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SUMMARY

Immunotherapy has significantly altered the treatment paradigm of non-small cell lung cancer (NSCLC), but
not all patients experience durable benefits. Predictive biomarkers are needed to identify patients who may
benefit from immunotherapy. We retrospectively collected tumor tissues from 65 patients with advanced
NSCLC before treatment, and performed transcriptomic and genomic analysis. By performing single-sample
gene set enrichment analysis, we constructed a predictor named IKCscore based on the tumormicroenviron-
ment characteristics. IKCscore is a robust biomarker predicting response to immunotherapy, and its predic-
tive capacity was confirmed from public datasets across different cancer types (N = 892), including OAK,
POPLAR, IMvigor210, GSE135222, GSE126044, and Kim cohorts. High IKCscore was characterized by in-
flammatory tumor microenvironment phenotype and higher T cell receptor diversity. The IKCscore exhibits
promise as a bioindicator that can predict the efficacy of both immunotherapy and immunotherapy-based
combination therapies, while providing guidance for personalized therapeutic strategies for advanced
NSCLC patients.

INTRODUCTION

Over the past decade, the treatment of non-small cell lung can-

cer (NSCLC) has shifted from traditional chemotherapy, radio-

therapy, and targeted therapies to immunotherapy. An updated

analysis by KEYNOTE-024 revealed that the 5-year survival rate

of NSCLC patients treated with immunotherapy increased to

30%,1 providing further evidence for using anti-PD-(L)1 antibody

in NSCLC. However, a significant subset of patients fails to

respond to immune checkpoint blockades (ICBs), with an objec-

tive response rate of 20–40%.2,3 Identifying patients who can

benefit from ICBs is a significant challenge and forms the basis

of precision medicine.

Previousstudieson immunotherapybiomarkersmainly focused

on PD-L1 immunohistochemistry (IHC), tumor mutation burden

(TMB), andmicrosatellite instability-high (MSI-H)but failed to iden-

tify potential responders accurately. PD-L1 expression in tumor

cells examined by IHC is the only approved biomarker for deter-

mining the response to ICBs in NSCLC and is widely used in clin-

ical practice.4 Nevertheless, the use of PD-L1 expression remains

controversial because of the non-uniform PD-L1 detection

methods and antibodies.5 Intriguingly, some patients with nega-

tive PD-L1 expression also response to ICBs.6 High TMB, which

reflects more tumor mutations, is a promising biomarker that

generally corresponds to higher immunogenicity and increased

T cell reactivity.7 However, a significant limitation of TMB is that
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it does not always correlate with better response to ICBs and pro-

longedoverall survival.8,9 Furthermore,different testingalgorithms

and unvalidated cut-off values complicate TMB estimation.10

Although MSI-H is a pan-tumor immunotherapy predictor, it only

occurs in <1% of patients with NSCLC,11 suggesting that MSI-H

cannot discriminate most candidate responders.

With the rapid development of high-throughput sequencing

technology, many tumor microenvironment assessment tools

and efficacy biomarkers generated from RNA-seq data have

been suggested.12 Many computational tools have improved

the comprehensive understanding of immune cell infiltration pro-

portion inference, further realizing large-scale tumor microenvi-

ronment evaluation based on bulk tumor transcriptome pro-

files.13–15 Transcriptomic studies have established numerous

biomarkers that predict immunotherapy efficacy across multiple

cancer types, and several biomarkers are available for clinical

applications.16,17 For instance, a T cell-inflamed gene expres-

sion profile (GEP) consisting of IFN-g-related genes showed

good predictive power in melanoma.18,19 Recently, we devel-

oped a tumor microenvironment score (TMEscore) that pre-

dicted ICBs responses with high accuracy20 and integrated the

TMEscore with a NanoString RNA panel for convenient clinical

translation.21 In contrast to PD-L1 and TMB, GEP and TMEscore

were calculated based on high-throughput data and reflected

the multifaceted characterization of tumor and its microenviron-

ment. Therefore, we aimed to develop a reliable biomarker

based on pre-treatment NSCLC immunotherapy datasets of

RNA-seq data by integrating the tumor microenvironment,

intrinsic tumor pathways, and other biological signatures associ-

ated with immune responses.

This study utilized the RNA-seq data from NSCLC patients

receiving ICBs treatment to construct a robust immune

biomarker, the Immune-Keratin-Immune Checkpoint score (IKC-

score), based on the tumor microenvironment, and integrated it

as an open-source R package for further application in clinical

implementation. Furthermore, the potential mechanisms associ-

ated with IKCscore were explored in NSCLC, metastatic urothe-

lial cancer, gastric cancer immunotherapy cohorts, and The

Cancer Genome Atlas (TCGA) datasets.

