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ABSTRACT
Migratory species typically undertake demanding long- distance journeys, across different habitat types during which they are 
exposed to multiple natural and anthropogenic stressors. Mortality during migration is typically high and may be human in-
duced. Understanding individual responses to these selection pressures is rarely attempted because of the challenges of relating 
individual phenotypic and genetic data to migration success. Here, we show distinct single nucleotide polymorphism (SNP) sets 
significantly differentiated between Atlantic salmon smolts making successful migrations to sea and those that failed to migrate, 
in two different rivers. In contrast, morphological variation was not diagnostic of migration success. Populations from each river 
were genetically distinct, and while different genes were possibly implicated in migration success in each river, they related to 
common biological processes (e.g., osmoregulation and immune and stress response). Given that migration failure should quickly 
purge polymorphism at selected SNPs from a population, the question of how genetic diversity in these populations is maintained 
is an important one. Standing genetic variation could be maintained by different life history strategies and/or environmentally 
driven balancing selection. Our work highlights the importance of preserving genetic diversity to ensure evolutionary resilience 
at the population level and has practical implications for management.

1   |   Introduction

Animal migration has evolved independently many times across 
the animal kingdom (Dingle and Drake 2007; Bowlin et al. 2010; 
Shaw 2016). Migration events can involve large numbers of indi-
viduals moving between different habitats and regions, and these 
events play a key ecological and socioeconomic role in natural 
and human communities (Bauer and Hoye 2014). Migratory spe-
cies typically rely on multiple habitats to complete their life cycle 

and often undertake demanding long- distance journeys expos-
ing themselves to numerous natural and anthropogenic stress-
ors, such as predation, adverse weather conditions, pathogens, 
pollution, artificial constructions and harvesting (Alerstam, 
Hedenström, and Åkesson  2003). Mortality during migration 
is typically high and can be exacerbated by human- induced 
pressures, such that it impacts migratory populations and the 
ecosystems that depend on them (Wilcove and Wikelski 2008; 
Harris et al. 2009; Middleton et al. 2013; Klaassen et al. 2014; 
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Baker et al. 2020). With an ongoing global decline in migratory 
species (Wilcove and Wikelski 2008), a better understanding of 
the factors causing mortality in migration is urgently required 
to predict responses of migratory populations to future environ-
mental challenges and implement incisive conservation actions.

Recent advances in telemetry technology have made it possible 
to investigate migratory behaviours of species both temporally 
and spatially (Doherty et al. 2017; Thorup et al. 2023). This has 
enabled a better understanding of the exogenous factors directly 
influencing migration mortality (Thorstad et  al.  2013; Hays 
et  al.  2003; Palacín et  al.  2017; Weinz et  al.  2020). Organisms 
require a suite of specific morphological, physiological and be-
havioural adaptive features to successfully complete a migra-
tory cycle (Justen and Delmore 2022). Given the phenotypic and 
genetic variation found in most populations, it is reasonable to 
expect that some genetic or phenotypic traits are more likely to 
increase migration success than others. However, which traits 
these might be remains poorly understood.

Genomic tools have recently been applied to identify factors 
regulating migratory behaviour at the population or species 
level. Several studies have discovered the genetic basis for mi-
gratory features such as migration timing and distance, orien-
tation and propensity to migrate, with specific genomic regions 
linked to these traits (Zhu et  al.  2009; Liedvogel, Åkesson, 
and Bensch 2011; Hecht et al. 2012, 2015; O'Malley et al. 2013; 
Hess et  al.  2014; Pritchard et  al.  2018; Waples, Naish, and 
Primmer  2020; Justen and Delmore  2022). However, under-
standing the genomic basis on which selection could act at an 
individual level to dictate migration success has rarely been at-
tempted (but see Bourret, Dionne, and Bernatchez 2014), despite 
the fundamental insights it could provide into how populations 
might respond to selection, and the implications for conserva-
tion genetics of migratory species.

An important phenotypic trait expected to influence migration 
success is body morphology (Minias et al. 2013). Morphological 
variation (i.e., body shape and size) can affect behaviour, re-
source use, survival and reproductive success of individuals 
(Wainwright 1994; Skulason and Smith 1995; Fruciano, Tigano, 
and Ferrito  2011). The effect of morphology on movement is 
particularly evident in fish because of a direct link to swim-
ming performance (Pakkasmaa and Piironen 2001; Fisher and 
Hogan 2007; Drinan et al. 2012; Stelkens et al. 2012; Páez and 
Dodson 2017). Chapman et al. (2015) found a direct correlation 
between migration propensity and body shape, while other stud-
ies have demonstrated an increased ability and ‘motivation’ to 
pass river barriers in relation to size, fat content and morphol-
ogy (Newton et al. 2018; Lothian et al. 2020; Goerig et al. 2020). 
Nevertheless, research on migration survival and mortality 
as a consequence of body shape variation (as opposed to size; 
Kennedy, Gale, and Ostrand 2007; Hostetter et al. 2012; Romer 
et al. 2013; Furey et al. 2016; Lilly et al. 2022) is still lacking.

