1: Inputs: Dataset, , Meta classifiers = LG
|
2: Outputs: Classify whether the thyroid is affected or not |
3: ← D.drop ([TBG], axis = columns)
|
4: ← MedianImpute {} |
5: ← LabelEncoder {} |
6: ← SMOTEENN {} |
7: ← input{(N × M matrix)}, output (N × 1 vector)
|
8: ← TrainTestSplit () |
9: ← TrainTestSplit () |
10: ← TrainTestSplit () |
11: while (execute − different − TrainTestSets) do
|
12: ← RandomForest () |
13: ← DecisionTree () |
14: ← KNearestNeighbors () |
15: end while
|
16: ← concatenate () |
17: fordo
|
18: Apply to classify training instances
|
19: ← () |
20: ← (, ), where ← () |
21: end for
|
22: RDKST ← LG {} |
23: Result ← RDKST. predict (New−sample) |
24: ReturnResult
|