RESULTS

The establishment of IKCscore
Transcriptome sequencing was performed on tumor specimens

from 65 patients with advanced NSCLC before receiving anti-

PD-1 therapy in our Nanfang Hospital (NFH) cohort. The baseline

clinicopathological features of the patients are summarized in

Table 1; detailed information is provided in Table S1. The IKC-

score establishment flowchart was shown in Figure S1. We first

calculated numerous signatures covering tumor microenviron-

ment, metabolic pathways, tumor intrinsic pathways via R pack-

age IOBR.22 Subsequently, batch Wilcoxon statistical analyses

were used to select the signatures associated with immuno-

therapy responses. And the top 15 signatures highly expressed

in responders (complete response (CR)/partial response (PR))

and non-responders (progressive disease (PD)/stable disease

(SD)) ordered by p-value (p < 0.05) respectively were identified

(Figure 1A). Next, we reviewed the gene sets of these 30 signa-

tures (Figure 1A), listing the component genes (n = 280). For

these 280 genes, we applied the Wilcoxon test to screen for

genes significantly correlated with immunotherapy responses

(responders vs. non-responders, p < 0.05) and obtained 16

genes. Simultaneously, by performing differential gene expres-

sion (DEG) analysis, we identified genes that were significantly

upregulated in responders and non-responders (Figure 1B),

and the top 35 genes ordered by p-value in both responders

and non-responders respectively were selected. Next, so as to

further integrate the genes associated with therapeutic re-

sponses from the above steps, we combined 16 genes that

constitute the response-associated signatures and 70 genes

identified from DEGs, and got 86 genes. Further, we removed

all pseudogenes and obtained 79 genes at last. To readily facil-

itate clinical application, we screened the top 30 significant

genes related to ICBs efficacy respectively in responders and

non-responders from the 79 genes again to further reduce

gene numbers using Wilcoxon statistical analyses (p < 0.05).

Finally, we obtained 60 genes associated with responses to

immunotherapy. Next, K-means were utilized to identify gene

patterns relevant to optimal immunotherapy response on 60

selected genes. The K-means cluster analysis of selected 60

genes generated 5 gene expression patterns (Figure 1C). Inter-

estingly, the first pattern of genes was highly expressed in re-

sponders to ICBs, and Gene Ontology (GO) enrichment analysis

demonstrated that they were predominantly enriched in the im-

mune-associated pathways including antigen processing and

presentation, MHC class receptor activity, and complement acti-

vation (Figure 1D). Therefore, the first cluster was defined as im-

mune pattern. Notably, the second pattern genes highly ex-

pressed in non-responders to ICBs. GO enrichment analysis

demonstrated that the second pattern genes were enriched in

epidermal development and keratin filament pathways, which

were commonly correlated with tumor development23,24 (Fig-

ure 1E). Therefore, the second pattern was defined as the Keratin

pattern. Then, we sought to use the single-sample Gene Set

Enrichment Analysis (ssGSEA) algorithm to derive signature

score characterizing immune pattern genes and Keratin pattern

genes separately. Consistently, a positive correlation was

observed between TumorPurity and Keratin score (KRTscore)

Table 1. Baseline characteristics of patients with advanced non-

small cell lung cancer in NFH cohort

Total (N = 65)

Age 59.07 (31–81)

Sex Male (52, 80%)

Female (13, 20%)

Race Asian (65, 100%)

Histology Adenocarcinoma (36, 55%)

Squamous carcinoma (20, 31%)

Others (9, 14%)

Regimen Monotherapy (14, 22%)

Combination (51, 78%)

Best objective response PR (25, 39%)

SD (32, 49%)

PD (8, 12%)
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Figure 1. Tumor microenvironment is associated with immunotherapy efficacy in NSCLC

(A) The heatmap of the top 15 tumor and tumor microenvironment-associated signature values in responders (R) and non-responders (NR) in the NFH

cohort.

(legend continued on next page)
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(Figure 1F), further confirming that KRTscore was a negative in-

dicator for immunotherapy efficacy. Since immune checkpoints

are the targets of immunotherapy, we aim to integrate immune

checkpoint related genes to further improve the accuracy of

immunotherapy efficacy prediction. Mariathasan et al. collected

several immune-associated gene sets, including the Immune

Checkpoint gene set,25 which contained PDL1, PDCD1LG2,

CTLA4, PDCD1, LAG3, HAVCR2, and TIGIT. By applying the

ssGSEA, we obtained the signature score reflecting the above

immune checkpoint genes expressions, named Immune Check-

point score. In general, we used positive response-related signa-

ture scores, including Immune score and Immune Checkpoint

score, and subtracted the negatively related signature score

KRTscore to generate an integrated model named IKCscore

for predicting the immunotherapy responses: IKCscore = Im-

mune score + Immune Checkpoint score – KRTscore. The

component genes of Immune pattern and Keratin pattern are

listed in Table S2.

IKCscore is a promising predictor of immunotherapy
response in NSCLC
In the NFH cohort, the relationship between the IKCscore and

treatment responses was evaluated. Consistent with our expec-

tations, the Immune score, Immune Checkpoint score, and IKC-

score were associated with therapeutic response, whereas the

KRTscorewassignificantly increased in thenon-responder group

(Figure 2A). Receiver operating characteristic (ROC) curve anal-

ysis revealed that IKCscore achieved an area under curve (AUC)

value of 0.841, suggesting that IKCscore had high accuracy in

predicting ICBs responses (Figure 2B). Additionally, compared

to patients with low IKCscore, those with high IKCscore had

significantly improved progression-free survival (PFS) (Figure 2C,

HR = 0.46, 95%CI:0.22–0.95,p = 0.033).We further validated the

predictive capacity of the IKCscore in other NSCLC immuno-

therapy datasets. In the GSE126044 cohort and GSE135222

cohort, the predictive value of the IKCscore for immunotherapy

was confirmed (GSE126044: Figures 2D and 2E, IKCscore

AUC = 0.946; Figure 2F, HR = 0.21, 95% CI:0.05–0.82, p =

0.014; GSE135222; Figure 2G, HR = 0.15, 95% CI:0.03–0.66,

p = 0.0047; Figure 2H, IKCscore AUC = 0.776). In addition, pa-

tients with high IKCscore had significantly longer overall survival

than those with low IKCscore in the POPLAR and OAK cohort

(Figure 2I, HR = 0.60, 95% CI:0.38–0.94, p = 0.025; Figure 2J,

HR = 0.51, 95% CI:0.35–0.73, p = 0.00019), suggesting that pa-

tients with high IKCscore had a favorable response to ICBs.

