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SUMMARY
Evaluating the invasiveness of lung adenocarcinoma is crucial for determining the appropriate surgical strat-
egy, impacting postoperative outcomes. This study developed a multimodality model combining radiomics,
intraoperative frozen section (FS) pathology, and clinical indicators to predict invasion status. The study
enrolled 1,424 patients from two hospitals, divided into multimodal training, radiology testing, and pathology
testing cohorts. A prospective validation cohort of 114 patients was selected between March and May 2023.
The radiomics + pathology + clinical indicators multimodality model (multi-RPC model) achieved an area
under the curve (AUC) of 0.921 (95% confidence interval [CI] 0.899–0.939) in the multimodal training cohort
and 0.939 (95% CI 0.878–0.975) in the validation cohort, outperforming single- and dual-modality models.
The multi-RPCmodel’s predictive accuracy of 0.860 (95%CI 0.782–0.918) suggests that it could significantly
reduce inappropriate surgical procedures, enhancing precision oncology by integrating multimodal informa-
tion to guide surgical decisions.
INTRODUCTION

The diagnosis of small-sized non-small-cell lung cancer

(NSCLC) has increased with the increasing utilization of

computed tomography (CT) scanning of the thorax as the pri-

mary lung cancer screening program. Two new categories of

lung adenocarcinoma (LUAD), proposed by the International As-

sociation for the Study of Lung Cancer/American Thoracic

Society/European Respiratory Society,1 adenocarcinoma in

situ (AIS) and minimally invasive adenocarcinoma (MIA), have

garnered the interest of thoracic surgeons and pathologists.
iScience 27, 111421, Decem
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These two categories are often referred to as the pre-invasive

stages of LUAD.2 Multiple studies have revealed that patients

with AIS and MIA have a 100% 5-year disease-free survival

rate after resection3–5; however, patients with invasive adeno-

carcinoma (IA) have a worse 5-year disease-specific survival

rate with a higher risk of recurrence.6 Many surgeons currently

propose an appropriate technique for limited resection, including

wedge resection and segmentectomy, as an effective treatment

for AIS/MIA. Furthermore, compared to lobectomy, sublobar

resection can better maintain pulmonary function and enable

another resection in case of subsequent primary lung cancer.7,8
ber 20, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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Figure 1. Flowchart of patient selection
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However, lobectomy remains the standard treatment for most

IA, owing to improved prognosis.

Intraoperative frozen section (FS) diagnosis may be an effec-

tive method to determine AIS, MIA, and IA and to guide surgical

strategy for small-sized LUAD. According to Liu et al., the total

concordance rate between FS and final pathology (FP) is

84.4%.9 In some investigations, the concordance rate among

patients diagnosed with AIS or MIA using FS was only

63.24%.10 Pre-invasive stages and nodules smaller than 1 cm

are more challenging to diagnose, and errors are more prevalent

in these instances.11 Additionally, an overestimated level of

invasiveness is frequently observed.12 Severe distortion of the

architecture and other sampling problems may compromise

the accuracy and reliability of the interpretation.13 The potential

for limited resection is mostly based on intraoperative FS

diagnosis; hence, there is an increasing demand for timely

preoperative or intraoperative diagnosis with high accuracy.

Many methods have been developed to aid pathological clas-

sification preoperatively or intraoperatively, particularly using

features based on CT imaging.14–16 Matthew et al. developed

highly accurate machine learning models based on radiomic

features extracted from low-dose CT images that can assess

pulmonary nodules for risk of malignancy.17 Contrary to previous

studies, we attempted to develop a model that integrates

multimodal information, including clinical and laboratory data,

radiomics, and intraoperative FS analysis, to improve the diag-

nosis accuracy for identifying AIS, MIA, and IA intraoperatively,

in particular focusing on the small-sized (%3 cm) lung nodule

cases, which have a high probability for incorrect diagnosis or

with uncertainty during intraoperative FS diagnosis. Artificial in-
2 iScience 27, 111421, December 20, 2024
telligence-based image analysis of radiologic and pathologic

images enables the development of an automated method for

processing and analyzingmultimodal data that is efficient and la-

bor-saving with satisfactory performance.

RESULTS

Clinical characteristics of patients with stage I LUAD
who received surgery
The process of patient selection for four cohorts was presented

in Figure 1, and the research protocol of this study was shown

in Figure 2. Table 1 presents the clinical characteristics of the

four cohorts. No significant differences were found between

multimodal training cohort and other cohorts in terms of age,

sex, CT location, and smoking history (p > 0.05). The median

sizes of the nodules were 14 mm (interquartile range [IQR], 10–

19 mm), 12 mm (IQR, 9–16 mm), 10 mm (IQR, 7–15 mm), and

15 mm (IQR, 11–20 mm) for largest diameter in the multimodal

training, radiology testing, pathology testing, and prospective

validation cohorts, respectively. The numbers of patients

identified with AIS were 84 (11.1%), 92 (21.3%), 67 (29.1%),

and 17 (14.9%) in the multimodal training, radiology testing, pa-

thology testing, and prospective validation cohorts, respectively.

The number of patients identified with MIA was 170 (22.3%), 194

(44.8%), 63 (27.4%), and 20 (17.5%) in the four cohorts, respec-

tively. The proportions of patients identified with IA were 66.6%,

33.9%, 43.5%, and 67.5% in the four cohorts, respectively. The

total concordance rates between FS and FP were 78.3%,

71.2%, and 68.4% in the multimodal training, pathology testing,

and prospective validation cohorts, respectively.



