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Abstract
Microfluidic impedance flow cytometry has been widely used in leukocyte differential and counting, but it faces a
bottleneck due to the trade-off between impedance detection throughput and sensitivity. In this study, a microfluidic
impedance flow cytometer based on a virtual constriction microchannel was reported, in which the virtual constriction
microchannel was constructed by crossflow of conductive sample and insulated sheath fluids with underneath micro-
electrodes for impedance measurements. Compared to conventional mechanical constriction microchannels, this
virtual counterpart could effectively avoid direct physical contact between cells and the microchannel walls to
maintain high throughputs, and significantly reduce the volume of the impedance detection region for sensitivity
improvements. Using the developed microfluidic impedance flow cytometer, impedance pulses of three leukemia cell
lines, K562, Jurkat, and HL-60, were detected, achieving a 99.8% differentiation accuracy through the use of a recurrent
neural network. Furthermore, impedance pulses of four white blood cell subpopulations (neutrophils, eosinophils,
monocytes, and lymphocytes) from three donors were detected, achieving a classification accuracy of ≥99.2%. A
classification network model was established based on purified white blood cell and applied to impedance pulses of
two white blood cell mixtures, resulting in proportional distributions of four leukocyte subpopulations within
theoretical ranges. These results indicated that the developed microfluidic impedance flow cytometer based on the
virtual constriction microchannel could achieve both high detection throughput and high sensitivity, showing great
potentials for clinical diagnostics and blood analysis.

Introduction
Leukocyte differential and counting has functioned as

the first indicator in body status evaluation and clinical
examinations of human beings1,2. The golden approach of
leukocyte differential is the microscopic examination of
stained blood smears, which, however, suffers from the
key issue of labor intensive and low throughputs3–9.

In order to address this issue, flow cytometry has been
developed to realize leukocyte differential and counting in
an automatic and high-throughput manner10,11. Due to
the issue of sample losses in cell staining, fluorescent flow
cytometry with the staining of a group of antibodies can
only be used for leukocyte differential rather than
counting12–16.
Thus, single-cell electrical and/or optical flow cytometry

which is termed as “hematology analyzer” has functioned
as the high-throughput approach in this scenario where
individual cells with minimal steps of cell treatment travel
through a detection cuvette rapidly where electrical
impedance and optical scattering are captured for leuko-
cyte differential and counting11,17–21. Since the classifi-
cation of leukocytes is mainly based on single-cell
biophysical properties such as membrane capacitance in
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impedance and nuclear structures in scattering, quality
improvements in capturing single-cell impedance and
scattering data has been regarded as the driving forces for
the developments of hematology analyzers20,22–24.
From the perspective of single-cell impedance flow

cytometry, it was firstly introduced by Beckman Coulter
in the 1950s and realized 3-part leukocyte differential by
applying both direct and alternating currents to measure
impedance changes caused by cells passing through an
aperture21,25–27. However, due to the relatively large
geometries of detection apertures, conventional Coulter
counters suffered from the issue of low detection sensi-
tivities and thus they cannot be directly used to realize
5-part leukocyte differential.
With the developments of microfabrication, detection

cuvettes in the dimensions of tens of micrometers can be
accurately constructed, leading to improved detection
sensitivities of single-cell electrical properties28–33. Fur-
thermore, by finely regulating geometrical dimensions
and positions of microelectrodes for impedance sampling,
high-consistency impedance properties at the single-cell
level can be captured regardless of relative positions of
single cells within the detection cuvette34–43. Leveraging
these improvements, microfluidic impedance flow cyto-
metry has been used in blood analysis44, tumor45, stem
cells46, alga47 and pollen48, to name a few. However, still
due to relatively low detection sensitivities, these micro-
fluidic impedance flow cytometry has seldomly been used
in leukocyte differential49.
Aimed to further improve detection sensitivities at the