To expand the applicability of the IKCscore to other cancer

types, we investigated the performance of the IKCscore in

advanced gastric cancer and metastatic urothelial cancer. As

expected, the IKCscore exhibited good predictive capacity for

anti-PD-1 therapy in patients with gastric cancer (Figure 2K,

AUC = 0.740). Survival analysis also revealed that patients with

high IKCscore had prolonged PFS in the IMvigor210 cohort (Fig-

ure 2L, HR = 0.69, 95% CI:0.52–0.90, p = 0.0069). Accordingly,

our study showed that the IKCscoremight be a robust biomarker

for predicting ICBs responses in NSCLC.

Comparison of IKCscore and PD-L1 in predicting
immunotherapy monotherapy and combined therapy
efficacy
PD-L1 expression remains the only reliable biomarker of immu-

notherapy in advanced NSCLC and is widely used in clinical

practice. To describe the relationship between the IKCscore

and PD-L1 expression, we stratified PD-L1 expression into three

levels: <1% (level 0), 1–49% (level 1), and R50% (level 2).

Consistent with our expectations, 58% of patients with level 2

PD-L1 expression responded to immunotherapy (Figure 3A). In

comparison, 25% and 22% of patients with level 0 and 1 PD-

L1 expression were responders, respectively, implying that a

subset of PD-L1-negative patients still benefit from immuno-

therapy. Patients with higher IKCscore were more likely to

benefit from ICBs therapy (Figure 3B). The boxplot demon-

strated that the IKCscore increased with increasing PD-L1

expression levels (Figure 3C, Kruskal�Wallis, p = 0.018). In addi-

tion, the IKCscore was positively correlated with PD-L1 expres-

sion level, including immune cells (IC) and tumor cells (TC) levels

in the IMvigor210 cohort (Figures 3D and 3E, IC: Kruskal�Wallis,

p < 2.2e�16; TC: Kruskal�Wallis, p = 1.8e�11).

Next, we sought to compare the predictive abilities of the IKC-

score and PD-L1 expression. Continuous PD-L1 expression rep-

resents the original IHC results; PD-L1 was classified as binary

into positive (R1%) and negative (<1%) PD-L1 expression; PD-

L1 levels are presented as previously mentioned. Therefore, we

further analyzed the IKCscore and PD-L1 expression perfor-

mance in different regimen settings. Among the 49 patients

with available PD-L1 IHC results, 13 received ICBsmonotherapy,

and 36 received ICBs combination therapy. In bothmonotherapy

and combination therapy groups, the IKCscore yielded a higher

predictiveaccuracy (Figure3F: IKCsocreAUC=0.929; Figure3G:

IKCscoreAUC=0.851) thanPD-L1expression (Figure 3F: contin-

uousPD-L1AUC=0.691, PD-L1 level AUC=0.643, PD-L1 binary

AUC = 0.571; Figure 3G: continuous PD-L1 AUC = 0.646, PD-L1

level AUC = 0.646, PD-L1 binary AUC = 0.542). Case 1 patient

owned a high IKCscore but TPS = 3% at baseline. PET-CT was

utilized as a complementarymeasure to evaluate hypermetabolic

lesions. After immunotherapy and chemotherapy combination

therapy, the response rate was assessed as PR (Figure 3H).

The high accuracy of the IKCscore in discriminating responders

from combination therapy arouses concerns due to the lack of

biomarkers indicating immunotherapy combination therapy

efficacy in NSCLC. Further, 17 NSCLC samples undergoing

(B) The volcano plot of differential expression gene analysis between responders (R) and non-responders (NR) in the NFH cohort. The red dots represent

significantly upregulated genes (log2Fold Change >1, p-value <0.005), and the green dots represent significantly downregulated genes (log2Fold Change <�1,

p-value <0.005). The represented genes in IKCscore were marked with a black circle.

(C) Unsupervised K-means clustering of selected immunotherapy efficacy-associated genes.

(D) Gene ontology enrichment analysis of genes in Immune pattern.

(E) Gene ontology enrichment analysis of genes in KRT pattern.

(F) A scatterplot demonstrated a positive correlation between the TumorPurity and KRTscore (Spearman test, r = 0.45, p = 0.00021).
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ICBs-based combination therapy were collected for RNA-seq as

the validation cohort. In the validation cohort, the IKCscore also

exhibited a higher AUC than PD-L1 variables (Figure 3I: IKCscore

AUC= 0.857, continuous PD-L1 AUC= 0.810, PD-L1 level AUC=

0.679, PD-L1 binary AUC = 0.429). Collectively, IKCscore could

not only screen out responders and non-responders from ICBs

monotherapy but also displayed higher accuracy than PD-L1

expression level for ICBs combination therapy.

