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Highlights

• Basal autophagy provides protection against the development of pancreatic

β-cell dysfunction under normal physiological conditions.

• Over-activated autophagy induces the progression of type 2 diabetes by

induction of pancreatic β-cell apoptosis.
• Autophagy modulators (activators or inhibitors) seem to have either protec-

tive or detrimental effects on pancreatic β-cells.
• Preclinical and clinical studies are warranted using autophagy modulators

to manage type 2 diabetes patients.
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Abstract

Type 2 diabetes (T2D) is a chronic metabolic disorder caused by defective insu-

lin signaling, insulin resistance, and impairment of insulin secretion. Autop-

hagy is a conserved lysosomal-dependent catabolic cellular pathway involved

in the pathogenesis of T2D and its complications. Basal autophagy regulates

pancreatic β-cell function by enhancing insulin release and peripheral insulin

sensitivity. Therefore, defective autophagy is associated with impairment of

pancreatic β-cell function and the development of insulin rersistance (IR).

However, over-activated autophagy increases apoptosis of pancreatic β-cells
leading to pancreatic β-cell dysfunction. Hence, autophagy plays a double-

edged sword role in T2D. Therefore, the use of autophagy modulators includ-

ing inhibitors and activators may affect the pathogenesis of T2D. Hence, this

review aims to clarify the potential role of autophagy inhibitors and activators

in T2D.
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1 | INTRODUCTION

Type 2 diabetes (T2D) is one of the most common meta-
bolic disorders primarily caused by a combination of two
main factors; defective insulin secretion by pancreatic
β-cells and the failure of insulin-sensitive tissues to
respond to insulin.1 T2D is the third leading cause of
death worldwide and represents 90% of 537 million dia-
betes cases worldwide.2 Of note, 50% of the population
older than 65 years, which forms 40% of the general pop-
ulation, has a certain degree of glucose intolerance.2 Afri-
can Americans are more vulnerable to the development
of T2D.3 It has been shown that T2D is often associated
with low-grade inflammatory disorders due to
hyperglycemia-mediated oxidative stress and the release
of proinflammatory cytokines.4 Furthermore, environ-
mental and genetic factors are involved with the initia-
tion of chronic inflammation, insulin rersistance (IR),
and the development of hyperglycemia in T2D5

(Figure 1).
Moreover, glucolipotoxicity and inflammatory cyto-

kines contribute in the development of pancreatic β-cell
dysfunction through induction of endoplasmic reticulum
(ER) stress.6 In response to these pathological changes in
the pancreatic β-cell dysfunction, autophagy pathway is
activated7 which is the major cellular pathway for elimi-
nation of misfolded proteins and damaged organelles.8

Autophagy is a conserved and evolutionarily lysosomal-
dependent catabolic cellular pathway through which
abnormal cytoplasmic components including damaged/
injured organelles, lipid droplets, and protein aggregates
are degraded, and their constituents recycled.9 Different
signaling proteins involved in the regulation of autop-
hagy flux; for example, Beclin 1, which is a critical com-
ponent of the class III PI3 kinase complex (PI3KCIII),
can induce the formation of autophagosomes.10 Triggers
of autophagy activate the upregulation of Beclin 1 which
promotes PI3KCIII to form Beclin 1–PI3KCIII complex.
Therefore, Beclin 1 is required for autophagy differentia-
tion and activation, and depletion of Beclin 1 inhibit
autophagy and activate apoptosis.10

Moreover, formation of autophagosomes required
autophagy-related genes (ATG) which produce six func-
tional protein groups, including the ATG1 (ULK in mam-
mals) kinase complex, the ATG9 vesicle, the
ATG14-containing PtdIns 3-kinase complex, the ATG2–
ATG18 complex, the ATG12 conjugation system, and the
ATG8 conjugation system.11 Mammalian ATG8

homologs are called microtubule-associated protein
1 light chain 3 (LC3) and gamma-aminobutyric acid
receptor–associated protein (GABARAP), which are col-
lectively referred to as ATG8 (s). The ATG8 and ATG12
systems constitute ubiquitin-like covalent conjugation
systems. In the ATG12 system, the most C-terminal gly-
cine of the ubiquitin-like protein ATG12 is activated by
ATG7, an E1-like enzyme, in an ATP-dependent manner,
and then sequentially forms thioester intermediates with
ATG7 and the E2-like enzyme ATG10. Finally, ATG12 is
conjugated to the acceptor lysine residue in ATG5 via an
isopeptide bond. Two sets of ATG12–ATG5 conjugates
form a complex with the ATG16(L) dimer. In the ATG8
system, ATG8, another ubiquitin-like protein, is first syn-
thesized as a proform, whose C-terminal region is cleaved
by ATG4 family enzymes to expose a glycine residue.
This processed ATG8 is activated by ATG7 (shared with
ATG12), transferred to its specific E2-like enzyme ATG3,
and conjugated to the head group of phosphatidyl etha-
nolamine (PE). ATG8–PE is present on autophagic mem-
branes.12 In contrast to the irreversible ATG12