single-cell level, constriction microchannels with cross-
sectional areas smaller than single cells were incorporated
into microfluidic impedance flow cytometry. In constric-
tion microchannels, single cells are forced to deform
through constricted areas and effectively blocked electric
lines, generating large impedance variations and
improvements in detection sensitivities50,51. With the
contribution of constriction microchannels, 5-part leu-
kocyte differential was firstly realized based on single-cell
impedance flow cytometry only52. However, these
mechanical constriction microchannels were prone to
channel blockage and thus cannot be used commercially
for leukocyte differential.
In this study, a virtual constriction microchannel was

formed by crossflow of conductive sample and insulated
sheath fluids. Different from mechanical constriction
microchannels where electric lines and cell traveling
were both constricted by solid interfaces, in this study,
electric lines were confined by the liquid interface of
sample and insulating fluids, which was moveable and
thus didn’t restrict the smooth traveling of individual
cells. Note that microfluidic impedance flow based on
sheath flow focusing were previously used to avoid the
coefficient of variation and improve impedance

detection sensitivities with a few attempts in Escherichia
coli53, tumor cells54,55 and lymphocytes56. Different
from these approaches, here the width of the virtual
constriction microchannels was comparable with indi-
vidual cells and thus the interactions between traveling
cells and walls of virtual constriction microchannels
were carefully studied. In addition, the virtual con-
striction microchannel was formed by crossflow of
conductive sample and insulated sheath fluids, which
focused the traveling cells at the center of the channel
while concentrating the electric field lines in the sample
flow region, producing lower coefficients of variation
and higher detection sensitivity. The corresponding
impedance profiles due to cell-wall interactions were
processed by a deep recurrent neural network to realize
the classification of leukocyte subtypes of neutrophils,
eosinophils, monocytes and lymphocytes.

Materials and methodology
Working principle
Figure 1 illustrates the working principle of the micro-

fluidic impedance flow cytometry leveraging the virtual
constriction microchannel formed by crossflow of con-
ductive sample and insulated sheath fluids with under-
neath micro-electrodes for impedance measurements.
Compared to mechanical constriction microchannels
where electric lines and cell traveling were both con-
stricted by solid interfaces, in this study, electric lines
were confined by the liquid interface of sample and
insulating fluids, which was moveable and thus didn’t
restrict the smooth traveling of individual cells.
The process of single-cell passing through the virtual

constriction microchannel could be divided into three
parts (see Fig. 1(b)): (i) As the cell first entered the virtual
constriction microchannel, the proportion of electric
field lines blocked by the cell gradually increased,
resulting in a rise in impedance amplitude and a dip in
phase at 2.5 MHz. When the cell was fully within the
virtual constriction microchannel, changes in both
impedance amplitude and phase reached their maximum.
(ii) As the cell gradually left the virtual constriction
microchannel, the impedance amplitude decreased, cor-
responding to an increase in impedance phase at
2.5 MHz. When the cell completely left the virtual con-
striction microchannel, the expansion of the sample-
sheath boundaries due to the traveling cell produced
minimal values in impedance amplitude and maximal
values in impedance phase at 2.5 MHz. (iii) Once the
disturbance caused by the cell recovered, impedance
amplitude and phase returned to their initial states. Note
that at high frequency domain (e.g., 2.5 MHz), there was a
clear dip in phase for a traveling cell within the virtual
constriction microchannel while at low frequency
domain (e.g., 400 kHz), the phase profiles of a traveling
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cell may be affected by the electrical double layer of
coplanar electrodes.