Figure 2. Workflow of the study

(A) Images of non-enhanced thoracic CT and FS-based hematoxylin and eosin-stainedWSIs with 203magnification were collected and segmented for radiomic

feature extraction and pathologic parameter generation, respectively. The classification of five pathologic categories (Blank, LP, AIS, MIS, and IA) forWSI patches

was accomplished through pretrained EfficientNetmodel. Single-Rmodel was developedwith Rad-score, and single-Pmodel was developedwith AIS%,MIA%,

and IA%. Clinical indicators, including age and eosinophils, were selected by using univariable and multivariable logistic regression analysis. All dual-/multi-

modality models were developed by logistic regression.

(B) All models were trained in themultimodality training cohort, while single-P and dual-PCmodels were tested in the pathology testing cohort, single-R and dual-

RC models were tested in the radiology testing cohort, and dual-RP and multi-RPC models underwent internal testing by bootstrap analysis in the multimodality

training cohort. All models were further validated in the prospective validation cohort. FS: frozen section; WSI: whole-slide image; LP: lung parenchyma; AIS,

adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IA, invasive adenocarcinoma. AUC, area under the curve; NPV, negative predictive value; PPV,

positive predictive value; NRI, net reclassification improvement; IDI, integrated discrimination improvement; AIC, Akaike information criterion.
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Preoperative clinical indicators and CT radiomic feature
selection
Univariable and multivariable analyses were used to select

clinical indicators in the multimodal training cohort, with 254

pre-invasive LUAD cases and 507 invasive LUAD cases

(Table S2). Univariable and multivariable logistic regression

analyses demonstrated that age (hazard ratio [HR], 1.10 [95%

confidence interval (CI), 1.04–1.17]; p = 0.001) and eosinophil

count (HR, 20.96 [95%CI, 1.18–373.04]; p = 0.038) were associ-

ated with an increasing probability of invasive LUAD. Subse-

quently, age and eosinophil count were combined to predict

the invasive status in the multimodal training cohort, with an

area under the curve (AUC) of 0.672 (95% CI 0.637–0.705), indi-

cating the discriminative capacity (Figure S1). Characteristics of

demographic information and clinical indicators of participants in
radiology testing, pathology testing, and prospective validation

cohorts were shown in Table S3. Overall, 100 radiomic features

were extracted from each patient’s CT images. Seventeen

features with nonzero coefficients were selected to establish

the Rad-score using a least absolute shrinkage and selection

operator logistic regression (Figure S2).

Intraoperative FS pathologic classification
The AUCs for the EfficientNet B5 model to distinguish ‘‘blank,’’

‘‘lung parenchyma,’’ ‘‘AIS,’’ ‘‘MIA,’’ or ‘‘IA’’ patches from the

other four classes were 1.00, 1.00, 0.95, 0.89, and 0.96, respec-

tively. In addition, the overall accuracy for identifying the five

pathologic classes was 0.82 (Figure S3). After blank patches

were deleted, AIS%, MIA%, and IA% were calculated for each

whole-slide image (WSI) collected in the multimodal training,
iScience 27, 111421, December 20, 2024 3



Table 1. Patient characteristics

Characteristics

Multimodal training

cohort (761)

Radiology testing

cohort (433)

Pathology testing

cohort (230)

Prospective validation

cohort (114)

Age, years

Median 58 56 57.5 58

IQR (51–65) (48–64) (50–65) (52–65)

Sex

Male 279 (36.7) 147 (33.9) 88 (38.3) 39 (34.2)

Female 482 (63.3) 286 (66.1) 142 (61.7) 75 (65.8)

Asian 761 (100) 433 (100) 230 (100) 114 (100)

CT location

Left upper lobe 192 (25.3) 125 (28.9) 65 (33.5) 33 (28.9)

Left lower lobe 112 (14.8) 50 (11.5) 21 (10.8) 20 (17.5)

Right upper lobe 274 (36.1) 162 (37.4) 70 (36.1) 34 (29.8)

Right middle lobe 46 (6.1) 33 (7.6) 10 (5.2) 8 (7.0)

Right lower lobe 134 (17.7) 63 (14.5) 28 (14.4) 19 (16.7)

CT size, mm

Median 14 12a 10a 15

IQR (10–19) (9–16) (7–15) (11–20)

Smoking history

No 620 (81.5) 361 (83.4) 189 (82.2) 92 (80.7)

Yes 141 (18.5) 72 (16.6) 41 (17.8) 22 (19.3)

Invasion status diagnosed by FFPE

AIS 84 (11.1) 92 (21.3)a 67 (29.1)a 17 (14.9)

MIA 170 (22.3) 194 (44.8)a 63 (27.4)a 20 (17.5)

IA 507 (66.6) 147 (33.9)a 100 (43.5)a 77 (67.5)

Concordance rate between FS and FP (%)

AIS 53.8% – 70.1% 88.2%

MIA 63.8% – 61.9% 70.0%

IA 85.2% – 78.0% 63.6%

Total 78.3% – 71.2% 68.4%

Data presented as number (percentage, %), with the exception of age and CT size (median [IQR]).