FIGURE 1 Pathophysiology of type 2 diabetes (T2D): Genetic

and environmental factors induce the development of obesity,

insulin resistance, and reduce insulin release, causing reduction in

peripheral muscle glucose uptake and increasing of hepatic glucose

output. These metabolic changes lead to chronic hyperglycemia

and the development of T2D.
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conjugation, ATG8–PE can be deconjugated again by
ATG4. Of note, the ATG12–ATG5 conjugate acts as an
E3-like enzyme to promote ATG8–PE conjugation, which is
mediated by an interaction between ATG12 and ATG3.
Although ATG16 is not required for the lipidation reaction
of ATG8, the membrane binding of ATG16L1 determines
the site of ATG8 lipidation. ATG8 lipidation could occur on
nonautophagic membranes, but it is efficiently corrected by
ATG4-mediated deconjugation that can be regulated by
ATG1 and ULK1. The processed unlipidated ATG8 and
ATG8–PE are called ATG8-I and ATG8-II, respectively
(e.g., LC3-I and LC3-II). ATG8 is the most commonly used
autophagosome marker, and ATG5 and ATG7 have been
frequently used in knockout mouse studies.11,12

Therefore, autophagy plays a crucial role in maintain-
ing and preserving of cellular homeostasis in response to
the different intracellular stressors.9 However, efficiency
and functional activity of autophagy process is highly
reduced during aging and by over-nutrition which inter-
feres with autophagic flux.9 As well, obesity, IR, T2D, and
other metabolic disorders which are linked with aging are
often associated with increment of intracellular stress result
in more deterioration of cellular homeostasis. Aging-
mediated autophagy dysfunction further aggravates IR and
T2D.9,13 In addition, autophagy contributes in cellular
nutrition during starvation, improves pancreatic β-cells,
and increases peripheral insulin sensitivity.13 Indeed, basal
autophagy and normal autophagy response are regulated
by various intracellular nutrient-sensing pathways includ-
ing AMP–activated protein kinase (AMPK), mechanistic
target of rapamycin complex 1 (mTORC1), and sirtuin
1 (SIRT1).14 Both AMPK and SIRT1 activate autophagy,
whereas mTORC1 inhibits autophagy under physiological
conditions. For example, caloric restriction which increases
the expression of AMPK and SIRT1, improves autophagy
process with subsequent reduction of IR and T2D develop-
ment.15 However, aberrant over-expression of mTORC1
induces metabolic disorders by inhibiting autophagy flux.15

Basal autophagy under normal physiological conditions
seems to be protective against the development of pancre-
atic β-cell dysfunction.14 Conversely, over-activated autop-
hagy increases apoptosis of pancreatic β-cells.15 Thus,
autophagy plays a double-edged sword role in T2D.16

Therefore, use of autophagy modulators including inhibi-
tors and activators may affect the pathogenesis of T2D.17

Therefore, this review aims to clarify the potential role of
autophagy inhibitors and activators in T2D.

2 | AUTOPHAGY IN T2D

Hyperglycemia, glucolipotoxicity, ER stress, oxidative
stress, inflammation, and Ca2+ dyshomeostasis

contribute to the development of pancreatic β-cell dys-
function, IR, and the development of T2D.18–23 Prolong
ER stress triggers activation of autophagy, which also
inhibits ER stress24 (Figure 2).

2.1 | Beneficial effects of autophagy
in T2D

Basal autophagy preserves and protects pancreatic β-cell
function from the effect of oxidative stress.25 Interest-
ingly, dysregulated autophagy represents a key player in
the pathophysiology of T2D and its complications. Basal
autophagy promotes insulin signaling in both pancreatic
β-cells and peripheral tissues.25 Thus, age-mediated
defective autophagy is implicated in the development of
T2D and associated macrovascular and microvascular
complications.25

In a state of IR, hyperinsulinemia inhibits autophagy
by activating mTOR in synergy with amino acids leading
to the inhibition of autophagy-related gene 1 (Atg1)
which involved in the activation of autophagy.26–29

Insulin-mediated activation of protein kinase B also
inhibit forkhead box O3 (FOXO3) which activates autop-
hagy30 (Figure 3).