Materials and cell preparation
The sample fluid was conductive 1x PBS (Thermo-

Fisher), while the sheath fluid was an insulating 10%
sucrose solution with osmotic pressure equal to that of
the cells. This choice of solutions ensured that the electric
field lines were confined within the sample fluid while
they had negligible effects on viabilities of individual cells.
Leukemia cell lines of K562, Jurkat, and HL-60 were all

purchased from the National Infrastructure of Cell Line
Resource. They were then cultured with RPMI-1640
supplemented with 10% fetal bovine serum at a cell
incubator (Forma 3111, Thermo Scientific, USA) under
37 °C in 5% CO2.
Leukocytes were derived from peripheral bloods of

three healthy donors who all signed informed consent
forms. After lysing red blood cells, white blood cells were
purified by using fluorescent antibody staining combined
with flow cytometry (Beckman Coulter). The sorted white
blood cell subpopulations were stained with Wright-
Giemsa stain (Baso Co.) to confirm high purities of pur-
ification (see Supplementary Fig. 1). The leukocyte mix-
tures were prepared by lysing red blood cells and then
kept on standby where Wright-Giemsa staining was
conducted for quality control (see Supplementary Fig. 2).
As to device fabrication, the microfluidic device was

fabricated using standard processes of soft lithography.
The layer of the constriction microchannel was made of
PDMS which was molded from photolithography of SU-8

while the electrode layer was fabricated by depositing Cr/
Au onto glass slides with photolithography and metal
etching. After the plasma treatment, the layer of the
constriction microchannel was bonded to the electrode
layer to form the microfluidic device.

Numerical simulation
As to numerical simulation, a 3D simulation model of

the virtual constriction microchannel was established
using COMSOL Multiphysics 5.5. The analysis incorpo-
rated a laminar flow physics, a transport of diluted spe-
cies physics, and electric current physics. In the laminar
flow physics, the inlets of sample and sheath fluids, and
the outlet were defined properly, with the channel walls
set as “no-slip” boundary conditions and the outlet set at
0 Pa boundary condition. In the transport of diluted
species physics, the concentration of the sample fluid was
set at 160 mM, and the concentration of the sheath fluid
was set at 0 mM. In the electric current physics, the
conductivity of the sample fluid was 1.6 S/m, and the
conductivity of the sheath fluid was measured at
2.2 × 10–4 S/m, with a relative dielectric constant of 78 for
both fluids.
Based on grid independence, the width of the generated

virtual constriction microchannel was characterized using
the concentration distribution and the current density
distribution across the cross-section of the impedance
detection region. With the sample fluid flow rate fixed at
3 µL/min, the simulation results were compared for
sample-to-sheath flow rate ratios of 1/0, 1/0.25, 1/0.5,
and 1/1.
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Fig. 1 The microfluidic impedance flow cytometer leveraging a virtual constriction microchannel was formed. Working principle of the
microfluidic impedance flow cytometer leveraging a virtual constriction microchannel formed by crossflow of conductive sample and insulated
sheath fluids with underneath micro-electrodes for impedance measurements, including (a) schematic of the microfluidic impedance flow cytometer
utilizing virtual constriction microchannel and (b) a typcial single-cell pluse and and its formation: as a cell travels through the virtual constriction
microchannel between two electrodes, in amplitude, there is a peak due to blockage of electrical lines and then a dip because of expansion of the
sample-sheath boundaries due to the traveling cell. As to phase variations, at high frequency domain (e.g., 2.5 MHz), there is a clear dip while at low
frequency domain (e.g., 400 kHz), the phase profiles may be affected by the electrical double layer
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Platform operation
The detection channel had dimensions of 50 µm

(width) x 20 µm (height), with an electrode width of 30 µm
and an electrode gap of 30 µm, enabling the smooth
detection of the majority of leukocytes in healthy per-
ipheral blood samples. In order to obtain consistent
results, the electrodes were set 75 µm away from the
intersection point of sample and sheath flows where the
focused interface was stable and diffusion effects between
sample and sheath flows were insignificant. The cells were
resuspended in the sample fluid, and the cell concentra-
tion of leukemia cell lines was ~5 × 105 cell/mL, while the
concentrations for purified leukocyte subpopulations and
leukocyte mixtures were 2 ~ 3 × 105 cell/mL.
As to impedance frequencies, the electrical double layer

formed at the interface between the electrode surface and
the solution dominated at low frequencies, while the
parasitic capacitance of impedance measurements domi-
nated at high frequencies. Therefore, to explore the
bioelectrical properties of cells, which were composed of
cell membrane capacitance and cytoplasmic resistance,
four frequencies were selected as 400 kHz, 700 kHz,
990 kHz, and 2.5MHz. These frequencies, with an effec-
tive voltage value of 500 mV, were chosen based on the
detection capabilities of the lock-in amplifier (MFLI 5M,
Zurich Instruments) which was used to record impedance
pulses caused by cells passing through the virtual con-
striction microchannel.