IQR, interquartile range; CT, computed tomography; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IA, invasive adenocarci-

noma; FS, frozen section; FP, final pathology.
ap value (<0.05) is statistically significant for the radiology testing cohort, pathology testing cohort, and prospective validation cohort, respectively,

when compared with the multimodal training cohort.
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pathology testing, and prospective validation cohorts (Table S4).

The IA% was extremely low (median <4%) in the AIS and MIA

groups of all three cohorts, whereas the median AIS% was the

highest in theMIA groups of all three cohorts. However, the three

proportions were not as diverse in IA groups as in the AIS and

MIA groups in all three cohorts.

Predictive performance of single-R and single-P models
Based on the selected radiomic features, the CT-based single-

modality radiomic model (single-R model) achieved an AUC of

0.904 (95% CI 0.881–0.924) in the multimodal training cohort.

Subsequently, the single-R model was tested in the radiology

testing cohort, achieving an AUC of 0.847 (95% CI 0.809–

0.879) (Figure 3A). The single-modality pathologic model

(single-P model) achieved an AUC of 0.867 (95% CI 0.841–

0.891) in the multimodal training cohort and attained a similar

AUC of 0.859 (95%CI 0.807–0.901) when tested in the pathology
4 iScience 27, 111421, December 20, 2024
testing cohort (Figure 3B). The single-P model demonstrated a

higher level of generalizability, with a more proximate AUC of

the training and testing cohorts than the single-Rmodel. Further-

more, the calibration curve demonstrated the single-R and

single-P models’ high accuracy in predicting the invasiveness

of LUAD. The accuracy of the single-R model was higher than

that of the single-P model in the multimodal training cohort

(0.838 vs. 0.810) (Table 2).

Different kinds of integration based on multimodal
information in the multimodal training cohort
We systematically compared various combinations of dual-mo-

dality and multimodal features after assessing the predictive

performance of single-modality features. Combining clinical

indicators and Rad-score (dual-RC model) resulted in a

minor improvement in predictive performance in both the

multimodal training (from AUC = 0.904, 95% CI 0.880–0.924 to



Figure 3. Performance of single-modality models in training and testing cohorts

(A) Performance of single-modality radiomic model showed by ROC curves in multimodal training and radiology testing cohort and calibration curve.

(B) Performance of single-modality pathologic model showed by ROC curves in multimodal training and pathology testing cohort and calibration curve.
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AUC = 0.905, 95% CI 0.882–0.825) and radiology testing cohort

(form AUC = 0.847, 95%CI 0.809–0.879 to AUC = 0.846, 95%CI

0.808–0.878) (Figure 4A). Combining clinical and pathologic indi-

cators (dual-PC model) also resulted in a minor improvement in

predictive performance in both the multimodal training (from

AUC = 0.867, 95% CI 0.841–0.891 to AUC = 0.874, 95% CI

0.848–0.896) and pathology testing cohort (from AUC = 0.859,

95% CI 0.807–0.901 to AUC = 0.869, 95% CI 0.819–0.910)

(Figure 4B). A dual-modality model integrating Rad-score and

pathologic indicators (dual-RP model) resulted in an AUC of

0.919 (95% CI 0.898–0.938) in the multimodal training cohort

with bootstrap internal testing analysis, obtaining a median

AUC of 0.921 (IQR 0.913–0.927) (Figure 4C). The integration of

the three modes of information to develop the radiomics + pa-

thology + clinical indicators multimodality model (multi-RPC

model) resulted in the highest accuracy of 0.842 (95% CI

0.814–0.867) with an AUC of 0.921 (95% CI 0.899–0.939)

(Table 2). The median AUC of the bootstrap internal testing anal-

ysis was 0.923 (IQR 0.917–0.928) (Figure 4D). Generally,

combining different feature sets enhances the performance of

a single modality set.

The improvements in predicting the invasion status of dual-/

multimodality models over the single-R or single-P models

were further evaluated using net reclassification improvement

tests (all p < 0.05, except in comparisons between single-R

and dual-RC or multi-RPC models, and between single-P and

dual-PC models, Table S5) and integrated discrimination

improvement tests (all p < 0.05, Table S6) in the multimodal
training cohort. Additionally, the multi-RPC model yielded the

lowest Akaike information criterion value, suggesting that the

multimodality information integration provided the complemen-

tary capacity to improve predictive performance without

increasing the risk of overfitting (Table S7).

Prospective evaluation of dual-modality and
multimodality models in the clinical identification of
invasiveness of LUAD
The AUCs of the dual-RC, the dual-RP, and multi-RPC models

were 0.929 (95% CI 0.865–0.968), 0.942 (95% CI 0.883–0.977),

and 0.939 (95%CI 0.878–0.975), respectively, whichwere higher

than the AUC of the dual-PC model (0.874, 95% CI 0.848–0.896)

in the prospective validation cohort. The overall accuracy of the

dual-RP model was the highest (0.868, 95% CI 0.792–0.924) in

the prospective validation cohort (Table 2; Figure 5A). Decision

curve analysis was performed to demonstrate the clinical utility

of the dual-/multimodality models (Figures 5B and 5C).