In T2D, different signaling pathways are dysregulated
which affect expression of Beclin-1.31 For example, tumor
growth factor beta (TGF-β), nuclear factor kappa B (NF-
κB), and transcription factor FOXO3 activated Beclin-1.

FIGURE 2 ER stress and autophagy in type 2 diabetes (T2D):

High blood glucose and fatty acid, and associated obesity, oxidative

stress, and inflammation induce the development of endoplasmic

reticulum (ER) stress, which affect autophagy function, induce

pancreatic β-cell damage, and the development of insulin

resistance. These changes contribute in the development of T2D.
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Besides, reactive oxygen species (ROS) and advanced gly-
cation end-product (AGE) in response to the activated
monocyte chemoattractant protein 1 (MCP-1) induces
Beclin-1. However, suppression of Akt and mTOR by dia-
betes blocks the function of Beclin-1.31 Autophagy activa-
tion in T2D in response to different signaling pathways
may be a compensatory pathway to overcome inflamma-
tory and oxidative disorders30 (Figure 4).

During IR development, autophagy is increased in
the pancreatic β-cells as a compensatory mechanism to
overcome oxidative and inflammatory disorders.32

Genetic deletion of Atg7 in mice triggers degeneration of
pancreatic β cell, inhibition of insulin secretion, induc-
tion of abnormal glucose intolerance, and development
of diabetes.33 Loss of autophagy promotes the accumula-
tion of ubiquitin-containing proteins and proteins expres-
sing LC3-binding protein p62 which is required for
delivery of aggregated proteins to autophagosomes.34–36

In addition, loss of autophagy induce the accumulation
of distended ER and malformed mitochondria.33 It has
been shown that autophagy-deficient mice experience
hyperglycemia and hyperinsulinemia due to the develop-
ment of mitochondrial dysfunction and ER stress.37 Nota-
bly, Atg7 mutant mice showed augmented apoptosis and
reduced proliferation of pancreatic β-cells leading to sig-
nificant decrease of β-cell mass.37 As well, glucose
induced Ca2+ signaling which is necessary for insulin
release is severely impaired in Atg7 mutant mice.37

Defective autophagy promotes the development of ER
stress and mitochondrial dysfunction leading to dysfunc-
tion of pancreatic β-cells through defect in ATP

formation and augmentation of oxidative stress.38 Find-
ings from clinical studies observed extensive accumula-
tion of autophagy vacuoles and p62 in pancreatic β-cells
of T2D patients39,40 suggesting defective autophagy flux
in T2D. These findings indicated that basal and even con-
stitutive autophagy is essential for homeostasis of pancre-
atic β-cells.41

High-fat diet increases level of autophagosomes in
both diabetic and non-diabetic mice due to impairment
the interaction between autophagosomes and lysosomes
or failure of lysosomal proton pump.42 When Atg�/�

mice fed on high fat diet, their blood glucose tolerance
were further deteriorated, indicating importance of
autophagy in the regulation function of pancreatic
β-cells.42 It has been illustrated that pancreatic β-cell
mass is reduced by increasing apoptosis in
Atg7-deficient mice. Besides, in vitro study demon-
strated that coadministration of lysosomal inhibitors
and fatty acids increase autophagy flux as evident by
increasing of LC3-II in mice.42 These observations pro-
posed that autophagy increases IR to protect pancreatic
β-cells against oxidative injury. In addition, IR-induced
autophagy is regarded as an adaptive response to pre-
vent glucolipotoxicity.42

In addition, obesity-induced IR is mediated by leptin
resistance which affects the expression of autophagy
genes leading to the inhibition of autophagy flux and
impairment of autophagy.43 Goldstein et al.43 illustrated
that leptin improves autophagy and lysosomal related
degradation of misfolded proteins in adipocytes.

FIGURE 3 Insulin and autophagy in type 2 diabetes (T2D):

Insulin through activation of protein kinase B inhibits autophagy

either directly by inhibiting of forkhead box O3 (Foxo3) signaling

or indirectly through activation of mammalian target of rapamycin

(mTOR), which inhibit autophagy through downregulating of

autophagy-related gene 1 (Atg1). Amino acids and rapamycin

activate and inhibit mTOR, respectively.