Data analysis
As to data analysis, a recurrent neural network (RNN)

was constructed using Matlab R2021b to differentiate
impedance pulses of leukocytes. The RNN comprised an

input layer, an LSTM layer, a dropout layer, a fully con-
nected layer, a softmax layer, and an output layer. Speci-
fically, the input layer received the amplitude and phase of
single-cell impedance pulses at four frequencies, with each
cell’s impedance data consisting of 300 time points to
prevent the gradient vanishing problem caused by overly
long sequences and maintain information richness in the
impedance pulses when the sequences were too short.
The LSTM layer, being the key structural layer, con-

tained 64 neurons, an initial learning rate of 0.001, and a
batch size dependent on the training size, with the
training split into 20 iterations per epoch. The dropout
layer, a regularization technique to prevent overfitting,
had a dropout rate of 50%. The fully connected layer was
connected to the softmax layer to calculate the prob-
abilities of each cell type. The output layer represented the
target cell populations, with three types of leukemia cell
lines or four types of purified leukocyte subpopulations.
For dataset division, all the data were randomly split

into 70% training, 15% validation, and 15% testing. Mul-
tiple training sessions were conducted, and the mean
differentiation accuracy was taken as the final result and
included in the dark gray square at the lower right corner
of the confusion matrix. In addition, green numbers
showing 100% indicated complete differentiation of the
target cells, while green numbers showing 33.3% (for three
types) or 25.0% (for four types) indicated a complete
inability to differentiate the target cells.

Results and discussion
Parameter optimization
Figure 2 presented simulation results and experimental

images of the constructed virtual constriction microchannels
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Fig. 2 Numerical simulation and experimental images of the constructed virtual constriction microchannels were demonstrated. Numerical
simulation and experimental images of the constructed virtual constriction microchannels under sample/sheath ratios of (a) 1/0, (b) 1/0.25, (c) 1/0.5
and (d) 1/1. More specifically, in numerical simulation, both concentration and current density distributions were included to evaluate the effects of
sample/sheath ratios on the virtual constriction microchannels
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under sample/sheath ratios of (a) 1/0, (b) 1/0.25, (c) 1/0.5
and (d) 1/1. The simulation results included the distribu-
tions of ion concentrations and current densities in the
impedance detection region, while the experimental images
characterized the width of the virtual constriction
microchannel.
In the simulation results, when the sample-to-sheath

ratio was 1/0, the ion concentration within the channel
was uniformly 160mM, and the current density dis-
tribution spanned the entire microchannel with a width of
50 µm. When the sample-to-sheath ratios were 1/0.25, 1/
0.5, and 1/1, the simulated focusing widths were
~34.0 µm, 27.2 µm, and 19.9 µm, respectively. This effec-
tively reduced the volume of the impedance detection
region, confining the electric field lines within the virtual
constriction microchannel.
In the experimental images, when the sample-to-sheath

flow rate ratio was 1/0, the sample fluid was not focused,
and no focusing interface between the sample and sheath
fluids was observed. When the sample-to-sheath ratio was
1/0.25, a focusing interface between the sample and sheath
fluids was present, maintaining stabilities across the
microchannel width, with a focusing width of 29.6 ± 0.3 µm.
When the sample-to-sheath flow rate ratios were 1/0.5 and
1/1, the focusing widths were 24.2 ± 0.2 µm and
17.0 ± 0.2 µm, respectively. The experimental images
demonstrated that the sample fluid could be stably confined
in the middle of the impedance detection channel, with the
focusing trend consistent with simulation results.