If the predictive results of themulti-RPCmodel were applied to

guide the resection strategy, the number of pre-invasive cases

that underwent lobectomy owing tomisdiagnosis as IA or ambig-

uous diagnosis of LUAD by intraoperative FS would be reduced

from 8 to 2; the number of invasive cases that underwent limited

resection owing tomisdiagnosis as AIS/MIA by intraoperative FS

would be reduced from 23 to 13 (Figure 5D). The overall accuracy

can be improved from 68.4% (78/114) of intraoperative FS diag-

nosis to 86.8% (99/114) of multi-RPC model. The compute per-

formance measures on the basis of one intraoperative process
iScience 27, 111421, December 20, 2024 5



Table 2. Predictive performance of six types of models

Multimodal training cohort Radiology testing cohort Pathology testing cohort Prospective validation cohort

Single-R model

AUC 0.904 (0.880–0.924) 0.847 (0.809–0.879) – 0.936 (0.874–0.973)

Accuracy 0.838 (0.810–0.864) 0.822 (0.782–0.857) – 0.860 (0.782–0.918)

Sensitivity 0.814 (0.778–0.847) 0.719 (0.639–0.790) – 0.818 (0.714–0.897)

Specificity 0.862 (0.813–0.902) 0.864 (0.818–0.901) – 0.946 (0.818–0.993)

PPV 0.922 (0.896–0.941) 0.729 (0.664–0.786) – 0.969 (0.891–0.992)

NPV 0.699 (0.658–0.737) 0.858 (0.822–0.887) – 0.714 (0.607–0.802)

Single-P model

AUC 0.867 (0.841–0.891) – 0.859 (0.807–0.901) 0.883 (0.809–0.935)

Accuracy 0.810 (0.781–0.838) – 0.787 (0.728–0.838) 0.798 (0.713–0.868)

Sensitivity 0.804 (0.767–0.838) – 0.680 (0.579–0.770) 0.766 (0.656–0.855)

Specificity 0.806 (0.752–0.853) – 0.877 (0.808–0.928) 0.892 (0.746–0.970)

PPV 0.893 (0.866–0.915) – 0.810 (0.725–0.873) 0.937 (0.853–0.974)

NPV 0.673 (0.631–0.713) – 0.781 (0.727–0.827) 0.647 (0.546–0.736)

Dual-RC model

AUC 0.905 (0.882–0.925) 0.846 (0.808–0.878) – 0.929 (0.865–0.968)

Accuracy 0.839 (0.811–0.865) 0.810 (0.770–0.846) – 0.860 (0.782–0.918)

Sensitivity 0.844 (0.809–0.874) 0.706 (0.624–0.778) – 0.818 (0.714–0.897)

Specificity 0.850 (0.800–0.891) 0.864 (0.818–0.901) – 0.946 (0.818–0.993)

PPV 0.918 (0.893–0.938) 0.725 (0.660–0.783) – 0.969 (0.891–0.992)

NPV 0.731 (0.688–0.770) 0.852 (0.817–0.881) – 0.714 (0.607–0.802)

Dual-PC model

AUC 0.874 (0.848–0.896) – 0.869 (0.819–0.910) 0.876 (0.802–0.931)

Accuracy 0.812 (0.782–0.839) – 0.783 (0.724–0.834) 0.781 (0.694–0.853)

Sensitivity 0.804 (0.767–0.838) – 0.870 (0.788–0.929) 0.701 (0.586–0.800)

Specificity 0.806 (0.752–0.853) – 0.739 (0.654–0.812) 0.946 (0.818–0.993)

PPV 0.893 (0.866–0.915) – 0.719 (0.655–0.775) 0.964 (0.874–0.991)

NPV 0.673 (0.631–0.713) – 0.881 (0.815–0.925) 0.603 (0.517–0.684)

Dual-RP model

AUC 0.919 (0.898–0.938) – – 0.942 (0.883–0.977)

Accuracy 0.835 (0.807–0.861) – – 0.868 (0.792–0.924)

Sensitivity 0.765 (0.725–0.801) – – 0.818 (0.714–0.897)

Specificity 0.937 (0.899–0.963) – – 0.973 (0.858–0.999)

PPV 0.960 (0.938–0.975) – – 0.984 (0.901–0.998)

NPV 0.666 (0.629–0.700) – – 0.720 (0.615–0.806)

Multi-RPC model

AUC 0.921 (0.899–0.939) – – 0.939 (0.878–0.975)

Accuracy 0.842 (0.814–0.867) – – 0.860 (0.782–0.918)

Sensitivity 0.796 (0.759–0.831) – – 0.831 (0.729–0.907)

Specificity 0.897 (0.853–0.932) – – 0.973 (0.858–0.999)

PPV 0.939 (0.915–0.957) – – 0.985 (0.902–0.998)

NPV 0.688 (0.649–0.725) – – 0.735 (0.627–0.820)

Data are presented as mean (95% CI).

AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value; Single-R model, single-modality radiomic model; Single-P

model, single-modality pathologic model; Dual-RC model, radiomics + clinical indicators dual-modality model; Dual-PC model, pathology + clinical

indicators dual-modality model; Dual-RP model, radiomics + pathology dual-modality model; Multi-RPC model, radiomics + pathology + clinical in-

dicators multimodality model.
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Figure 4. Performance of dual-modality and

multimodality models in training and testing

cohorts

(A) Performance of radiomics + clinical indicators

dual-modality model showed by ROC curve in

multimodal training and radiology testing cohort

and calibration curve.

(B) Performance of pathology + clinical indicators

dual-modality model showed by ROC curve in

multimodal training and pathology testing cohort

and calibration curve.