Comparisons and associations of TMB and T cell
receptors diversity with IKCscore
Although TMB is a controversial biomarker of ICBs efficacy in

NSCLC, its potential in predicting efficacy cannot be underesti-

mated. To explore the relationship between TMB and IKCscore,

we categorized binary TMB into high and low TMB, with a cut-off

TMB value of 10 (mut/Mb), based on Food and Drug Administra-

tion approval.26 The IKCscore increased in the high TMB group,

but only 2 patients were identified as high TMB (Figure 4A, Wil-

coxon test, p = 0.27). In the NFH cohort, the IKCscore displayed

a higher predictive value than TMB and binary TMB (Figure 4B,

AUC = 0.782, 0.711, and 0.567, respectively). Correlation anal-

ysis also confirmed that the IKCscore and TMB were not corre-

lated in the NFH cohort (Figure 4C, r = 0.019, p = 0.9179),

implying that the IKCscore and TMB-mediated ICB responses

occur via distinct mechanisms.

The tumor mutation burden identifies neoantigens derived

from nonsynonymous mutations.10 Neoantigens are processed

and presented and can then be captured by specific T cell recep-

tors (TCR), further activating the host anti-tumor response.27

Therefore, TCR diversity representing identified neoantigens ap-

pears to be amore accurate predictor of tumor response to ther-

apy than TMB diversity. In melanoma, high TCR diversity before

treatment was associated with anti-PD1 therapy responses.28

High TCR diversity also reflects activated immune status in

lung cancer, which could indicate anti-cancer treatment effi-

cacy.29 Consistently, in The Cancer Genome Atlas Lung Adeno-

carcinoma (TCGA-LUAD) and The Cancer Genome Atlas Lung

Squamous Cell Carcinoma (TCGA-LUSC), the IKCscore was

positively correlated with TCR diversity, including TCR Shannon

and TCR richness (Figures 4D–4G), indicating that the IKCscore

is capable of identifying patients with high TCR diversity who

probably benefit from immunotherapy.

IKCscore is associated with the immune-activated
microenvironment
To determine whether IKCscore could characterize the imm-

une microenvironment, we assessed the association between

IKCscore and immune cell infiltration abundance using CIBER-

SORT. In the NFH cohort, CD8+ T cells, memory resting CD4+

T cells, and resting dendritic cell infiltration levels in the high IKC-

score group were significantly higher than those in the low IKC-

score group (Figure 5A). The infiltration of CD8+ T cells was

further examined by IHC (Figure 5B). Additionally, CD8+ T cell

signatures, dendritic cell signatures, and antigen presentation-

associated signatures were enriched in the high IKCscore group

(Figure S2A). Multiple studies have classified tumor subtypes ac-

cording to the pattern of immune cell infiltration. In metastatic ur-

othelial cancer (IMvigor210), high IKCscore implied an inflamed

subtype linked to a better response (Figures S2B and S2C). Bag-

aev et al. recently established 4 simple tumor microenvironment

(TME) subtypes, termed immune-enriched, fibrotic (IE/F), im-

mune-enriched, non-fibrotic (IE), fibrotic (F), and immune-

depleted (D) across 20 cancer types, which characterized the

landscape of immune cells and fibrotic cells, and served as a po-

tential immunotherapy indicator.30 As expected, high IKCscore

with more IE and IE/F subtypes was linked to a better response

in the GSE135222 cohort (Figures 5C and 5D). Similarly, the IKC-

score increased in the IE and IE/F subtypes in TCGA-LUAD (Fig-

ure S2D) and TCGA-LUSC (Figure S2E) cohorts. We then

explored the potential interaction between tumor cells and

microenvironment cells using the R package EaSIeR.31 Complex

intercellular communication networks involved with tumor cells

and themicroenvironment were observed in high IKCscore sam-

ples compared with low IKCscore samples, especially interac-

tions between CD8+ T cells and other immune cells (Figure 5E).

Interestingly, a more complicated network was also observed

in the responders to immunotherapy (Figure S2F). In addition,

several factors, including TME ligand-receptor pairs, transcrip-

tion factors, and immune cells related to the IKCscore, were

identified, which highly overlapped with those related to

Figure 2. IKCscore holds promise in predicting immunotherapeutic response

(A) Boxplot showed that increased IKCscore, ImmuneCheckpoint score, and Immune score in the R group and an increasedKRTscore in the NRgroup in the NFH

cohort (NFH cohort: n = 65; Wilcoxon test, p = 1.2e-06, 0.0055, 4.7e-07, 0.00049, respectively).

(B) ROC analysis indicated that the IKCscore achieved an AUC of 0.841 in the NFH cohort.

(C) High IKCscore was significantly related to more favorable PFS in the NFH cohort (Log rank, p = 0.033, HR = 0.46, 95% CI: 0.22–0.95).

(D) Boxplot showed increased IKCscore, Immune Checkpoint score, and Immune score in the R group and increased KRTscore in the NR group in the

GSE126044 cohort (GSE126044 cohort: n = 16; Wilcoxon test, p = 0.0032, 0.0018, 0.038, 0.22, respectively).

(E) ROC curve of IKCscore in GSE126044 cohort (AUC = 0.946).

(F) Kaplan-Meier survival analysis demonstrated that a higher IKCscore was significantly related to more favorable PFS in the GSE126044 cohort (Log rank, p =

0.014, HR = 0.21, 95% CI: 0.05–0.82).

(G) KaplanMeier survival analysis showed that patients with high IKCscore had significantly longer PFS in the GSE135222 cohort (GSE135222 cohort: n = 27; Log

rank, p = 0.0047, HR = 0.15, 95% CI: 0.03–0.66).

(H) ROC curve of IKCscore in GSE135222 cohort.

(I and J) Kaplan-Meier survival analysis revealed that a high IKCscore was significantly correlated with prolongedOS in the (I) POPLAR cohort (n = 95) and (J) OAK

cohort (n = 344) (Log rank, POPLAR: p = 0.025, HR = 0.60, 95% CI: 0.38–0.94; OAK: p = 0.00019, HR = 0.51, 95% CI: 0.35–0.73).