FIGURE 4 Activated autophagy in type 2 diabetes (T2D):

Diabetes causes the activation and inhibition of many signaling

pathways that affect the activation of autophagy through Beclin-

1-dependent pathway. Metabolic alterations in diabetes activate

monocyte chemoattractant protein 1 (MCP-1), tumor growth factor

beta (TGF-β), nuclear factor kappa B (NF-κB), and Foxo. However,

Akt and miR-30a which inhibit autophagy or through mammalian

target of rapamycin (mTOR) pathway are inhibited in diabetes.

These changes alter the functional activity of autophagy in T2D.

miR-30a, microRNA 30a; Akt, protein kinase B.
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Furthermore, autophagy plays a critical role in pre-
venting the accumulation of islet amyloid polypeptide
(IAPP) in only human pancreatic β-cells, but not in
rodents due to the absence of IAPP expression
in rodents.22 Progressive accumulation of IAPP in trans-
genic mice expressing human IAPP are susceptible to
developing diabetes.44 Autophagy increases cellular elim-
ination of IAPP thereby attenuating failure of pancreatic
β-cells and the development of T2D. Therefore, activation
of autophagy could be effective in preventing the devel-
opment of neurodegenerative diseases including Alzhei-
mer disease in T2D patients.22

These findings indicated that activated autophagy in
T2D has a protective effect to prevent further deteriora-
tion of pancreatic β-cells.

2.2 | Detrimental effects of autophagy
in T2D

On the other hand, different studies reported that autop-
hagy plays a detrimental role in the pathogenesis of
T2D.45–47 The harmful effect of autophagy is related to
the induction of ROS accumulation through
Atg5-dependent pathway and accelerating of pancreatic
β-cell deaths. Moreover, autophagy can induce cell deaths
by inhibiting caspase pathway through induction of ROS
formation, oxidation of lipid membrane and injury of
plasma membrane.47 It has been shown that knocking
of Atg7 or Atg8 and use of autophagy inhibitors may
attenuate ROS-induced cell deaths.47 Autophagic cell
death occurs through the interaction of Atg5 with Fas-
associated protein with death domain (FADD).45 Inter-
feron gamma (INF-γ)-induced autophagic cell death is
mediated by the expression of Atg5.45 Furthermore, Atg5
promotes apoptotic stimuli in cancer cells both in vitro
and in vivo.46 Likewise, a Ca2+-dependent nonlysosomal
cysteine protease calpain, which is expressed ubiqui-
tously, has ability to induce apoptosis through activation
of Atg5.46 Genetic variation in calpain-like cysteine, cal-
pain 10 is associated with pancreatic β-cell deaths.48 Of
note, calpain pathway is augmented leading to platelet
activation and thrombosis in T2D patients.49 Therefore,
exaggerated calpain pathway in T2D may associate with
progressive pancreatic β-cell deaths via activation of apo-
ptosis and autophagic cell death.

Furthermore, mTOR a known inhibitor of autophagy
plays an important in preventing oxidative stress-induced
pancreatic β-cell deaths mediated by apoptosis and autop-
hagy. Inhibition of apoptotic pathways by mTOR limits
the development of IR and T2D due to pancreatic β-cell
deaths.50 In addition, GLP-1 agonists protect pancreatic
β-cells by activating mTOR signaling.51 Findings from

experimental studies highlighted that autophagy may
induce progressive death of pancreatic β-cells. In addi-
tion, induced autophagy promotes loss of hepatic and
cardiac tissues in diabetic rats.52

These findings proposed that autophagy plays a detri-
mental role on the pancreatic β-cells leading to accelera-
tion of cell deaths and development of T2D.

Taken together, autophagy has a double edge-sword that
could be beneficial or harmful in T2D. Therefore, use of
autophagy modulators is logical in this regard to clarify the
beneficial effects of autophagy activators or inhibitors in T2D.

3 | AUTOPHAGY MODULATORS

Formation of autophagosomes is mediated by Atg1/PI3K,
Atg8, and At5–Atg12 conjugation systems.53 Beclin-1
through interaction with class III PI3K initiates the for-
mation of autophagosomes.54 Notoriously, mTOR plays a
central player in the regulation of autophagy signaling in
response to starvation and hypoxia.55 Moreover, calpain,
PI3K, cAMP, and Ca2+ are also involved in the regulation
of autophagy signaling.56 In addition, histone deacetylase
6 (HDAC6) regulates the interaction between autophago-
somes and lysosomes.57 Therefore, targeting of these sig-
naling mainly Beclin-1, mTOR, calpain, PI3K, cAMP,
HDAC6, and Ca2 by specific modulators could be an
effective therapeutic strategy in the management of T2D.

