Skip to main content
. 2024 Aug 20;10(17):e36556. doi: 10.1016/j.heliyon.2024.e36556

Table 5.

The performed accuracy (ACC), precision (PRE), recall (REC), f1-score (F1S), the area under the curve (AUC), and Cohen's Kappa score (CKS) for the Kaggle dataset.

Feature sets Classifiers ACC PRE REC F1S AUC CKS
All features
RF 0.9561 0.9649 0.9390 0.9517 0.9866 0.9115
DT 0.9465 0.9323 0.9477 0.9399 0.9704 0.8917
KNN 0.9375 0.9047 0.9537 0.9286 0.9834 0.8713
RDKVT 0.9618 0.9348 0.9790 0.9564 0.9952 0.9223
RDKST
0.9774
0.9624
0.9896
0.9758
0.9957
0.9566
UVS features
RF 0.9662 0.9292 0.9946 0.9611 0.9940 0.9313
DT 0.9622 0.9523 0.9632 0.9577 0.9867 0.9237
KNN 0.8947 0.8797 0.8776 0.8836 0.8986 0.7875
RDKVT 0.9741 0.9436 0.9986 0.9703 0.9958 0.9474
RDKST
0.9774
0.9719
0.9749
0.9765
0.9979
0.9545
IGS features RF 0.9746 0.9761 0.9677 0.9719 0.9939 0.9761
DT 0.9718 0.9423 0.9947 0.9678 0.9889 0.9428
KNN 0.9634 0.9260 0.9919 0.9578 0.9936 0.9256
RDKVT 0.9831 0.9674 0.9948 0.9809 0.9990 0.9657
RDKST 0.9898 0.9799 0.9974 0.9886 0.9995 0.9794