(K) ROC curve of IKCscore in metastatic gastric cancer cohort (n = 45, AUC = 0.740).

(L) Kaplan-Meier analysis of overall survival in the IMvigor210 cohort (n = 348, Log rank, p = 0.0069, HR = 0.69, 95% CI: 0.52–0.90), with patients divided by high

and low IKCscore. R, responders; NR, non-responders; AUC, Area under curve; ROC, Receiver operating characteristic.
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Figure 3. Comparison of IKCscore and PD-L1 in predicting immunotherapy monotherapy and combined therapy

(A) Rate of response to ICBs in different PD-L1 expression groups, including level 0, level 1, and level 2 in the NFH cohort. PD-L1 level 0: <1%; level 1: 1–49%; level

2: R50%.

(B) Rate of response to ICBs in high and low IKCscore groups in the NFH cohort.

(C) IKCscore was positively associated with PD-L1 expression level (Kruskal�Wallis, p = 0.018).

(D and E) In IMvigor210 study, tumor tissue samples were scored through immunohistochemistry (IHC) for PD-L1 expression on tumor-infiltrating immune cells

(IC), which includedmacrophages, dendritic cells and lymphocytes. Specimenswere scored as IHC IC0, IC1, IC2, or IC3 if <1%,R1%but <5%,R5%but <10%,

orR10%of IC were PD-L1 positive, respectively. The PD-L1 expression on tumor cells (TC) was also conducted. Specimens were scored as IHC TC0, TC1, TC2,

or TC3 if <1%, R1% but <5%, R5% but <50%, or R50% of TC were PD-L1 positive, respectively. PD-L1 expression, both IC (D) and TC (E), are positively

correlated with IKCscore in the IMvigor210 cohort. IC0 and TC0 tumors have the lowest IKCscore compared to IC1, IC2+, TC1, and TC2+ (IC: Kruskal�Wallis,

p < 2.2e�16; TC: Kruskal�Wallis, p = 1.8e�11).

(F) ROC curve of IKCscore, continuous PD-L1 expression, PD-L1 level, and PD-L1 binary in NFH cohort with PD-L1 IHC results who received anti-PD-1 inhibitor

monotherapy (AUC = 0.929, 0.691, 0.643, 0.571, respectively).

(G) ROC curve of IKCscore, continued PD-L1 expression, PD-L1 level, and PD-L1 binary in NFH cohort with PD-L1 IHC results who received anti-PD-1 inhibitor

plus chemotherapy combination therapy (AUC = 0.851, 0.646, 0.646, 0.542, respectively).

(H) The IKCscore distribution of case 1 patient and the typical CT image at the baseline and PR times.

(I) ROC curve of IKCscore, continuous PD-L1 expression, PD-L1 level, and PD-L1 binary in NFH validation cohort receiving anti-PD-1 inhibitor plus chemotherapy

combination therapy (AUC = 0.857, 0.810, 0.679, 0.429, respectively).
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immunotherapy response (Figures 5F and S2G). Together, high

IKCscore reflected an immune-activated microenvironment

where more immune cells infiltrated with more potential to

arouse the host anti-tumor response.

Mutation landscape between high and low IKCscore
Somatic genemutationscan impact therapeutic efficacyvia inter-

action with tumor microenvironment. We attempted to reveal the

genomic determinants of immunotherapy efficacy. Next, we

A

D E

F G

CB

Figure 4. Comparison and associations of TMB and TCR diversity with IKCscore

(A) Boxplot depicted IKCscore level in high TMB and low TMB groups (Wilcoxon test, p = 0.27).

(B) Comparison of ROC curves of IKCscore, continuous TMB, and TMB group (cutoff = 10 mut/Mb) in patients who owned TMB results (AUC = 0.782, 0.711,

0.567, respectively).

(C) Scatterplots showed that the IKCscore and TMB were irrelevant in the NFH cohort (Spearman test, r = 0.019, p = 0.9179). The dotted color indicates the

different responses (PR: yellow; SD: red; PD: blue).

(D and E) TCR richness (D) and TCR Shannon (E) was positively associated with IKCscore in TCGA-LUAD (TCR.Richness: Wilcoxon test, p < 2.2e�16; Spearman

test, r = 0.69, p < 2.2e-16; TCR.Shannon: Wilcoxon test, p < 2.2e�16; Spearman test, r = 0.68, p < 2.2e-16).

(F and G) TCR richness (F) and TCR Shannon (G) was positively associated with IKCscore in TCGA-LUSC (TCR.Richness: Wilcoxon test, p < 2.2e�16; Spearman

test, r = 0.78, p < 2.2e-16; TCR.Shannon: Wilcoxon test, p < 2.2e�16; Spearman test, r = 0.75, p < 2.2e-16). TMB, Tumor mutation burden; TCR, T cell receptors.
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Figure 5. IKCscore is associated with the immune-activated microenvironment

(A) CIBERSORT calculated the fraction of immune cells in the high and low IKCscore groups. The statistical difference between the two groups was compared

through the Wilcoxon test. *, p < 0.05; **, p < 0.01; ns, not significant.

(B) Representative images of immunohistochemical stainings of CD3 and CD8 for resected tumor specimens in high IKCscore and low IKCscore.

(C) Alluvial diagram of high and low IKCscore groups with different TME subtypes (D, F, IE, and IE/F) and clinical response in GSE135222 cohort.