3.1 | Autophagy activators in T2D

It has been shown that activation of autophagy by caloric
restriction promotes regeneration of pancreatic β-cells. This
effect mimic the effect produced by usingmTORC1 inhibitors
signifying that autophagy is an essential pathway for homeo-
stasis of pancreatic β-cells.58 In addition, autophagy activators
promote neurogenesis of pancreatic β-cells and prevent their
apoptosis. As well, autophagy augments peripheral insulin
sensitivity mainly in the liver and skeletal muscles.58,59

Remarkably, many antidiabetic drugs such as rosiglitazone,
metformin and glucagon like peptide 1 (GLP-1) prevent dys-
function of pancreatic β-cells by inducing autophagy by
increasing the expression of AMPK which induce autophagy
by inhibiting mTORC1 or though activation of Vps34 a com-
plex activated by Beclin-1.59 Therefore, autophagy activators
are involved in themanagement of T2D.

3.1.1 | mTOR inhibitors

Rapamycin which also termed sirolimus is a potent
immunosuppressive and antifungal natural product.60
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Rapamycin interacts with immunophilin to form a com-
plex which inhibits the kinase activity of mTOR leading
to induction of autophagy.60 In addition, ester of rapamy-
cin which called temsirolimus has ability to induce
autophagy.61 Of note, mTOR inhibitors are primarily
used as immunosuppressive agents in the management
of various cancer types including renal cell carcinoma,
breast cancer, and neuroendocrine tumors.62 mTOR sig-
naling plays a critical role in glucose metabolism and
homeostasis. It has been reported that early use of mTOR
inhibitors is associated with the development of new-
onset T2D.63–66 mTOR inhibitors-induced hyperglycemia
is mediated by the development of IR and impairment of
insulin secretion.62,67 Fraenkel et al.67 observed that
mTOR inhibitor rapamycin attenuates adaptation of pan-
creatic β-cells to the effect of hyperglycemia and contrib-
ute to the exacerbation of metabolic complications in
T2D (Figure 5).

Rapamycin can cause fulminant T2D in experimental
animals by reducing mTOR signaling which is essential
for the function of pancreatic β-cells.67 It has been shown
that mTOR signaling triggers the activation of ribosomal
S6 kinase 1 (S6K1) and 4 eukaryotic binding protein
1 (4EBP1).68–70 Insulin activates mTOR signaling via
PI3K/Akt pathway. In turn, mTOR/S6K1 signaling
induces negative feedback inhibition of insulin sensitiv-
ity.71 Thus, over-activation of mTOR/S6K1 signaling is
associated with impairment of insulin action.72 Similarly,
stimulation of mTOR/S6K1 signaling by amino acid
induces IR which prevented by rapamycin.73 Therefore,
mTOR inhibitor rapamycin could be effective in the regu-
lation of glucose metabolism and insulin sensitivity in
mice.74 An experimental study demonstrated that rapa-
mycin improves hepatic insulin sensitivity and inhibit
autophagy in rats with hepatic steatosis and IR.75 A
recent experimental study conducted by Reifsnyder
et al76 illustrated that co-treatment with metformin and
rapamycin improves insulin sensitivity in mice. Puzzling,
rapamycin has a dual role it can induce IR and at the
same time improves insulin sensitivity. Also, rapamycin
can cause glucose intolerance without IR. This effect of
rapamycin is called benevolent pseudo-diabetes.77 Con-
versely, rapamycin enhances life extension without dia-
betogenic effect in healthy subjects when used with
caloric restriction and metformin.77,78 Furthermore, insu-
lin sensitizing agent metformin which used in the man-
agement of T2D has ability to blocks mTOR pathway
independent of AMPK pathway.79 Findings from in vitro
and in vivo studies unveiled that metformin has antican-
cer effect via inhibition of mTOR pathway.80 Interest-
ingly, different studies revealed that metformin can
induce autophagy through activation of AMPK and inhi-
bition of mTOR pathway.81,82 Furthermore, an

isoquinoline alkaloid berberine has anti-inflammatory
effects by inducing autophagy through inhibition of
mTOR pathway.83 Pang et al.84 illustrated that berberine
is effective in the management of T2D by different mech-
anisms including inhibition of mTOR pathway and acti-
vation of autophagy pathway.