Atlantic salmon (Salmo salar Linnaeus) is a migratory species 
of socioeconomic importance that has suffered substantial de-
clines over the past 40 years (ICES 2024) due to multiple abiotic 
and biotic factors not yet fully understood (Forseth et al. 2017; 
Dadswell et  al.  2022). The Atlantic salmon has a complex life 
cycle, which includes two long- distance migration stages; a 

feeding migration from freshwater to sea as a juvenile (smolt) 
and an adult returning spawning migration from sea to fresh-
water. In addition, it is a philopatric species, accurately homing 
to its natal spawning grounds (Thorstad et al. 2010). Fidelity to a 
specific river limits gene flow among populations and has been 
shown to promote the evolution of local adaption through nat-
ural selection, genetic drift and bottlenecks (Garcia De Leaniz 
et al. 2007; Fraser et al. 2011). The seaward migration of smolts 
constitutes a key life stage for Atlantic salmon, often charac-
terised by high mortality rates (Thorstad et  al.  2012; Lothian 
et al. 2018) and provides an ideal opportunity to study the ge-
netic and phenotypic components that may differentially affect 
the ability of individual animals to successfully complete their 
migration. The identification of genetic and phenotypic traits 
could play a vital role in local management of Atlantic salmon 
(Bernos, Jeffries, and Mandrak 2020).

Here, we analysed genomic and morphological data of migrat-
ing Atlantic salmon smolts in two rivers. We test to what extent 
(I) Atlantic salmon populations in the two rivers were geneti-
cally distinct, and (II) migration success by seaward migrating 
smolts could be predicted by specific genomic regions and/or 
morphological traits.

2   |   Methods

2.1   |   Sampling, Tagging and Study Design

The study reported here formed part of a wider acoustic telem-
etry study to examine migratory behaviours and migration suc-
cess in juvenile Atlantic salmon (smolts) on their first migration 
from natal rivers to sea (see Whelan, Roberts, and Gray 2019). 
Atlantic salmon were captured between 11 April and 3 May 
2019 from the rivers Oykel (57°59.640′ N, 4°48.282′ W) and Spey 
(57°24.960′ N, 3°22.602′ W), Scotland, using 1.5- m- diameter 
rotary screw traps and a box trap (Figure 1). Fish were anaes-
thetised in MS222 and tagged with Vemco V7- 2L acoustic trans-
mitters (7 mm diameter, 19.5 mm length, 1.5 g in air, 137 dB re 
1 μPa @ 1 m, acoustic transmission repeat cycle of 28 ± 10 s, 
InnovaSea, Bedford, Nova Scotia, Canada). For more details on 
the tagging and release procedure, see Lilly et al. (2022). Before 
being tagged, fish were visually inspected to confirm they were 
in the smolt stage, characterised by silvery colouration and an 
elongated body shape. Fish were measured (fork length, mm), 
weighed (g) and photographed. Photographs of the left side of 
each fish were taken from approximately 30 cm directly above 
the fish, with a Fujifilm FinePix XP130 Compact Digital Camera 
on a background reference scale. An adipose fin clip was also 
taken from every fish and stored in 96% ethanol for later DNA 
extraction.

Two acoustic monitoring receivers (InnovaSea VR2Tx) were 
deployed in each river, one of which was immediately down-
stream of the tagging site (0.2 and 0.6 km in the rivers Oykel 
and Spey, respectively; Figure  1). The second receiver was 
deployed at the river mouth (Figure  1). Of all the salmon 
tagged and released in the two rivers (Oykel, n = 149, and Spey 
n = 150), 91.9 and 96.7%, respectively, were detected by the 
first receiver after release. Of these, 78 (Oykel) and 82 (Spey) 
smolts were randomly selected for this study and distributed 
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evenly between migratory outcomes ensuring a balanced de-
sign. Fish from both rivers were allocated into two groups 
based on their migratory outcome: (1) fish detected on the sec-
ond and final river receiver were categorised as ‘successful’ 
river migrants, and (2) fish only detected on the first receiver 
were considered as ‘unsuccessful’ river migrants (Table  1, 
Figure  1). To assess receiver detection efficiency, additional 
receivers deployed as a part of the broader telemetry study in 
the marine coastal waters of the Moray Firth were used. Since 
all smolts detected in marine waters were also detected by the 
two freshwater receivers, detection efficiency was determined 
to be 100%, meaning that no fish were wrongly miscategorised 
as unsuccessful migrants as a result of missed detections at 
the second river receiver.