(C) Performance of radiomics + pathology dual-

modality model showed by ROC curve in multi-

modal training cohort and AUC through internal

testing by bootstrap analysis.

(D) Performance of multimodality model showed by

ROC curve in multimodal training cohort and AUC

through internal testing by bootstrap analysis.
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are showed in STARMethods, and it takes less than 20 min from

making up the glass slide to gaining the predictive results. The

correspondent predictive results of the single-R and dual-RP

models in the prospective validation cohort are displayed in Fig-

ure S5. The overall accuracies for the prediction of single-R and

dual-RP models were 86.0% (98/114) and 86.8% (99/114),

respectively.

DISCUSSION

Multimodal data integration based on artificial intelligence

technologies has presented significant potential to guide deci-

sion-making on precision oncology.18 Complex diagnostic

tasks, such as lung cancer classification, can improve cancer

management; moreover, the clinical outcomes for patients can
iSc
be improved if the accuracy of the diag-

nosis can be improved.19 This study

successfully established a remarkable

multimodal predictive model by inte-

grating clinical information, radiomics,

and FS pathologic features to determinate

the invasiveness of %3 cm early LUAD,

which is crucial for selecting an appro-

priate resection method. The robustness

and generalizability of thismultimodal pre-

dictive model indicate that it is a reliable

and propagable tool for assisting in the

invasive diagnosis of operable early

LUAD. However, the predictive perfor-

mance of the models to distinguish AIS

and MIA was far from satisfactory (all

AUC < 0.75, Table S8), which suggested

the indistinctive differences of features

between AIS and MIA, and more detailed

feature analysis is required in the future.

Several large-scale multicenter clinical

trials have indicated that the overall sur-

vival of patients with T1aN0 peripheral

NSCLC showed no significant difference
between sublobar resection and lobectomy.20–22 Studies have

demonstrated that limited resection is curative for atypical

adenomatous hyperplasia (AAH), AIS, and MIA, while its survival

and recurrence rates are non-inferior to lobectomy.23,24

Conversely, IA often suggests a high risk of metastasis and

recurrence, which is more reasonable to treat with lobectomy.25

Determining the invasion status of early LUAD before or during

the surgery is crucial, particularly with the increasing use of sub-

lobar resection, which has the advantage of preserving lung

function. Since AAH is not included in TNM staging and the

occurrence of AAH in patients without concurrent cancer is un-

common,26 AAH was not included as a separate histologic

type analyzed in our research. Additionally, the prognosis of

LUADs with AAH has not been shown to be different from that

of those without AAH.27 Undoubtedly, CT, the most popular
ience 27, 111421, December 20, 2024 7



Figure 5. Performance of models in prospective validation cohort

(A) Comparison of ROC curves for dual-/multimodality models in prospective validation cohort.

(B) Decision curve analysis demonstrating the clinical utility in predicting invasiveness of the five models in multimodal training cohort.

(C) Decision curve analysis demonstrating the clinical utility in predicting invasiveness of the five models in prospective validation cohort.

(D) Comparison of final pathology, intraoperative frozen section diagnosis and multi-RPC model predictive results in the prospective validation cohort. Dual-RC

model, radiomics + clinical indicators dual-modality model; dual-PC model, pathology + clinical indicators dual-modality model; dual-RP model, radiomics +

pathology dual-modality model; multi-RPC model, radiomics + pathology + clinical indicators multimodality model; AIS, adenocarcinoma in situ; MIA, minimally

invasive adenocarcinoma; IA, invasive adenocarcinoma.
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screening tool for lung diseases, has beenwidely used to explore

several aspects for lung cancer, including invasiveness. Masa-

hiro et al. used high-spatial-resolution CT findings to predict

the invasiveness of LUAD and presented high diagnostic perfor-

mance; however, this study collected some of the features using

subjective image analysis via the radiologists.28 Nobuyuki et al.

and Sun et al. used radiomics for invasive prediction: one com-

bined radiomic features and radiographic features to construct a

nomogram,14 and the other investigated the voxel-based histo-

gram of 3D CT images.29 Wang et al. proposed a C-Lung-

RADS system for precise risk stratification of pulmonary nodules

by integrating CT imaging information, demographic character-

istics, and follow-up data.30 Even though the results of these

studies are encouraging to some degree, the accuracy is vari-

able, and the parameters lack uniform standards.

Intraoperative FS can be considered a superior alternative

because locating and sampling small lesions is a challenge for

the diagnostic performance of preoperative biopsy (transbron-

chial or transthoracic fine-needle biopsies). However, the

concordant rate of pathologic diagnosis between FS and FP re-

lies heavily on the experience of the pathologists and specimen

quality. Although H&E-stained WSIs collected from biopsy and
8 iScience 27, 111421, December 20, 2024
paraffin-embedded sections (final pathology) have been widely

explored to assist in disease diagnosis and prognosis prediction,

such as distinguish luminal and non-luminal breast cancers31

and predict NSCLC prognosis,32 H&E-stained WSIs derived

from intraoperative FS have not garnered much attention. Our

team brought experts from specific domains to address various

features to facilitate this study. Experienced radiologists care-

fully verified the segmentation of the targeted lung nodules,

and PyRadiomics, a standardized and open-source radiomics

pipeline, was used to extract the image biomarker standardiza-

tion initiative compliant features.33 This platform renders radio-

mics studies more reproducible and comparable. A senior

thoracic pathologist annotated the digitized H&E-stained WSIs

of the intraoperative FS, including the classification of 1,220

randomly selected images to train the EfficientNet B5 classifier

and recheck the invasion status of patients from all cohorts.