(legend continued on next page)
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aimed to determine the association between the IKCscore and

gene alteration by conducting whole genome sequencing (WES)

on tumor tissue samples taken before immunotherapy in 33 pa-

tients in the NFH cohort. An oncoplot revealed the frequency of

common gene alterations associated with IKCscore in the NFH

cohort (Figure 6A), TCGA-LUAD (Figure S3A), and TCGA-LUSC

(Figure S3C) cohorts. Response-associated gene mutations

were identified using the R package maftools. Consistent with

previous studies, MUC1632 and SYNE133 mutations were

confirmed to be associated with better immunotherapy re-

sponses. Except for the above genes, CACNA1C, DST, ZFHX4,

ASXL3, and FLG mutations were observed in responders to

immunotherapy, some of which were also enriched in the high

IKCscore group, which might be potential predictors of ICBs.

Conversely, the OR5M3 mutation appeared more frequently in

the non-responders (Figure 6B). In addition, as shown in previous

studies, STK11 and KEAP1 mutations have been recognized as

indicators of decreased efficacy of anti-PD-(L)1 treatment in

NSCLC. In the NFH cohort, IKCscore downregulation was

observed inpatientswithKEAP1andSTK11mutations (Figure6C)

compared to thewild-type subset, albeit without statistical signif-

icance. Further analysis of TCGA-LUAD (Figure S3B) and TCGA-

LUSC (Figure S3D) confirmed the relevance of these mutations,

which are associated with drug resistance toward ICBs. Correla-

tion analysis revealed that SYNE1, DST, FLG, and MUC16 were

co-occurrence in thehigh IKCscoregroup (Figure6D). In contrast,

few co-occurrences were observed in the low IKCscore group

(Figure 6E). Intriguingly, the WNT pathway was enriched in the

high IKCscore group, indicating that WNT pathway mutations

might predict ICBs responses (Figures 6F, 6G, S3E, and S3F).

The result of mutation landscape between high and low IKCscore

might provide clues for the high accuracy of the IKCscore in pre-

dicting ICBs efficacy.

DISCUSSION

Although immunotherapy has revolutionized the treatment of

metastatic NSCLC, only a minority of patients derive durable

benefits from anti-PD-1 therapy. Owing to the inherent defi-

ciencies of PD-L1, TMB, and other prevalent predictors,5,7 iden-

tifying robust biomarkers is warranted to promote precision

oncology. The present study systematically integrated diverse

tumor microenvironments and biological signatures associated

with immunotherapy responses. We developed the IKCscore

as a robust biomarker for predicting immunotherapeutic efficacy

in advanced NSCLC, which has also been validated in immuno-

therapy cohorts. Our results demonstrated that the IKCscore

showed higher predictive accuracy than TMB and PD-L1

expression in identifying responders, especially in anti-PD-1

combined with chemotherapy. In addition, tumors with high IKC-

score have an inflammatory microenvironment rich in immune

cells that are more responsive to anti-tumor immune therapies.

PD-L1 expression, measured by IHC, is still the most widely

used clinical predictor of immunotherapy response in advanced

NSCLC. However, some patients with low PD-L1 expression

may also respond to ICBs therapy and even have prolonged

overall survival, especially those receiving ICBs combined

with chemotherapy.34,35 For immunotherapy plus chemothe-

rapy, PD-L1 performed poorly in discriminating candidate pa-

tients who could benefit from the combination therapy. For

instance, in the KEYNOTE-189 trial,36 improved overall survival

and objective response rates were found in pembrolizumab

plus pemetrexed-platinum regimen compared to placebo plus

pemetrexed-platinum regimen in patients with metastatic

NSCLC, regardless of PD-L1 expression level. Similarly, the

KEYNOTE-407 study proved that immunotherapy combined

with chemotherapy could prolong survival in advanced-stage

NSCLC, including in patients with PD-L1 expression <1%.37

Previous clinical trials have indicated that PD-L1 expression is

unsuitable for predicting the efficacy of immunotherapy and

chemotherapy. TMB also weakly discriminated candidate re-

sponders to ICBs combined with chemotherapy. Our cohort

analysis confirmed that in the context of ICBs therapy com-

bined with chemotherapy, the IKCscore achieved high predic-

tive accuracy, while PD-L1 expression was not appropriate

for patient selection. Hence, the IKCscore was expected to

enhance the accuracy of identifying responders to combination

treatment.

Notably, the interaction between the TME and intrinsic vari-

ables has been identified as a crucial factor affecting immuno-

therapy responses. CD8+ T cell infiltration, IFN-g, and antigen

processing and presentation have been investigated as mecha-

nisms of sensitivity to immunotherapy in NSCLC.38–41 For

instance, Gettinger et al. found defective antigen processing

and presentation in patient-derived xenografts established

from ICB-resistant NSCLC tumors, indicating that antigen pro-

cessing and presentation disruption could mediate immune

escape from ICBs.39 In line with this, our results demonstrated

that high CD8+ T cell and dendritic cell infiltration corresponded

with high IKCscore, as well as high antigen processing and pre-

sentation-related signature scores, implying a better response

to ICBs. TCRs identify tumor cells presenting neoantigens

generated from gene mutations and establish anti-tumor activ-

ity. In our study, the IKCscore was positively correlated with

TCR diversity. Therefore, the accuracy of the IKCscore in pre-

dicting immunotherapy efficacy is partly attributed to the fact

that it indicates a pre-existing immune state mediated by TCR

diversity.

