Skip to main content
. 2024 Aug 20;10(17):e36556. doi: 10.1016/j.heliyon.2024.e36556

Table 4.

Utilized the set of fine-tuned parameters for employed baseline classifiers in different feature sets by using GridsearchCV.

Feature set RF DT KNN
ALL
Features
n_estimator = 10, random_state = 10, max_depth = 7, max_features = ‘sqrt’ max_depth = 5, random_state = 5, n_neighbors = 10, leaf_size = 25,
criterion = ‘entropy’, metric = ‘minkowski’,
splitter = ‘best’ algorithm = ‘brute’
UVS
Features
n_estimator = 8, random_state = 15, max_depth = 5, max_features = ‘sqrt’ max_depth = 8, random_state = 15, n_neighbors = 15, leaf_size = 30,
criterion = ‘gini’, metric = ‘minkowski’,
splitter = ‘best’ algorithm = ‘auto’
IGS
Features
n_estimator = 7, random_state = 10, max_depth = 10, max_features = ‘sqrt’ max_depth = 5, random_state = 20, n_neighbors = 5, leaf_size = 30,
criterion = ‘gini’, metric = ‘minkowski’,
splitter = ‘best’ algorithm = ‘auto’