The EfficientNet B5 model achieved high accuracy with fewer

parameters, and thus was able to rapidly analyze WSIs.34

We integrated age, eosinophil count, radiomics, and FS path-

ologic features to develop a multi-RPC model for predicting the

intraoperative invasion status. Although the multi-RPC model

exhibited the best predictive performance in the multimodal
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training cohort, clinical information contributed little to the multi-

modal integration improvement compared with radiomics and

pathologic information. In the prospective validation cohort,

the dual-RP model demonstrated the highest AUC and accu-

racy; nevertheless, the complementary information provided by

clinical indicators cannot be neglected. The method we used

to analyze FSWSIs, on the one hand, focused on themost repre-

sentative and informative image parts to train the classifier; on

the other hand, the classification of small patches spared the

manual delineation of tumor regions of interest, which is a

time-consuming procedure, and improved the accuracy without

losing holistic features. More importantly, the outcomes of the

three modalities can be easily integrated using logistic regres-

sion, a classic and widely used machine learning method. The

workflows and software provided in this study can stimulate in-

terest in deploying a standardized and automated collection of

multimodal data and have broad applications for other diseases.

Various data have been combined to develop predictive models

for various purposes. Wang et al. combined machine learning

pathomics, radiomics features, immunoscore, and clinical fac-

tors to develop a nomogram to predict the outcomes of patients

with colorectal cancer.35

In conclusion, our results demonstrated that the integration of

radiomics, intraoperative FS pathologic information, and clinical

indicators can effectively predict the invasiveness of small-sized

early LUAD by developing a multimodality model based on

computational and machine learning methods. The multi-RPC

model is a promising approach to intraoperatively guide surgical

strategies and promote the development of precision oncology

practices in decision-making.
Limitations of the study
Although the advantages of the proposed approach are

evident, this study has some limitations. First, the data

collected from the two medical centers may be insufficient to

train or test the multimodality models. And the present study

was implemented only in a Chinese population, which might

restrict the generalizability of our findings to other ethnic popu-

lations. Comprehensive training and testing strategies require

datasets from multiple sites with consistent and stringent work-

flows to adjust for the heterogeneity properly. Second, the

H&E-stained WSIs used in our study were at 203 magnifica-

tion; however, a widespread criterion for digitalizing histopa-

thology images has not yet been established, and retraining

of prediction models is required for WSIs with different magni-

fication levels. Third, long-term survival information was not

collected to explore the difference in prognosis between pa-

tients with pre-invasive and invasive LUAD in this study, which

deserves further research.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw CT This paper N/A

Raw WSI This paper N/A

Code for models This paper https://github.com/tanxueyun-code/

invasiveness

Software and algorithms

Python (version 3.6.5) Python Software Foundation https://www.python.org/

R (version 4.2.0) R software http://www.R-project.org

MITK (version 2022.10) github https://www.mitk.org/wiki/The_Medical_

Imaging_Interaction_Toolkit_(MITK)

PyRadiomics (version 3.0.1) github http://www.radiomics.io/pyradiomics.html

EfficientNet B5 github https://github.com/tensorflow/tpu/tree/

master/models/official/efficientnet

MedCalc (version 11.4.2.0) MedCalc software https://www.medcalc.org/
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study design and participants
A retrospective multimodal training cohort was selected from the clinical database of theWuhan Union Hospital and Renmin Hospital

of Wuhan University between January 2021 and December 2022. The enrollment criteria for patients with multimodal information

were as follows: (1) patients were diagnosed with operable clinical early-stage lung adenocarcinoma, (2) thoracic CT was performed

within three months before surgery, and the nodule size was%3cm in diameter on CT, (3) no therapy history was discovered for lung

cancer, and (4) an intraoperative FS examination was performed during the operation. The exclusion criteria were as follows: (1) tumor

size >3cm, (2) multiple lesions or distant metastasis, (3) history of additional malignant tumors, and (4) age < 18 or > 80. Overall, 761

participants with complete multimodal data were included (Figure 1). Additionally, 433 participants were included in the radiology

testing cohort as they had undergone preoperative diagnostic thoracentesis with insufficient intraoperative FS evaluation. Due to

the unavailability of preoperative thoracic CT scans, 230 patients were included in the pathology testing cohort because they had

undergone positron emission tomography (PET) examinations before surgery (Figure 1). The prospective validation cohort (n=114)

was selected consecutively from Wuhan Union Hospital between March 2023 and May 2023 according to the same enrollment

criteria. The gold standard for the pathological diagnosis of invasion status (AIS, MIA, IA) for all patients included in the four cohorts

is a postoperative Formalin-Fixed Paraffin-Embedded section analysis (FFPE), defined as the final pathology (FP). Three physicians,

YC, HX, and MZ, obtained clinical information from electronic medical records of the enrolled patients, including sex, age, race,

smoking history, CT features and laboratory test results.

Ethical statement
This study was performed according to the International Council for Harmonization Guidelines for Good Clinical Practice and the

Declaration of Helsinki. The Wuhan Union Hospital (No. S0802) and the Renmin Hospital of Wuhan University (No. WDRY2023-

K004) Institutional Ethics Committee approved the study protocol and exempted the study from the necessity of obtaining informed

consent owing to its observational design.

