Skip to main content
. 2024 Aug 20;10(17):e36556. doi: 10.1016/j.heliyon.2024.e36556

Table 6.

The performed accuracy (ACC), precision (PRE), recall (REC), f1-score (F1S), the area under the curve (AUC), and Cohen's Kappa score (CKS) for the UCI dataset.

Feature sets Classifiers ACC PRE REC F1S AUC CKS
All features
RF 0.9406 0.9523 0.9317 0.9443 0.9802 0.9074
DT 0.9358 0.9357 0.9334 0.9341 0.9732 0.9005
KNN 0.9467 0.9494 0.9447 0.9479 0.9870 0.9131
RDKVT 0.9594 0.9618 0.9510 0.9588 0.9936 0.9192
RDKST
0.9656
0.9624
0.9695
0.9674
0.9910
0.9526
UVS features
RF 0.9620 0.9704 0.9611 0.9658 0.9883 0.9293
DT 0.9612 0.9573 0.9661 0.9633 0.9878 0.9210
KNN 0.9646 0.9707 0.9611 0.9679 0.9886 0.9263
RDKVT 0.9715 0.9823 0.9696 0.9777 0.9905 0.9394
RDKST
0.9742
0.9749
0.9725
0.9765
0.9938
0.9486
IGS features RF 0.9703 0.9781 0.9691 0.9710 0.9920 0.9526
DT 0.9667 0.9614 0.9717 0.9686 0.9893 0.9488
KNN 0.9711 0.9635 0.9820 0.9743 0.9911 0.9542
RDKVT 0.9807 0.9888 0.9776 0.9839 0.9968 0.9610
RDKST 0.9861 0.9839 0.9894 0.9843 0.9980 0.9732