FCCL, turbidity is maintained using the same
commercially preserved algae (Nannochloropsis) utilized in
this study (Tigan et al., 2020). Larval longfin smelt are reared
at ~10 NTU from 0 to 40 dph, after which they were
transitioned to clear waters (Hung ez al., 2024). Subsequently,
due to poor survival rates, turbidity has been increased to 5.5
NTU up to 100 dph. Given the positive impacts of turbidity
observed in juvenile longfin smelt in our study (~170-225
dph), our findings suggest that maintaining higher turbidity
levels (~11 NTU) for extended periods when rearing cultured
longfin smelt is advantageous, potentially reducing stress and
increasing available energy. Whilst no current plans exist,
population supplementation may become necessary for the
sustainability of longfin smelt in the near future. Our results
propose that transportation and release conditions with mid-
range turbidities could enhance the success of these efforts by
mitigating stress in this highly sensitive fish.

Temperature is another key variable to consider in future
rearing and conservation strategies, given its significant effects
on fish physiology (Perry et al., 2005; Portner and Peck,
2010). Rising temperatures in the SFE likely contributed to
the POD, highlighting the need to incorporate temperature
into multi-stressor experiments to better inform management
decisions (Sommer et al., 2007; Bashevkin et al., 2022).
Longfin smelt are thought to be especially sensitive to temper-
ature stress and less tolerant of high temperatures than closely
related delta smelt, based on both field and laboratory-based
studies. Field data indicate larval delta smelt abundance peaks
between 14 and 18°C, whilst larval longfin smelt are most
abundant between 8 and 12°C (Bennett, 2005; Grimaldo
et al., 2017). Although both species exhibit a preference for
lower temperatures, predictions suggest that young-of-year
longfin smelt have reduced occupancy at higher temperatures
compared to delta smelt, corroborating lab studies reporting
lower upper thermal tolerances in larval longfin smelt (Jeffries
et al., 2016; Mahardja et al., 2017). Indeed, juvenile longfin
smelt in the current study displayed significantly reduced
whole-body glucose and condition factor when held at 14°C
compared to 11°C, supporting previous studies (Fig. 1 and
Table 2). Water temperatures in the SFE regularly exceed
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20°C during summer months, particularly in the Delta, where
seasonal variations are most pronounced. Given their reduced
thermal tolerance and high sensitivity to stress, such temper-
atures could potentially lead to reductions in energy reserves
and overall fitness in longfin smelt (Vroom et al., 2017).

Warmer temperatures incur energetic costs for various rea-
sons, including increased metabolic rates, stimulated physio-
logical and behavioural processes, faster swimming activities
and thermal acclimation mechanisms (Dell ez al., 2011; Sand-
blom et al., 2014). Prolonged exposure to thermal stress may
result in latent adverse impacts, such as reduced growth and
compromised health, providing support for reduced condition
factor observed in juvenile longfin smelt after four weeks at
higher temperatures (Sokolova et al., 20125 Alfonso et al.,
2021). Acclimation to warmer temperatures increased the
upper temperature tolerance of longfin smelt, demonstrating
their capacity to extend thermal limits. Longfin smelt reared
at 11°C exhibited CTMax values ranging from 24.4 + 0.44 to
2540.24°C, whilst smelt at 14°C displayed values ranging
from 26.24+0.12 to 26.6 £0.16°C (Table 2). This resulted
in a CTMax increase of 1.7 for a 2.75°C temperature rise.
These findings align with CTMax values of 24.8 +0.38°C in
longfin smelt larvae (~50 dph) reared at 14°C in a previous
study (Jeffries et al., 2016). Longfin smelt held at warmer tem-
peratures exhibited higher survival rates following CTMax
trials, providing additional evidence of reduced sensitivity to
high temperatures with warm acclimation (Supplementary
Table 5). This suggests that longfin smelt raised at higher
temperatures in natural habitats are likely better equipped
to endure heat shocks. However, this increase in thermal
tolerance may entail a significant trade-off, as it can lead to
reduced growth and energy levels, both of which are essential
for coping with other demanding environmental conditions.

In the context of rearing longfin smelt for culture in conser-
vation hatcheries, our data suggests that lower temperatures
of 11°C are preferable for promoting growth and conserving
energy. This recommendation is consistent with a previous
study on recently hatched longfin smelt larvae, which advo-
cated for culturing temperatures of 9 or 12°C over 15°C,
as the latter temperature induced decreased hatch success,
diminished growth rates and earlier mass mortality, result-
ing in fewer and smaller larvae with reduced endogenous
reserves (Yanagitsuru ef al., 2021). Conversely, if population
supplementation becomes necessary for longfin smelt survival
in the SFE, temperatures >11°C should be considered due
to the benefits of enhancing thermal tolerance. Alternatively,
supplementation could be strategically prioritized during win-
ter months when the likelihood of thermal stress is reduced.
Further research is necessary to gain a better understanding
of the trade-offs involved in rearing longfin smelt at warmer
temperatures to increase thermal tolerance and its subsequent
impact on physiological performance.

Juvenile longfin smelt held at lower temperatures displayed
signs of acclimation to turbidity stress, evidenced by a
reduction in whole-body cortisol levels between the two- and
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four-week time points, with values decreasing by more than
half at each turbidity level. In contrast, longfin smelt held at
higher temperatures showed no indications of acclimation or
reduction in stress markers, as their cortisol levels remained
similar at both time points and, in fact, displayed minor
increases in two of the three turbidity treatments at the
four-week mark (Fig. 1). These findings suggest that elevated
temperature and reduced turbidity may interact by imposing
substantial stress on juvenile longfin smelt, hindering their
capacity for recovery. Furthermore, a significant interaction
between temperature and turbidity was observed for protein-
to-mass ratios, with higher ratios in fish held at cooler
temperature and higher turbidity compared to those at
warmer temperature and lower turbidity (Fig.4). These
results suggest that fish in cooler, more turbid conditions
may allocate resources more effectively towards growth,
likely enhancing their physiological condition and resilience.
Research investigating the interactive effects of temperature,
turbidity and other relevant stressors in juvenile longfin smelt
is essential for conservation and warrants further study.

Concluding Remarks

Juvenile longfin smelt demonstrate improved physiological
condition at lower temperatures of 11°C compared to 14°C
and elevated turbidities of 11 NTU compared to 1 NTU.
These findings are consistent with field abundance data, sug-
gesting that cooler, more turbid environments provide more
favourable conditions for these fish (Moyle, 2002; Grimaldo
etal.,2017). Prolonged exposure to stress and the reallocation
of energy towards maintaining homeostasis likely contributed
to observed reductions in energy and growth. Chronic stress
in fish can lead to severe tertiary effects, including the suppres-
sion of immune function, increased susceptibility to disease
and a reduction in overall fitness, fecundity and survival in
their natural habitat (Wendelaar Bonga, 1997; Tort, 2011).
Therefore, conditions that minimize stress and promote the
growth and condition of fish should be prioritized in aqua-
culture settings and conservation initiatives. Results from our
study indicate that lower temperatures and elevated turbidi-
ties enhance the physiological condition of the understudied
juvenile stage of longfin smelt. Given the limited understand-
ing of this critical developmental stage, the data presented
herein fill an important knowledge gap, providing valuable
insights for management-based conservation efforts.
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