To assess whether the study rivers harboured genetically dif-
ferentiated Atlantic salmon populations, the genetic variation 
across rivers in the Moray Firth (Figure 1) was investigated. In 
addition to fish from the study Rivers Oykel and Spey, Atlantic 
salmon smolts from the Rivers Findhorn (n = 3; 57°25.05′ N, 
3°53.35′ W), Deveron (n = 4; 57°30.45′ N, 2°42.35′ W) and Ness 
(n = 4; 57°27.17′ N, 4°15.35′ W) were included in the analysis. 
To further contextualise the relative genetic diversity of these 

rivers, Atlantic salmon samples from the River Ure, England 
(n = 76; 54°16.19′, N 1°44.57′ W), were also included in the anal-
ysis (Figure 1). Fish from the Findhorn, Deveron and Ness were 
sampled in Spring 2019 using rotary screw traps, while fish 
from the Ure were captured employing backpack electric fishing 
equipment (Electracatch 24VDC input, 200–400 V, 100 W, 50 Hz 
Pulsed DC, variable pulse width output).

2.2   |   Genomic Analyses

2.2.1   |   DNA Extraction, Genotyping and Quality 
Control (QC)

DNA was extracted from adipose fin samples employing a 
modified Mu- DNA: Tissue protocol (Sellers et  al.  2018) using 
a solid- phase reversible immobilisation (SPRI) magnetic bead 
capture method (adapted from Rohland and Reich 2012) to iso-
late high- molecular- weight DNA. The DNA samples were sent 
to the Centre for Integrative Genetics (CIGENE, Ås, Norway) 
for genotyping, including biological and technical replicates to 
ensure consistency across plates. A custom 220,000 SNP (single 
nucleotide polymorphism) Affymetrix Axiom array designed 

FIGURE 1    |    The study area (a) and genetic structuring (b, c) of Atlantic salmon populations from rivers flowing into the Moray Firth (Scotland), 
with samples from the River Ure (England, (a) top left panel) for comparison. Tagging locations and acoustic receivers are shown in map (a). The 
principal components analysis (PCA) and the ADMIXTURE analysis plots are based on 44,504 SNPs pruned for linkage disequilibrium. In the PCA 
scatterplot (b), dots represent individual fish, and variance (%) explained by the first and second axes are shown. Colours correspond to rivers. In 
the ADMIXTURE plot (K = 3; c), each fish individual is represented by a vertical bar. ‘Dev’ and ‘Fin’ are abbreviations for the Rivers Deveron and 
Findhorn respectively.

TABLE 1    |    Classification of smolts (n) in the Rivers Oykel and Spey based on tracking results.

River Unsuccessful Successful Total river migration distance

Oykel 36 42 30.5 km

Spey 35 47 50.1 km
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for Atlantic salmon (see Barson et al. 2015 for details) was used 
for data generation. Following the manufacturer's instructions, 
only SNPs categorised as PolyHighResolution and NoMinorHom 
were used for analyses, while SNPs with unknown position 
were excluded from the dataset, leaving 213,945 available loci 
for genomic investigation. We then performed QC and filtering 
of SNP data in PLINK versions 1.9 and 2.0 (www. cog-  genom ics. 
org/ plink/ 1. 9/  and www. cog-  genom ics. org/ plink/ 2. 0/ ; Purcell 
et  al.  2007; Chang et  al.  2015). SNPs were filtered for Hardy–
Weinberg equilibrium (PLINK 1.9. command: - - hwe 0.001) to 
remove genotyping errors. Additionally, SNPs were screened for 
minor allele frequency (- - maf 0.05) and genotype missingness 
(- - geno 0.1), and individuals with a high rate of missing SNPs 
(- - mind 0.1) were discarded from analyses. Full siblings were 
also removed using PLINK 2.0 (- - king- cutoff 0.25). In the migra-
tion success analyses, these QC steps were performed separately 
for the Rivers Oykel and Spey and resulted in the retention of 
198,336 SNPs and 82 individual fish from the River Oykel and 
201,475 SNPs and 78 individuals from the River Spey. The fish 
used in this analysis were the same employed for morphomet-
ric investigations but included two additional individuals which 
were not photographed. For the regional population structure 
analyses (paragraph below), QC was performed on all rivers to-
gether, and SNPs in high- linkage disequilibrium were pruned 
in PLINK 1.9 (- - indep 50 5 1.4) leaving 44,504 unlinked SNPs 
available for analysis.