METHOD DETAILS

Radiomics feature analysis for the development of a single-modality radiomic model
Non-enhanced thoracic CT data were obtained from Wuhan Union Hospital and Renmin Hospital of Wuhan University. Thoracic CT

examinations were performed at Wuhan Union Hospital on two commercial multi-detector CT scanners: Philips Ingenuity Core128

(Philips Medical Systems) and SOMATOMDefinition AS (Siemens Healthineers), with images reconstructed at a section thickness of

1.25–5 mm. CT scans were performed at the Renmin Hospital of Wuhan University on four commercial multi-detector CT scanners:

GE Optima CT680 CT, 64-slice LightSpeed VCT, BrightSpeed Elite CT, and Revolution CT (GE Medical Systems). The images were
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reconstructed at a section thickness of 0.75-5 mm. The targeted lung nodules were segmented using the pulmonary nodule CT im-

aging AI-assisted diagnosis system (Dr.Wise@PulmonaryNodule) (Hangzhou Deepwise & League of PHD Technology Co., Ltd).36,37

After CT images transmitted to the Dr. Wise system, automatic detection and segmentation of lung nodules were performed at the

lung window setting (level, � 600 HU, and width, 1600 HU). A qualified radiologist (F.P., with 14 years of thoracic radiology experi-

ence) corrected the segmentation slice-by-slice using open-source Medical Imaging Interaction Toolkit (MITK) software (version

2022.10).

Radiomics features were extracted using PyRadiomics (version 3.0.1),38 a widely used software package which is implemented in

Python for radiomics feature extraction. After CT image preprocessing, five feature classes, including a class for first-order statistics,

a class for shape descriptors, and texture classes Gray Level Co-occurrence Matrix, Gray Level Run Length Matrix, and Gray Level

Size ZoneMatrix, were used for feature extraction fromwhole volume (3D) segmentations. Further information regarding the detailed

formulas of the radiomic features can be discovered at https://pyradiomics.readthedocs.io/en/latest/features.html. A hundred radio-

mic features were extracted from the segmented data. Details about these features are provided in Table S1.

After extracting the 100 radiomic features, z-score normalization was applied to ensure that all features were on a comparable

scale and to eliminate any potential bias resulting from their varied ranges. To further refine the feature selection process, a t-test

feature selection was performed to assess the statistical significance of each feature in distinguishing between different types of

lung nodules. A threshold P value of 0.01 was selected to identify the most informative features. Least absolute shrinkage and se-

lection operator (LASSO) logistic regression with L1 regularization was employed to develop a single-modality radiomic (single-R)

model utilizing the selected features. Five-fold cross-validation was performed to ensure the robustness and generalizability of

the model.

LASSO regression yielded a linear equation involving the radiomic signatures considered the most relevant for differential diag-

nosis to obtain the Rad-score.

Rad-Score = 1.3229 + -0.1551 3 original_shape_Flatness + 0.5883 3 original_shape_LeastAxisLength + 0.2976 3 original_

shape_Maximum2DDiameterSlice + -0.0124 3 original_shape_Sphericity + 0.7493 3 original_firstorder_90Percentile + 0.0189 3

original_firstorder_InterquartileRange + 0.4060 3 original_firstorder_Median + 0.0905 3 original_firstorder_RootMeanSquared +

-0.2789 3 original_firstorder_Skewness + -0.0126 3 original_glcm_ClusterProminence + -0.2726 3 original_glcm_DifferenceVar-

iance + 0.16883 original_glcm_JointEnergy + 0.06873 original_glcm_JointEntropy + 0.05133 original_glszm_SizeZoneNonUnifor-

mityNormalized + 0.1848 3 original_glszm_ZoneEntropy + 0.2546 3 original_gldm_DependenceEntropy + -0.0120 3 original_

gldm_LargeDependenceLowGrayLevelEmphasis.

FS pathologic image analysis for the development of a single-modality pathologic model
At first, among FS-based haematoxylin and eosin (H&E) stained whole-slide images (WSIs) with 203magnification collected in 2020

fromWuhanUnion Hospital and Renmin Hospital ofWuhanUniversity, a random selected dataset comprising 1220 pathologic image

tiles (resolution: 100031000 pixels), selected by an experienced pathologist (N.Z.) and classified into five categories (including

‘‘Blank’’, ‘‘lung parenchyma (LP)’’, ‘‘AIS’’, ‘‘MIA’’, and ‘‘IA’’). We adopted the EfficientNet B5 model as our network backbone to

exploit the potential of deep learning and to achieve the classification of five pathologic categories for WSI tiles with a high accu-

racy.39 This dataset was divided into training and validation sets using a 7:3 split. EfficientNet, being among the most advanced con-

volutional neural network (CNN) architectures currently available, is known for its efficiency and efficacy due to the joint application of

depthwise separable convolution (MBConv) and squeeze and excitation (SE) modules.39–41 It achieves an optimal balance between

model size and performance by utilizing a novel compound scaling algorithm that optimizes depth, width, and resolution.40,41 We

applied transfer learning to leverage the pre-trainedweights from IMAGENET1K_V1, further fine-tuning the network for the pathologic

diagnosis task.42,43 Data augmentation strategies included resizing to 2243224, auto-segment policies, random horizontal flips, and

patch erasing to enhance generalization.44 A dropout strategy with a 0.5 threshold probability was employed to determine the final

classifier layer.39,45,46 Cross-entropy loss was utilized, and optimization was performed with Stochastic Gradient Descent (SGD) and

a specific learning rate of 0.001, a batch size of 30, and training for 100 epochs. Learning rate scheduling utilized OneCycleLR.1 The

model was trained on a cloud GPU platform (gpuhub.com/home) with an Nvidia A5000 24GGPU, a 60-core Intel(R) Xeon(R) Platinum

8358PCPU, and 360GB of RAM, utilizing PyTorch 1.11.0 +CUDA 11.3. Themodel selection criterion prioritizedminimizing the loss of

the validation set to prevent overfitting.