Therefore, mTOR inhibitors rapamycin, metformin,
and berberine through induction of autophagy improve
glucose homeostasis and prevent T2D-induced
complications.

3.1.2 | ER stressing inducers

ER stress is regarded as a potent autophagy inducer.
Notably, Sar1 and Rab1b are GTPase required for forma-
tion of autophagosomes.85 ER stress promotes autophagy
by inhibition of mTOR/Akt pathway.85 ER stress
inducers like thapsigargin, brefeldin, and tunicamycin
enhance the expression of autophagic vesicles and
Beclin-1.86

FIGURE 5 mTOR inhibitors and risk of type 2 diabetes (T2D):

Mammalian target of rapamycin (mTOR) inhibitors reduce the

conversion of proinsulin to insulin in the pancreatic β-cells that
increase risk of T2D development. In addition, mTOR inhibitors by

increasing JNK signaling attenuate the activation of insulin

receptor substrate 1/2 and P13k/Akt signaling activation leading to

alteration of glucose metabolism. Decreasing Akt phosphorylation

activates glycogen synthase kinase 3 (GSK3), which inhibits

glycogen synthesis. Inhibition of Akt phosphorylation leads to

activation of gluconeogenesis and inhibition of glycolysis and

glucose uptake. IGF, Notice insulin-like growth factor; IRS1/2,

Insulin receptor substrates 1/2; mTOR, the mammalian target of

rapamycin (mTOR); mTORC1, mammalian target of rapamycin

complex1; PI3Ks, Phosphatidylinositol 3-kinases; Akt, protein

kinase B; GSK3, Glycogen synthase kinase-3; JNK, Jun N-terminal

kinase.
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Thapsigargin is an inhibitor of ER Ca2+ ATPase
(SERCA) extracted from Thapsia garganica.87 Thapsigar-
gin increases cytosolic Ca2+ by inhibiting Ca2+ pump
into ER and sarcoplasmic reticulum.88 Depletion of Ca2+

within ER and sarcoplasmic reticulum trigger the open-
ing of plasma membrane Ca2+ channel.89 This effect
induces ER stress and expression of unfolded protein
response (UPR) to overcome ER stress.90 However, unre-
solved ER stress triggers apoptosis and cell death.
Besides, Ca2+ store depletion prevents ferroptosis
through phospholipids from ER.91 Thapsigargin via
induction of ER stress activates autophagy.92 It has been
shown that thapsigargin triggers apoptosis of pancreatic
β-cells.93 Inhibition of SERCA reduces functional activity
of pancreatic β-cells and insulin release.94

It has been shown that alteration of cytosolic Ca2+ is
linked with development of T2D.95 In vitro study demon-
strated that lymphocytes from T2D patients had higher
cytosolic Ca2+ and correlated with blood glucose as com-
pared to controls.95 Therefore, ER stress inducers may
aggravate cytosolic Ca2+ by enhancing Ca2+ flux across
the cell membrane. In addition, ER stress inducers
reduce the expression of superoxide dismutase causing
oxidative stress and exacerbation of T2D.96 However, ER
stress inducers promote the expression of UPR which has
a protective effect against T2D.90,94 Notoriously, augmen-
tation of UPR by ER stress inducers is involved in the
attenuation of pancreatic β-cells death.97 UPR conserves
ER homeostasis and attenuates β-cell failure. However,
prolong ER stress reduces the protective effects of UPR
leading to β-cell death and reduced insulin secretion.98,99

Therefore, ER stress inducers have a protective effect by
increasing UPR and detrimental effect by inducing oxida-
tive stress in T2D regardless of autophagy.

3.1.3 | Inositol monophosphatase inhibitors

Inositol monophosphatase (IMPase) is an enzyme
involved in the regulation of intracellular IP3 and free
inositol. Different types of IMPase inhibitors include lith-
ium, valproic acid, carbamazepine and L-690330.100

IMPase inhibitors induce autophagy in mTOR-
independent pathway and can be used in neurodegenera-
tive diseases.101 IMPase inhibitor lithium has a critical
role in treating neurodegenerative diseases by enhancing
autophagy.102 It has been shown that lithium reduced
T2D risk by inhibition of glycogen synthase kinase 3.103

A retrospective study illustrated that long-term use of
lithium decreases T2D risk.103 Of note, neuroprotective
agents like lithium have cytoprotective effects against
injury of pancreatic β-cells.104 Experimental study indi-
cated that a microdose of lithium protects pancreatic