Differences in focusing width between simulation and
experiments might be attributed to internal channel surface
roughness and syringe pump flow rate variations.
As to the width of the virtual constriction micro-

channel, the smaller width of the virtual constriction
microchannel increased disturbances to the focusing
interface, producing additional interference within
impedance measurements. Besides, the time for cells to
pass through the impedance detection region decreased
due to the decrease of the virtual constriction micro-
channels, resulting in fewer data points of a single cell
pulse under the condition of the same sampling rate.
Thus, the width of the virtual constriction microchannel
needed to be greater than the diameter of the cells.
Conversely, if the width was too large, the sensitivity of
impedance detection decreased. Therefore, a sample-to-
sheath flow rate ratio of 1/0.5, with a sheath flow rate of
1.5 µL/min, was selected for subsequent impedance
detection. At this ratio, the transit time for a single cell
was ~1 ms, with a theoretical detection throughput of
~1000 cell/sec.

Leukemia cell lines
Figure 3 showed the impedance pulses of three leuke-

mia cell lines, including: (a) K562 (a), (b) Jurkat, and (c)
HL-60 at four frequencies (400 kHz, 700 kHz, 990 kHz,
and 2.5MHz), along with consecutive microscopic images
of a single K562 cell passing through the virtual con-
striction channel (d).
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Fig. 3 Impedance profiles of three leukemia cell lines were detected and demonstrated. Impedance amplitude and phase profiles of individual
(a) K562, (b) Jurkat, and (c) HL-60 traveling through the virtual constriction microchannel with representative microscopic images shown in (d) where
the expansion of the sample-sheath boundaries due to a traveling cell was noticed
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In terms of impedance amplitude, the impedance pulse
of a single cell exhibited an initial rise, followed by a drop,
and then a return to the baseline, because a single cell
effectively blocked the electric field lines while passing
through the virtual constriction microchannel, causing an
increase in impedance amplitude. During the cell’s tra-
versal, it disturbed the focusing interface, leading to an
expansion of the width of the virtual constriction micro-
channel. Consequently, when the cell left the impedance
detection region, the expanded virtual constriction
microchannel caused a drop in impedance amplitude,
which then returned to the baseline as the channel width
restored (see Fig. 3d).
Regarding impedance phase, the phase waveforms at the

four frequencies differed due to the influence of the
electrical double layer in the detection circuit, affected by
the contact areas between the electrodes and the sample
fluid. At 2.5MHz, the electrical double layer was broken
down, resulting in a phase decrease due to the cell
membrane capacitance, followed by a slight phase
increase due to the expanded local focusing area, and
finally returning to the baseline as the focusing width
recovered.
Among the impedance pulses, the amplitude ratios at

400 kHz of K562, Jurkat, and HL-60 were 10.79 ± 3.29%

(ncell= 5945), 5.18 ± 2.89% (ncell= 6457), and 4.41 ± 1.88%
(ncell= 3524) (see Table 1). And the scatter plots of the
amplitude ratio distribution at four frequencies were
presented in Supplementary Fig. 3. In terms of opacity
(2.5 MHz/400 kHz), opacity of K562, Jurkat, and HL-60
were 0.68 ± 0.06, 0.70 ± 0.06, and 0.74 ± 0.06, respectively
(see Supplementary Fig. 4). The higher amplitude ratios
were obtained with the virtual constriction microchannel
despite the enlarged channel dimensions, Compared with
that of microfluidic impedance flow cytometry with
coplanar electrodes (3%)57. The K562 cell line showed the
largest proportion of impedance variations, while the HL-
60 cell line showed the smallest proportion of impedance
variations which gradually decreased with increasing fre-
quency, determined by the dominant roles of the specific
capacitance of the cell membrane and the cytoplasmic
conductivity. As to the opacity, with few differences
among the three cell lines, it is difficult to achieve a highly
accurate classification of three cell lines relying on
opacity.
Figure 4 presented the classification results of K562,