Then, we obtained 399 and 592 FS-based WSIs between January 2021 and December 2022 from Wuhan Union Hospital and Re-

nmin Hospital of Wuhan University, respectively, each containing WSIs with dimensions of up to 100,0003100,000 pixels at a 203

magnification, corresponding to a resolution of 0.25 mmper pixel. To ensure interoperability with our trained network, these consider-

able WSIs were segmented into small contiguous patches, each with a uniform resolution of 100031000 pixels. These patches were

subsequently input into the pre-trained and fine-tuned EfficientNet B5 model. The model then generated probability distributions for

all patches, categorizing them into the five pathologic classes, including ‘‘Blank’’, ‘‘LP’’, ‘‘AIS’’, ‘‘MIA’’, and ‘‘IA’’. Blank patches were

deleted from the entire count of oneWSI, and the numbers of LP, AIS, MIA, and IA patches were denoted by n1, n2, n3 and n4, respec-

tively. Three proportions were calculated to develop the single-modality pathologic (single-P) model in themultimodal training cohort
iScience 27, 111421, December 20, 2024 e2
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using logistic regression:
AIS% =

n2

n1+n2+n3+n4

3100%

MIA% =
n3

n1+n2+n3+n4

3 100%

IA% =
n4

n1+n2+n3+n4

3 100%
Development and validation of dual-modality and multimodality predictive models
In this study, clinical indicators were selected based on age, sex, smoking history, and laboratory testing results using univariable

and multivariable logistic regression analyses to predict the invasiveness of lung adenocarcinoma. In the multimodal training cohort

(Figure 2), the Rad-score and clinical indicators were combined to develop the radiomics + clinical indicators dual-modality (dual-RC)

model. Three pathological proportions (AIS%, MIA%, and IA%) calculated in the single-P model and clinical indicators were com-

bined to develop the pathology + clinical indicators dual-modality (dual-PC) model. The Rad-score calculated in the single-R model

and three pathological proportions (AIS%, MIA%, and IA%) calculated in the single-P model were combined to develop the radio-

mics + pathology dual-modality (dual-RP) model. The multi-RPC model was developed from the integration of the Rad-score, three

pathological proportions (AIS%, MIA%, and IA%), and two clinical indicators (age and eosinophils). All dual-modal and multimodal

models were developed using logistic regression to predict binary outcomes.

The radiology testing cohort was used to test the single-R and dual-RC models, and the pathology testing cohort was used to test

the single-P and dual-PC model. A prospective validation cohort was used to validate the models. For all models developed in this

study, the binary outcome was ‘‘pre-invasive’’ (AIS and MIA) and ‘‘invasive’’ (IA).

Compute performance measures on the basis of one intraoperative process
First step: The gross specimen of tumor is cut into thin slices; the tissue sections are cut and picked up on glass slide and stained in

haematoxylin and eosin. (about 15 min).

Second step: The FS-based haematoxylin and eosin (H&E) stained section is scanned into whole-slide images (WSIs) with 203

magnification. (about 1 min).

Third step: A sliding window approach is used to segment oneWSI into small contiguous patches, each with a uniform resolution of

100031000 pixels; these patches are subsequently input into the EfficientNet B5model and categorized into five pathologic classes,

including ‘‘Blank,’’ ‘‘LP,’’ ‘‘AIS,’’ ‘‘MIA,’’ and ‘‘IA’’. (about 30 s).

Fourth step: The clinical indicators, radiomics and pathologic results are input into the RPCMMmodel to get the final prediction of

invasion status of the tumor. (about 3 s).

QUANTIFICATION AND STATISTICAL ANALYSIS

The area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV)

were used to evaluate the models’ performance in predicting invasion status. Moreover, a calibration plot was performed to assess

the discrimination capacity of the predictive models. Additionally, we used net reclassification improvement (NRI) and integrated

discrimination improvement (IDI) tests to estimate the model performance in identifying pre-invasive and invasive lung adenocarci-

noma. The Akaike information criterion (AIC) test was performed to assess the risk of model overfitting. Decision curve analysis (DCA)

was performed to estimate the clinical utility of the models by evaluating their net advantages when applied to a test set at different

threshold probabilities. All tests were two-sided, and P < 0.05 indicated statistical significance. MedCalc (version 11.4.2.0), R studio

(version 4.2.0), and Python (version 3.6.5) were used for statistical analyses.

ADDITIONAL RESOURCES

This study was registered on the Clinical Trials website (No. NCT05830812). Description: https://clinicaltrials.gov/study/

NCT05830812?term=NCT05830812&rank=1.
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