2.2.2   |   Regional Rivers Genetic Structuring

To investigate the genetic variation across rivers in the Moray 
Firth (Figure 1), a principal component analysis (PCA) was per-
formed in PLINK 1.9 using individuals from the Rivers Oykel, 
Spey, Findhorn, Deveron, Ness and Ure. Using the same samples, 
ADMIXTURE v.1.3. (Alexander, Novembre, and Lange  2009) 
was used to infer the most likely number of genetic clusters (K, 
testing from K = 1 to K = 6), which was determined based on the 
lowest cross- validation error.

2.2.3   |   Outlier Analysis and Gene Annotation

To detect SNP markers with unusually high levels of allelic 
differentiation between successful and unsuccessful migrants 
in each river, two different approaches were computed using 
the unpruned SNP dataset. In the first approach, the R (R 
Core Team  2022) package ‘OutFLANK’ v. 0.2 (Whitlock and 
Lotterhos  2015), which estimates among- group Fst for each 
locus, was used. For the second, the allele- based chi- squared 
association test in PLINK 1.9 (command: - - assoc) was imple-
mented. See code (https:// tinyu rl. com/ salmo n-  migra tion-  suc-
cess) for details about parameters used to run these analyses. 
Outlier loci in ‘OutFLANK’ were identified by applying a q- 
value < 0.05 threshold, while outliers in the association test 
in PLINK were determined as the top 0.1% SNPs ranked by p- 
values. Acknowledging the inherent risk of false positives in 
genome scan analyses (Luu, Bazin, and Blum  2017), a robust 
bootstrapping methodology was employed. For each river, 200 
bootstrap replicate datasets were generated by randomly re-
moving one fish from each of the migratory groups (successful 

and unsuccessful). Each of these datasets was examined in-
dependently, with 100 analysed using ‘OutFLANK’ and the 
other 100 using the PLINK association test. Only the outli-
ers that were consistently detected in all 200 bootstrap repli-
cates by both methods were retained for subsequent analysis. 
Outliers were visualised using the ‘qqman’ v. 0.1.8 R package 
(Turner 2014). A PCA of the outliers was computed in PLINK 
on the complete dataset including all fish and the resulting 
PCA plot was employed to visually test if these outlier SNPs 
effectively separated successful and unsuccessful migrating 
salmon smolts in the two rives.

For each river, the 10 genes closest to each outlier SNP were ex-
tracted using the closest function in the software bedtools 2.29.1 
(Quinlan and Hall 2010) and the genes within 10 kb upstream 
and downstream of outlier SNPs were filtered in R (Wellband 
et al. 2019). The potential functions of these genes were assessed 
by examining the gene ontology (GO) biological process terms 
associated with each gene, using the R package ‘Ssa.RefSeq.db’ 
v. 1.2 (Grammes 2016) and literature searches. For these analy-
ses, the NCBI Salmo salar Annotation Release 100 (ICSASG_v2) 
was used as a reference genome.

2.3   |   Morphometric Analyses

Fish morphology was analysed using length (mm), weight (g), 
Fulton's condition factor (K; Nash, Valencia, and Geffen 2006) 
and geometric morphometrics (GM). The GM analyses were 
based on photographs of 158 salmon (Spey n = 77 and Oykel 
n = 81). The images of each fish were imported into tpsUtil v. 
1.78 (Rohlf  2019) and randomly shuffled using the Randomly 
order specimens function so that the operator was blind to the 
river- of- origin of the specimens. Nine fixed and four semi- 
landmarks (Figure  2) were digitised on each image by a sin-
gle operator using tpsDig v. 2.31 (Rohlf 2017) using a subset of 
landmarks from the scheme proposed by Moccetti et al. (2023). 
Furthermore, five linear body measurements (Figure  2) used 
as proxy of body slenderness which has been associated with 
swimming ability were also included (e.g., Pakkasmaa and 
Piironen 2001; Drinan et al. 2012). Landmark coordinates were 
imported into R and analysed using the ‘geomorph’ and ‘RRPP’ 
v. 4.0.4 packages (Adams et al. 2021; Baken et al. 2021; Collyer 
and Adams 2021). Preliminary analysis revealed body bending 
as a major source of shape variation in the dataset. This was cor-
rected by employing landmarks 1, 14, 15 and 11 with the unbend 
function in tpsUtil. All subsequent analyses were performed on 
Landmarks 1–13 only. PCA plots were produced with the ‘gg-
plot2’ package (Wickham 2016).