β-cells.105 In addition, antiepileptic carbamazepine
enhances survival of pancreatic β-cells.106 Preclinical
study observed that carbamazepine slows the progression
of pancreatic β-cell injury by reducing inflammation in
mice.106 Furthermore, antiepileptic valproic acid has the
ability to decrease IR, gluconeogenesis, and fat deposition
by inhibiting IMPase and induce autophagy.107 The
underlying mechanism for the beneficial effect of val-
proic acid on glucose homeostasis and T2D is related to
the modulation of HDAC, insulin signaling, glucagon
secretion, and expression of FOXO1.107 Of note, HDAC
signaling which augments IR is increased in T2D
patients.108 Therefore, use of HDAC inhibitors like val-
proic acid could be effective in attenuating the develop-
ment of IR and T2D.108 In addition, valproic acid,
carbamazepine, and lithium have been to induce
autophagy.109–111 Therefore, IMPase inhibitors seem to
be effective in T2D by inducing autophagy.

3.1.4 | Trehalose

Trehalose is a nonreducing sugar consisting of two
glucose unites fused by alpha bond named α-D-gluco-
pyranosyl.112 Trehalose is derived from rye ergot that
reduces protein denaturation and protect cell mem-
brane integrity.113 Trehalose via induction of autop-
hagy increases the elimination of α-synuclein and can
be used in the management of neurodegenerative dis-
eases.114 Trehalose is not synthesized inside human
body; it is commonly used as food stabilizer.115

Ingested trehalose is metabolized by trehalases; there-
fore, trehalose is regarded as landmark of carbohy-
drate metabolite, and high blood trehalose level is
associated with risk for the development of T2D.115 It
has been shown that trehalose can reduce the develop-
ment of T2D by antioxidant effect in experimental ani-
mals.116 Korolenko et al.,117 observed that trehalose
induces myocardial and hepatic autophagy in diabetic
mice. A placebo controlled clinical trial on 34 subjects
with high body mass index showed that daily intake of
trehalose 10 g per day for 12 weeks reduced IR and
improved blood glucose homeostasis.118 This finding
suggests that prolonged intake of trehalose attenuates
the development of IR and metabolic syndrome in
high-risk patients. A case control study involved
69 pairs of diabetic retinopathies and matched T2D
patients showed that treatment with trehalose
decreased risk of diabetic retinopathy.119 In addition,
trehalose prevents IR and postprandial insulin
burst.120 These observations indicated that trehalose
reduces T2D risk by inducing autophagy and antioxi-
dant effects.
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3.1.5 | PI3K inhibitors

PI3K pathway is intricate in different cellular functions
including cell growth, differentiation, proliferation, and
inhibition of autophagy.121–125 Therefore, PI3K inhibitors
like ceramide increase the expression of Beclin-1 and
improve autophagy function.126 Sphingosine-1-phos-
phate, like ceramide, promotes autophagy in many can-
cer cell lines.127 Ceramide regulates various cellular
signaling including apoptosis and cell-cycle arrest. Cer-
amide is phosphorylated to ceramide-1 phosphate which
has opposite effect and can induce inflammatory reac-
tions via stimulation of cytosolic phospholipase A2 and
consequent release of prostaglandins.128–131 High cer-
amide is associated with the development of IR.132 Of
note, ceramide inhibits insulin action by attenuating the
expression of Akt/protein kinase B.133 Therefore, progres-
sive tissue accumulation of ceramide participates in the
development and progression of IR.133–136 Thus, inhibi-
tion of ceramide prevents IR and the development of
T2D induced by glucocorticoid therapy.137 Ceramide has
a diabetogenic effect through induction inflammation
and apoptosis of pancreatic β-cells.138 Furthermore,
increasing tissue ceramide promotes the development
and progression of T2D-related complications (137; 138).
Therefore, ceramide seems to be harmful in T2D despite
induction of autophagy.

3.1.6 | Calpain inhibitors

Calpain is a Ca2+-dependent, nonlysosomal cysteine pro-
tease expressed ubiquitously involved in cell-cycle
progression and cell mobility.139 Calpain has ability to
inhibit autophagy due to high cytosolic Ca2+ activates
calpain.140 Therefore, calpain inhibitor calpastatin could
be effective to induce autophagy.141 Variation in the
expression of calpain-10 gene in the pancreatic β-cells
increases risk of T2D. Caplain regulates the function of
pancreatic β-cells and improves insulin secretion. There-
fore, calpastatin inhibits the functional activity of pancre-
atic β-cells and may exacerbate T2D.142 Zhu et al.143

revealed that caplain over-expression and calpastatin
down-regulation mediates the development of Alzheimer
disease (AD) in diabetic mice. This finding suggests that
chronic hyperglycemia-induced AD via inhibition of
calpastatin-mediated autophagy. Interestingly,
calpastatin-mediated autophagy prevents cardiac fibrosis
in murine model of T2D.144 Other calpain inhibitors
including peptidyl epoxide, ketoamide inhibitors, and
aldehyde were shown to be effective against various met-
abolic diseases including T2D.145 Therefore, autophagy
induction by calpastatin could be an effective novel

therapeutic strategy in preventing misfolded protein-
induced pancreatic β-cell dysfunction.146