Jurkat and HL-60, based on a recurrent neural network,
including the training curves composed of classification
accuracy vs. iteration and loss vs. iteration (a) and the
confusion matrix (b). The training curves for the training
and validation showed no significant differences, indi-
cating no overfitting of the deep neural network. Based
on the recurrent neural network, the classification accu-
racy for K562, Jurkat and HL-60 was 99.8%, with the
lowest true positive rate occurring in HL-60 at 99.5%
while K562 and Jurkat had the same positive predictive
value of 99.6%. The confusion matrices for the training,
validation, and testing were shown in supplementary Fig.
5.

Purified leukocytes
Figure 5 showed the impedance pulses of four types of

leukocytes, including: (a) NEU (a), (b) EOS, (c) MON, and
(d) LYM from three healthy donors at four frequencies
(400 kHz, 700 kHz, 990 kHz, and 2.5MHz). In all donors,
a leukocyte passing through the virtual constriction
microchannel caused an increase in impedance amplitude
and a decrease in phase at 2.5MHz. Due to its smallest
cell diameter, LYM exhibited the lowest impedance
amplitude.
For donor 1, the impedance amplitude ratios at

400 kHz for NEU, EOS, MON, and LYM were
2.99 ± 1.40% (ncell= 685), 2.46 ± 0.67% (ncell= 3833),
2.64 ± 1.23% (ncell= 1535), and 1.30 ± 0.67% (ncell=
3670), respectively (see Table 1). The impedance
amplitude ratios for LYM at 400 kHz were 1.35 ± 0.58%
(ncell= 1143) and 1.11 ± 0.42% (ncell= 1260) for donor 2
and donor 3, respectively. The same type of leukocytes
exhibited similar impedance amplitude ratios across the

Table 1 Amplitude ratio, opacity, and cell count of
leukemia cell lines, purified WBC subpopulations from
three healthy donors at 400 kHz and 2.5MHz

Impedance Amplitude Ratio

(%)

Opacity

(2.5 MHz/

400 kHz)

ncell

400 kHz 2.5MHz

K562 10.79 ± 3.29 8.57 ± 2.91 0.68 ± 0.06 5945

Jurkat 5.18 ± 2.89 4.12 ± 2.17 0.70 ± 0.06 6457

HL-60 4.41 ± 1.88 3.72 ± 1.46 0.74 ± 0.06 3524

Donor 1 NEU 2.99 ± 1.40 2.83 ± 1.26 0.81 ± 0.09 685

EOS 2.46 ± 0.67 2.30 ± 0.66 0.79 ± 0.05 3833

MON 2.64 ± 1.23 2.40 ± 1.00 0.77 ± 0.05 1535

LYM 1.30 ± 0.67 1.27 ± 0.71 0.83 ± 0.08 3670

Donor 2 NEU 2.84 ± 1.00 2.63 ± 0.85 0.81 ± 0.05 1537

EOS 2.71 ± 0.89 2.42 ± 0.77 0.78 ± 0.05 2657

MON 3.41 ± 2.05 2.96 ± 1.55 0.78 ± 0.06 2853

LYM 1.35 ± 0.58 1.27 ± 0.55 0.83 ± 0.06 1143

Donor 3 NEU 2.60 ± 1.01 2.42 ± 0.92 0.79 ± 0.04 2218

EOS 2.34 ± 0.79 2.20 ± 0.73 0.80 ± 0.05 2457

MON 2.67 ± 1.61 2.46 ± 1.28 0.79 ± 0.05 3735

LYM 1.11 ± 0.42 1.09 ± 0.40 0.84 ± 0.06 1260
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three donors, with minor differences possibly attributable
to device fabrication errors and individual variations. The
scatter plots of the impedance amplitude ratio distribu-
tions at four frequencies were presented in Supplemen-
tary Fig. 6.
In terms of opacity, the opacities of MON for donor 1,