In conclusion, we established a robust predictor, the IKC-

score, and verified its predictive ability in independent immuno-

therapy cohorts. The IKCscore holds promise in identifying re-

sponders to immunotherapy combined with chemotherapy in

advanced NSCLC surpassing PD-L1 expression; however, pro-

spective studies are warranted.

(D) The boxplot showed that IKCscore mainly increased in the IE subtype, while the lowest IKCscore was observed in the D subtype in the GSE135222 cohort

(Kruskal�Wallis, p = 0.0016).

(E) The cell interaction network in high and low IKCscore groups.

(F) The volcano plot revealed the ligand-receptor pairs, transcription factors, and other factors related to IKCscore. IE, immune-enriched, non-fibrotic; IE/F,

immune-enriched/fibrotic; F, fibrotic; D, immune-depleted.
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Limitations of the study
This study has several limitations. Although the IKCscore ex-

hibited immunotherapy predictive ability in different cancer

types, it performed suboptimal in melanoma due to unique bio-

logical characterization. Furthermore, there is heterogeneity in

the immunotherapy cohorts of different cancer types and

different detection methods including RNA-seq and microarray

data, making it difficult to define a unified cut-off standard across

multiple cohorts. Lastly, the deficiency is that the IKCscore is

calculated based on the ssGSEA algorithm, which requires the

expression profile of all genes within each dataset and cannot

be calculated individually. To conquer this deficiency, we are

working to establish a NanoString panel using IKCscore signa-

ture genes in prospective study cohort (NCT06232265), which

could normalize gene expression using house-keeping genes

and estimate IKCscore individually.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human specimens
We retrospectively collected tumor tissues from 65 patients with advanced NSCLC before ICBs treatment at the Nanfang Hospital of

Southern Medical University. The medical ethics committee of Nanfang Hospital of Southern Medical University approved this study

(NFEC-2019-265). The patients providedwritten informed consent for participation in the study. Detailed information on the individual

patients in this study is depicted in Table S1. Clinical responseswere evaluated according to the Response EvaluationCriteria in Solid

Tumors (RECIST) V.1.1. Patients achieving CR or PR were classified as responders (R), and patients with SD or PDwere classified as

non-responders (NR). Transcriptomic analysis was performed on tumor specimens from 65 patients with NSCLC. To further validate

the predictive power of the IKCscore, we collected 17 specimens for RNA-seq as validation cohort. WES was performed on tumor

specimens from 33 patients.

Transcriptome sequencing
Total RNA was extracted from tumor specimens of patients with NSCLC using TRIzol reagent. mRNA was purified from total RNA

using oligo(dT)-attached magnetic beads and fragmented. According to themanufacturer’s protocol, sequencing libraries were con-

structed using the NEBNext�UltraTM RNA Library Prep Kit for Illumina� (NEB, USA). Subsequently, RNA-seq was performed on an

Illumina HiSeq platform, and 150 bp paired-end reads were generated. After filtering for low-quality reads, raw FASTQ files were

mapped to the GRCh37 reference genome using the Hisat2 aligner.42 The mapped fragments were counted and annotated using

HTSeq v0.6.043 and GENCODE v19 annotation files, respectively.

Data sources
Multiple independent cohortswere used to validate thepredictive valueof themodel. TheGSE135222 cohort included 27patientswith

advancedNSCLC treatedwith anti-PD-1/PD-L1 therapy.44 TheGSE126044cohort included16NSCLCpatients treatedwith anti-PD-1

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-CD3 antibody Abcam Cat# ab16669, RRID: AB_443425

Anti-CD8 antibody Abcam Cat# ab93278, RRID: AB_10563532

Goat Anti-Rabbit IgG Abbkine Cat# A21020, RRID: AB_2876889

Deposited data

RNA-seq, genomic data and

clinical data for the TCGA cohort

TCGA https://xenabrowser.net/datapages

The TCR diversity profiling data Bagaev et al. study https://doi.org/10.1016/j.ccell.2021.04.014

GSE135222 Gene Expression

Omnibus (GEO)

https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE135222

GSE126044 Gene Expression

Omnibus (GEO)

https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE126044

IMvigor210 IMvigor210 http://research-pub.gene.com/IMvigor210CoreBiologies

OAK and POPLAR cohort EGAS00001005013 https://ega-archive.org/datasets/EGAD00001007703

NFH cohort HRA003748 https://ngdc.cncb.ac.cn/gsa-human/browse/HRA003748

Kim et al. cohort PRJEB25780 https://www.ebi.ac.uk/ena/browser/view/PRJEB25780

Software and algorithms

R version 4.1.1 R project https://www.r-project.org/

IOBR Github https://github.com/IOBR/IOBR

KOBAS-I KOBAS-I http://kobas.cbi.pku.edu.cn/kobas3

IKCscore Github https://github.com/LiaoWJLab/IKCscore

DESeq2 version 1.36.0 Github https://github.com/mikelove/DESeq2

Maftools 2.8.0 Github https://github.com/PoisonAlien/maftools

CIBERSORT CIBERSORT https://cibersort.stanford.edu/

GSVA version 1.40.1 Github https://github.com/rcastelo/GSVA
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therapy.45TheOAKandPOPLARcohorts includedNSCLCpatients treatedwithatezolizumab,46ant transcriptomedatawereobtained

under accession number EGAS00001005013. The IMvigor210 cohort included patients with metastatic urothelial cancer receiving

atezolizumab. Transcriptomeandclinical dataweredownloaded fromhttp://research-pub.gene.com/IMvigor210CoreBiologies. Clin-

ical information, RNA-seq data, and WES data for The Cancer Genome Atlas-Lung adenocarcinoma (TCGA-LUAD) and The Cancer

Genome Atlas-Lung squamous cell carcinoma (TCGA-LUSC) cohorts are available from the XENA data portal (http://xena.ucsc.

edu/). The Kim et al. cohort was obtained under accession number ENA: ERP107734/SRA: PRJEB25780. The TCR diversity profiling

data was available in Bagaev et al. study.30

METHOD DETAILS

IKCscore evaluation
We incorporated our IKCscore methodology into an open-source R package, IKCscore (https://github.com/LiaoWJLab/IKCscore),

to predict the treatment response of immunotherapy in patients with NSCLC from bulk transcriptomic data.