The following analyses were performed separately for each 
river. First, we tested whether successful and unsuccessful 
migrating fish in the two rivers were different in length (mm), 
weight (g) or Fulton's condition factor using t-  and Mann–
Whitney U- tests depending on the data distribution. Fulton's 
condition factor (K) was calculated as: K = 100 × W.L−3, where 
W = weight (g) and L = length (cm). We next tested for a differ-
ence in body shape between successful and unsuccessful fish, 
and whether these differences were consistent across rivers. 
A generalised Procrustes analysis (GPA) was performed to 

http://www.cog-genomics.org/plink/1.9/
http://www.cog-genomics.org/plink/1.9/
http://www.cog-genomics.org/plink/2.0/
https://tinyurl.com/salmon-migration-success
https://tinyurl.com/salmon-migration-success
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remove effects not related to body shape through translation, 
scaling and rotation of the landmark configurations (Rohlf 
and Slice 1990). The residual effect of fish size on body shape 
was tested using Procrustes ANOVAs, with Procrustes coordi-
nates used as a response variable and log centroid size used as 
an independent variable with a randomised residual permuta-
tion procedure (10,000 iterations). No significant effect of size 
on shape was found in either river (p > 0.05). To visualise body 
shape of successful and unsuccessful fish, a PCA was per-
formed on the Procrustes- aligned coordinates of fish of each 
migration category from each river. Procrustes ANOVAs and 
t- tests were subsequently used to test for differences in body 
shape and linear distances between fish with different migra-
tory outcomes. For linear distance and length, weight and con-
dition factor comparisons, significance values were Bonferroni 
corrected to limit the increased error rate correlated with mul-
tiple testing (Rice 1989).

3   |   Results

3.1   |   Genomic Analyses

3.1.1   |   Regional Rivers Genetic Structuring

The study Rivers Spey and Oykel were genetically differenti-
ated from one another (Figure 1). The second principal compo-
nent (PC2) successfully separated the fish from the River Ness, 
geographically located between the Oykel and the Spey, from 
all the other rivers (Figure  1). Fish from the rivers Deveron 
and Findhorn clustered with the spatially adjacent River Spey 
(Figure 1). PC1 separated the more geographically distant River 
Ure, situated in northern England, from all Scottish rivers flow-
ing into the Moray Firth (Figure  1). Similarly, ADMIXTURE 
analysis identified three different genetic clusters consisting of 
the Rivers Oykel, Spey and Ure, with the Rivers Deveron and 
Findhorn clustering with the Spey, while the Ness was admixed 
with the Rivers Oykel and Spey.

3.1.2   |   Genomic Regions Linked to Migratory Outcome

There was a consistently high false discovery rate (FDR) observed 
across methods and bootstrap replicates in both rivers. On average, 
only 11.7% of outlier SNPs were detected by ‘OutFLANK’ or PLINK 
in all 100 replicates. Specifically, the FDR was 89.2% (‘OutFLANK’) 
and 89.3% (PLINK) in the Oykel dataset and 85.6% (‘OutFLANK’) 
and 89.3% (PLINK) in the Spey. Seventy outlier SNPs were con-
sistently detected by both methods in all bootstrap replicates for 
migrating fish in the River Oykel, and 67 outliers for fish from the 
River Spey (Files S1 and S2). None of the outlier SNPs were found 
in fish from both rivers. The PCA computed on this subset of out-
lier loci confirmed their ability to distinguish between successful 
and unsuccessful fish along PC1 axis for each river (Figure 3).

3.1.3   |   Gene Annotation

There were 50 and 48 putative coding regions (hereafter 
genes) within 10 kb of the outlier SNPs' locations in the Oykel 
and Spey fish, respectively (File S3). None of these genes were 
identified as outliers in fish from both rivers. Eight and 12 
genes contained more than one outlier SNP within the 10 kb 
region in the Oykel and Spey samples, respectively (File S3). 
The two genes enclosing the highest number of outlier SNPs 
were the anion exchange protein 2 like (encompassing 18 SNPs, 
River Oykel) and the collagen alpha- 1(I) chain like (encom-
passing 10 SNPs, River Spey).

3.2   |   Morphological Differences Between 
Successful and Unsuccessful Salmon

There were no differences in length, weight or Fulton's con-
dition factor between successful and unsuccessful migrating 
smolts (p > 0.07; Figure 4, Tables 2 and 3). Procrustes ANOVAs 
based on the 13 landmark coordinates did not show significant 
differences in body shape between successful and unsuccessful 