donor 2, and donor 3 were 0.77 ± 0.05 (ncell= 1535),
0.78 ± 0.06 (ncell = 2853), and 0.79 ± 0.05 (ncell= 3735),
respectively. The opacities of LYM were 0.83 ± 0.08,
0.83 ± 0.06, and 0.84 ± 0.06 for donor 1, donor 2, and
donor 3, respectively. The amplitude ratio and opacity
of LYM showed significant differences compared to
NEU, EOS, and MON, while the differences among
NEU, EOS, and LYM were relatively small. The ampli-
tude ratios and opacities of the leukocyte subpopula-
tions at 400 kHz and 2.5 MHz for the three donors were
summarized in Table 1, with the scatter plots of opacity
and 400 kHz amplitude ratio distribution shown in
Supplementary Fig. 7.
Figure 6 presented the classification results of 4-part

leukocytes based on a recurrent neural network,
including the training curves composed of classification
accuracy vs. iteration and loss vs. iteration, as well as the
confusion matrices for (a) donor 1, (b) donor 2, (c)
donor 3, and (d) all donors. The training curves for the
training and validation showed no significant differ-
ences, indicating no overfitting. The classification
accuracies for donor 1, donor 2, donor 3, and all donors
were 99.3%, 99.6%, 99.5%, and 99.2%, respectively. The
lowest true positive rate was observed between NEU and
EOS, while the lowest positive predictive value was

found among NEU, EOS, and MON. The confusion
matrices for the training, validation, and testing were
shown in Supplementary Fig. 8.

Leukocyte mixture
Figure 7 presented the 30 s impedance pulses at four

frequencies and proportional distribution for mixture 1
(a) and mixture 2 (b). Specifically, impedance pulses were
selected when leukocytes passed uniformly through the
virtual constriction microchannel to avoid incorrect
sorting proportions due to different sedimentation rates
of leukocyte subpopulations. No significant specific
screening was observed in the impedance pulses of the
two leukocyte mixtures, as shown by the impedance
magnitude change ratios at 400 kHz in Supplementary
Fig. 9.
For the classification of leukocyte mixtures, a classifi-

cation network model of the recurrent neural network
was established based on the impedance pulses of purified
leukocyte subpopulations from three donors. This model
was then applied to the impedance pulses of the two
leukocyte mixtures. In the classification results of the two
mixtures, the 4-part WBC fell within the theoretical range
and equivalent to the result of blood routine examination,
indicating the potential application of the developed
microfluidic impedance flow cytometry based on the
virtual constriction microchannel in clinical testing.

Conclusions
This study reported a microfluidic impedance flow

cytometer based on the virtual constriction microchannel.
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Fig. 5 Impedance profiles of four types of leukocytes from three healthy donors were detected and demonstrated. Impedance amplitude
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Fig. 6 Impedance profiles of four types of leukocytes were classified. Classification accuracy and loss versus iteration as well as confusion matrix
in 4-part leukocyte differential of NEU, EOS, MON, and LYM of donor 1 (a), donor 2 (b), donor 3 (c) and all donors (d)
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Utilizing conductive 1xPBS as the sample fluid and 10%
sucrose insulating solution as the sheath fluid, the virtual
constriction microchannel was successfully constructed
based on sheath focusing. The impedance pulses of three
leukemia cell lines, K562, Jurkat, and HL-60, were detected
based on this flow cytometer, achieving a classification
accuracy of 99.8% using the recurrent neural network.
Additionally, the impedance pulses of four types of leuko-
cytes (e.g., NEU, EOS, MON, and LYM), were detected
from three healthy donors, achieving a classification accu-
racy of ≥99.2%. A classification network model was estab-
lished based on the impedance pulses of purified leukocytes
combined with the recurrent neural network and applied to
the impedance pulses of two leukocyte mixtures, achieving
theoretical range proportions for the 4-part leukocyte dif-
ferentiation. The microfluidic impedance flow cytometry
based on the virtual constriction microchannel provided a
viable tool for clinical testing and blood analysis.
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