Tumor microenvironment signature score estimation
The IOBR package (https://iobr.github.io/book/)47 collected published methods including CIBERSORT, TIMER, MCP counter, and

etc. to decode tumor microenvironment contexture. IOBR integrates 255 published signature gene sets, involving tumor microenvi-

ronment, tumor metabolism, m6A, and exosomes, and also enrolls the signature gene sets, containing GO, Kyoto Encyclopedia of

Genes and Genomes (KEGG), HALLMARK and REACTOME gene sets obtained fromMsigDB.22 The R package EaSIeR was used to

analyze the cell interaction network.31 CIBERSORT was used to quantify the proportions of 22 immune cells 13 to estimate immune

cell infiltration. The ESTIMATE algorithm was applied to assess tumor purity using RNA-seq data.15 Bagaev et al. provided the TCR

profiling data of TCGA datasets.30 The TCR diversity data of TCGA was downloaded from the supplementary data.

Differentially expressed gene analysis (DEGs)
Differential gene analyses between the responder and non-responder groups were performed using the DESeq2 package.48 DEGs

were considered for further study with an adjusted p-value <0.05. The adjusted p-value for multiple testing was calculated using the

Benjamini-Hochberg correction.

Functional and pathway enrichment analysis
GO enrichment analysis and KEGG enrichment analysis was conducted using KOBAS-I (http://kobas.cbi.pku.edu.cn/kobas3).49 GO

terms were identified using a strict cutoff of p < 0.05.

Somatic variant detection
After removing poor-quality data and adaptor sequences, reads were aligned to the reference human genome (hs37d5) using the

Burrows-Wheeler Aligner (BWA, version 0.7.12-r1039) tool.50 Realignment and recalibration were performed using GATK (version

v3.6-0-g89b7209).51 Single nucleotide variants and small insertions and deletions were counted using MuTect2 (version v3.6-0-

g89b7209)52 and realDcaller (version 1.5.2, developed in-house).53 Based on the above calling results, hotspot variations were eval-

uated using NChot (version 2.5.9, developed in-house). Somatic copy number alterations were analyzed using CONTRA (version

2.0.8).54 Finally, all candidate variants were manually verified using Integrative Genomics Viewer.

Immunohistochemistry
Paraffin-embedded slices (4 mm) were dried at 62�C for 1 h. Subsequently, the slices were deparaffinized by xylene and soaked in

gradient reduced concentration ethyl alcohol for 3–5 min in order. After antigen retrieval and bovine serum albumin block, the slices

were incubated overnight at 4�C with primary antibodies. Next day, secondary antibody incubation was conducted. After 3ʹ3-diami-

nobenzidine tetrahydrochloride and hematoxylin staining, slices were dehydrated by increasing concentrations of ethanol and

xylene. The following antibodies were used for the study: anti-CD3 (Cat# ab16669, Abacm), anti-CD8 (Cat# ab93278, Abcam).

WES analysis
The mutation MAF files of TCGA-LUAD and TCGA-LUSC were obtained using TCGAbiolinks,55 and the mutation status was inferred

from the MAF files. The mutation landscape of NSCLC patients treated with anti-PD-(L)1 treatment was depicted using OncoPrint

with R package maftools. The TMB of patients in the NFH cohort was evaluated using R package maftools. The Wilcoxon test

was conducted to determine the significance of the IKCscore in gene mutation status (wild-type or mutated).

QUANTIFICATION AND STATISTICAL ANALYSIS

The normality of the variables was examined using the Shapiro-Wilk normality test. Significant differences between two groups were

determined using unpaired two-tailed t-tests for normally distributed variables, and the Wilcoxon test for non-normally distributed

variables; for comparisons between more than two groups, Kruskal-Wallis and one-way analysis of variance tests were used for
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non-parametric and parametric methods, respectively. Correlation analysis was performed using the Spearman and distance cor-

relation analyses. The X2 and two-sided Fisher’s exact tests were used to analyze contingency tables. The best cutoff values for

the continuous signature score in the survival analysis were evaluated using the R package survminer. Progression-free survival

was assessed using the Kaplan–Meier method, and the log-rank test was used to compare survival. The hazard ratios (HRs) were

calculated using the univariate and multivariate Cox proportional hazards regression model. A ROC curve was created using the

pROC package, and the AUC was used to examine the sensitivity and specificity of the signature scores. The graphical abstract

was drawn by Figdraw with ID: YPART00bbf. Statistical analyses were conducted using R software V.4.1.1. All p-values were

two-sided, and p-values < 0.05were considered statistically significant. ns p>= 0.05, * p < 0.05, **p < 0.01, ***p < 0.001. The statistical

details of experiments were indicated in each of the figure legend.
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