FIGURE 2    |    Fixed (blue circles) and semi (green diamonds) landmarks and linear measurements used for the GM analyses of Atlantic salmon 
smolts (image modified from Moccetti et al. 2023). Landmarks 14 and 15 (red stars) were used to correct for body arching. (1) Tip of snout; (2) mid-
point between 1 and 3; (3) directly above middle of eye; (4) perpendicular to lateral line, projected towards 3; (5) dorsal surface posterior of cranium; 
(6) perpendicular to lateral line, projected towards 5; (7) anterior insertion point of dorsal fin; (8) anterior insertion point of adipose fin; (9) dorsal 
insertion point of caudal fin; (10) versal insertion point of caudal fin; (11) posterior midpoint of hypural plate; (12) anterior insertion point of anal fin; 
(13) anterior insertion point of ventral fin; (14) lateral line—perpendicular to 7; and (15) lateral line—perpendicular to 12.
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smolts in either of the two rivers (p > 0.31; Figure  5, Table  4). 
Likewise, after Bonferroni correction (new alpha value = 0.005), 
comparison of body linear measurements did not show any sig-
nificant difference between migrating groups (p > 0.04; Tables 5 
and 6).

4   |   Discussion

Our work shows that distinct SNP sets were significantly dif-
ferentiated between Atlantic salmon smolts making successful 
migrations to sea and those that failed to migrate to sea in two 
different rivers. In both rivers, the outlier SNPs predicting indi-
vidual migration success were near several genes that could be 
relevant for migration, but we found no evidence of phenotypic 
differences in body shape between successful and unsuccessful 
Atlantic salmon river migrants.

Categorising genes containing outlier SNPs by biological func-
tion highlighted similar processes across the study rivers. In 
fish from both rivers, genes putatively linked to osmoregulation, 
immunity, stress and nervous, sensory, muscular, skeletal and 
cardiovascular system development and activity were detected.

Candidate genes linked to general neuronal, cardiovascular and 
skeletal functions may play an important role in migration, but 
a direct link to smolt migration success is hard to determine. 
Furthermore, given the susceptibility of gene annotation to false 
positives, it is important to exercise caution when attempting to 

establish such correlations (Pavlidis et al. 2012). Nevertheless, 
osmoregulation and immune response are processes shown to 
play an important part in salmonid migration. In the Oykel and 
the Spey, outlier SNPs were located within or near (within 10 kb) 
several candidate osmoregulatory genes. These genes were asso-
ciated with a range of processes including ion transmembrane 
and water transport, renal activity, response to salt stress and 
hyperosmotic response. Noteworthy is the identification of the 
anion exchange protein 2- like gene, encompassing 18 of the 70 
outlier SNPs detected in the Oykel. This gene is associated with 
GO terms involved in osmoregulatory processes, such as chlo-
ride and bicarbonate transmembrane transport (Wilson, Wilson, 
and Grosell 2002; Grosell 2006). Osmoregulation and individual 
ability to undergo physiological changes required for seawater 
entry have been shown to be important to increase chances of 
survival and predator avoidance in seaward migrating salmonid 
smolts (Kennedy, Gale, and Ostrand 2007) and could play a role 
in migration success of Atlantic salmon smolts in the last tidal 
kilometres of the Oykel and Spey where transitional zone be-
tween freshwater and saltwater occurs.

Immunity- related and stress- response genes were also widely 
detected in association with the outlier SNPs separating suc-
cessful and unsuccessful river migrants in fish from both the 
Oykel and Spey. Studies using proteomics in Pacific salmon 
(Oncorhynchus spp.) have found significant correlation 
among migratory outcome, expression of specific immune- 
related genes and viral-  and parasite- induced infection bur-
den (Miller et  al.  2011; Jeffries et  al.  2014; Furey et  al.  2021; 

FIGURE 3    |    The Manhattan- style plots (a, b) show all outlier SNPs (dots) identified in bootstrap replicated datasets using ‘OutFLANK’ in each riv-
er. The outliers consistently detected in 100% of replicates and used for analysis are highlighted in green. The y- axis shows the proportion of replicat-
ed datasets where each individual outlier SNP was identified. The x- axis displays the position of the SNPs along the genome with chromosome num-
bers. (c and d) Principal components analysis scatterplots based on 70 (Oykel) and 67 (Spey) outlier SNPs between successful (blue) and unsuccessful 
(red) migrant Atlantic salmon smolts. Each dot represents an individual fish. Variance (%) explained by the first and second axes is also shown.
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Mauduit et  al.  2022). The stress hormone cortisol has also 
been found to be a good predictor of migration success in sal-
monids (Birnie- Gauvin et  al.  2019; Birnie- Gauvin, Thorstad, 
and Aarestrup  2019). Our findings now highlight the poten-
tially important role of pathogens- driven selection in Atlantic 
salmon migration success. An additional factor that requires 
further investigation is the possibility that there are individual 
differences in response to the tagging process since there are 
also immune genes annotated with GO terms involved in blood 
coagulation and response to wounding. To determine migra-
tion patterns, all the fish in our study were tagged, so although 
this is not a confounding factor in our design, this finding war-
rants further investigation.

While particular SNP sets allow us to predict migratory 
outcome of Atlantic salmon smolts in the Oykel and Spey, 

analyses of length, weight, body condition and body shape 
did not find any significant difference between successful and 
unsuccessful migrants in either of the rivers. This is some-
what surprising given the importance that morphology plays 
in swimming performance in fish (Webb  1978, 1984; Fisher 
and Hogan 2007; Langerhans and Reznick 2010; Assumpção 
et  al.  2012), the specific hydrodynamic characteristics re-
quired to effectively migrate in running waters (Langerhans 
and Reznick 2010; Brodersen et al. 2014) and that size, body 
shape and condition may also be important in antipredatory 
behaviour (Domenici et  al.  2007). Although a larger sample 
size might provide greater statistical power and potentially 
uncover morphological differences if body shape played a role 
in migration success, it is likely those differences would al-
ready be detectable with our current sample size, given the 
high sensitivity of GM, which can detect even tiny differences 

FIGURE 4    |    Boxplots of length (mm), weight (g) and Fulton's condition factor to compare successful and unsuccessful Atlantic salmon smolts in 
the Rivers Oykel and Spey.
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in body shape (Webster and Sheets 2010). Morphology, there-
fore, does not appear to significantly influence migration suc-
cess of Atlantic salmon smolts in the study rivers. This finding 
supports the idea that other phenotypic traits, such as physi-
ological performance and immunity described earlier, maybe 
more critical to migratory success.

Previous work found a difference in smolt morphology be-
tween rivers (Moccetti et al. 2023) and there is genetic differ-
entiation of the Oykel and Spey salmon populations indicating 
reproductive isolation between these geographically close 
populations, likely facilitated by fine- scale homing. Different 
evolutionary histories (evidenced by the geographic structure 

TABLE 2    |    Effect size and summary statistics of body metrics comparisons between successful and unsuccessful Atlantic salmon smolts in the 
River Oykel. M–W U = Mann–Whitney U- test.

Metric
Mean (±S.D.) 

successful
Mean (±S.D.) 
unsuccessful Test Df t W p

Length (mm) 135.8 ± 5.6 136.7 ± 8.8 t- test 55.2 −0.513 — 0.610

Weight (g) 24.7 ± 3.1 25.0 ± 4.8 M–W U — — 774 0.694

Condition factor 0.982 ± 0.053 0.970 ± 0.048 t- test 74.5 1.004 — 0.319

TABLE 3    |    Effect size and summary statistics of body metrics comparisons between successful and unsuccessful Atlantic salmon smolts in the 
River Spey. M–W U = Mann–Whitney U- test.

Metric
Mean (±S.D.) 

successful
Mean (±S.D.) 
unsuccessful Test Df t W p

Length (mm) 134.9 ± 3.9 133.5 ± 2.7 M–W U — — 951 0.145

Weight (g) 24.5 ± 2.6 23.5 ± 2.1 t- test 78.1 1.810 774 0.074

Condition factor 0.994 ± 0.063 0.986 ± 0.052 M–W U — — 841 0.691

FIGURE 5    |    Mean body shape projections (top) and principal components analysis scatterplots (lower panel) show an absence of shape difference 
between the migratory groups. Procrustes- aligned coordinates of successful (blue) and unsuccessful (red) Atlantic salmon, where dots represent 
individual fish are shown below. Variance (%) explained by the first and second axes and 95% confidence ellipses are displayed. Projections show a 
complete overlap of the blue (successful) and red (unsuccessful) lines in both rivers despite magnifying morphological differences three times to aid 
visualisation.

TABLE 4    |    Procrustes ANOVA summary statistics of effect of migratory outcome on the body shape of Atlantic salmon smolts in the Rivers Oykel 
and Spey.

River Df SS r2 F Z p

Oykel 1 0.0003318 0.0146 1.1109 0.47321 0.313

Spey 1 0.0002305 0.01351 1.0817 0.35458 0.366
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we find between river populations) combined with different 
contemporary ecological selection pressures might therefore 
lead to different traits being linked to migration success. For 
example, there were no genes that contained outlier SNPs in 
common in Atlantic salmon from both the Oykel and Spey. It 
remains possible that increasing the sample size might reveal 
additional genomic regions associated with migration suc-
cess that overlap between rivers. However, the bootstrapping 
approach demonstrated consistent results across migratory 
groups, suggesting that important genomic regions linked to 
migration would likely already have been detected with the 
current sample size, especially given the high- density 200 K 
SNP panel used in this study.

Overall, we found that migratory outcomes for individual 
Atlantic salmon smolts in given rivers, in a given year, could be 
predicted from a subset of SNPs consistently detected through 
bootstrapping approach. We next need to understand the eco-
logical and environmental factors which could determine 
those subsets by adding temporal replication so that we can 
better understand the limits of our study. From an evolution-
ary and conservation point of view, the mechanism through 
which the observed genetic diversity could be maintained 
needs to be identified, given that migration failure should 
theoretically quickly purge polymorphism at selected SNPs 
from a population. We propose that variation in life history 
could maintain standing genetic variation for environmen-
tally driven balancing selection (Mérot et  al.  2020). ‘Partial’ 

migration (Shaw 2016), where only a portion of the population 
migrates, is common in several taxa and may be responsible 
for maintaining high genetic diversity of migratory and resi-
dent individuals interbreed (Pulido 2011). Within- population 
differences in migratory strategies (e.g., timing, duration and 
routes) between age classes and sexes are also well- known 
phenomena (Cristol, Baker, and Carbone  1999). These sub-
groups are exposed to different biotic and abiotic conditions 
potentially selecting different genotypes that may maintain 
the gene pool diversity within the population (Dingle and 
Drake  2007; Wittmann et  al.  2017; Briedis and Bauer  2018). 
Alternative migratory and reproductive tactics are well docu-
mented in Atlantic salmon (Fleming 1998; Thorstad et al. 2010; 
Birnie- Gauvin, Thorstad, and Aarestrup 2019), thus individu-
als with different life histories experiencing temporally and 
spatially fluctuating selection can interbreed and induce ge-
netic mixing. Typically, the life history of Atlantic salmon in-
volves seaward migration followed by a return to their natal 
river to spawn, but a number of males (and occasionally fe-
males, Birnie- Gauvin, Thorstad, and Aarestrup 2019) become 
sexually reproductive in freshwater as morphological juve-
niles before migrating to sea (‘precocious male parr’; Lepais 
et al. 2017). Their contribution to paternity could be substan-
tial (ca. 60% in one study, Saura et al. 2008). The number of 
years spent in freshwater before smolting and at sea before 
upstream spawning migration can also vary considerably 
(Thorstad et al. 2010). Finally, unlike Pacific salmon species, 
a non- negligible proportion of Atlantic salmon survive repro-
duction (especially females), return to the ocean as ‘kelt’ and 
spawn multiple times (Hedger et al. 2009). Weather and eco-
logical conditions can change dramatically among and within 
years inducing different selective pressures on migrating 
smolts and other salmon life stages. For instance, variations 
in water discharge and temperature may affect ecological fac-
tors such as migration timing (Thorstad et al. 2010), predation 
(Kennedy, Gale, and Ostrand 2007; Hostetter et al. 2012) and 
pathogen infection (Wagner et al. 2005) as well as passage of 
artificial migration barriers (Marschall et  al.  2011). Clearly, 
all these variables may differentially alter the allele frequen-
cies under selection and help maintain standing genetic varia-
tion. Straying between rivers could also be a source of genetic 
diversity (Palstra, O'Connell, and Ruzzante  2007; Keefer 
and Caudill 2014), although we found no evidence of this in 
our study.

From a conservation point of view, understanding and predict-
ing these selection pressures could be invaluable in managing 
existing populations, and could inform stock selection where 
hatchery- reared individuals are used to augment populations 
(Jepsen, Nielsen, and Deacon  2003; Koed et  al.  2020; Waples, 
Naish, and Primmer 2020).

Overall, our findings show that migration success could be linked 
to specific genotypes and highlight the potential importance of 
preserving genetic diversity for conservation, to allow populations 
to respond to potential heterogeneity between years, and the in-
creased variability that long- term climate change may produce. 
Our next challenge is to understand in detail the selection pres-
sures and associated genetic changes in populations facilitating 
conservation success and ensuring a future for these iconic species.

TABLE 5    |    Summary statistics of t- tests comparing body linear 
measurements between successful and unsuccessful Atlantic salmon 
smolts in the River Oykel. The alpha value was adjusted to 0.005 
following a Bonferroni correction.

Linear distance 
(landmark numbers) Df t p

3–4 72.7 0.825 0.412

5–6 71.7 0.819 0.416

7–13 74.0 −1.673 0.099

8–12 62.3 0.131 0.896

9–10 71.7 1.985 0.051

TABLE 6    |    Summary statistics of t- tests comparing body linear 
measurements between successful and unsuccessful Atlantic salmon 
smolts in the River Spey. The alpha value was adjusted to 0.005 
following a Bonferroni correction.

Linear distance 
(landmark numbers) Df t p

3–4 68.9 −1.517 0.134

5–6 73.7 −2.118 0.038

7–13 77.5 0.163 0.871

8–12 76.6 −0.938 0.351

9–10 73.0 −0.218 0.828
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