3.1.7 | Inositol triphosphate inhibitors

Inositol triphosphate (IP3) is cytosolic signaling pathway
involved in the regulation of insulin secretion and inhibi-
tion of autophagy.147 Expression of IP3 receptor in T2D
patients is reduced leading to abnormal autophagy func-
tion.148 IP3 receptors mediate insulin release in response
to glucose administration.149 IP3 receptor antagonist xes-
tospondin inhibits insulin release in response to glu-
cose.149 Of note, xestospondin is regarded as mTOR-
independent autophagy activator.150 Therefore, IP3
receptor antagonists improve autophagy but at the same
time deteriorate insulin secretion and increase T2D risk.

3.1.8 | Ca2+ channel blockers

Ca2+ is an essential intracellular second messenger
regulating various cellular processes including autop-
hagy. High intracellular Ca2+ inhibits autophagy in
hepatocytes through inhibition the interaction between
autophagosomes and lysosomes.151 Therefore, Ca2+

channel blockers (CCBs) like verapamil can activate
autophagy by inducing the interaction between autop-
hagosomes and lysosomes.152 CCBs through induction
of autophagy prevent the accumulation of lipid drop-
lets and protein inclusions with subsequent inhibition
of inflammation and IR.152 Herein, CCBs may reduce
the metabolic complications in obesity by enhancing
autophagy and decreasing the development of IR. It
has been reported that CCBs reduce defective
autophagy-induced IR in obesity.153 Furthermore,
CCBs improve diabetic outcomes and prevent the pro-
gression of cognitive deficits and depression.154

Remarkably, CCBs inhibit the activation of aldose
reductase pathway which transforms glucose to sorbi-
tol leading to the development of diabetic complica-
tions.155 Among CCBs, cinnarizine is the most potent
inhibitor of aldose reductase pathway.155 In addition,
CCB nifedipine improves glucose homeostasis and
lipid profile in T2D patients.156 Collectively, CCBs via
induction of autophagy may improve glucose homeo-
stasis and reduce diabetic complications.

3.2 | Autophagy inhibitors in T2D

It has been illustrated that autophagy inhibitors could be
effective against the development of IR and T2D by
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inhibiting pancreatic β-cell deaths. Autophagy triggers
apoptosis by inhibiting caspase pathway and induction of
ROS formation, oxidation of lipid membrane, and injury
of plasma membrane.47 It has been shown that uses of
autophagy inhibitors may attenuate ROS-induced cell
deaths.47 An updated experimental study revealed that
autophagy inhibitors prevent retinal inflammation in dia-
betic mice.148 Autophagy inhibitors can prevent
hyperglycemia-induced exaggeration of autophagy,
which is harmful rather than beneficial. Of note, low
autophagy is required for normal pancreatic β-cell func-
tion; however, exaggerated autophagy triggers
autophagic-programmed cell death and apoptosis.47

Therefore, autophagy inhibitors can mitigate IR-induced
autophagy over-activity and associated inflammatory and
oxidative stress disorders.

3.2.1 | Lysosomal alkalizer

Lysosomal lumen alkalizers like chloroquine and hydro-
xychloroquine are anti-malarial and anti-inflammatory
agents, which act by impairing of lysosomal function and
inhibiting of autophagy.157 Chloroquine-induced autop-
hagy inhibition is mediated by inhibiting the interaction
between autophagosomes and lysosomes rather than
affecting the acidity or degradative capacity.158 A previ-
ous clinical trial observed that hydroxychloroquine was
effective in the management of T2D refractory to the
effect of sulfonylureas.159 In comparison with pioglita-
zone, hydroxychloroquine was effective in the manage-
ment of T2D through modulation of lipid metabolism
and glucose homeostasis.160 A systematic review and
meta-analysis of 11 randomized controlled clinical trials

FIGURE 6 Action of autophagy activators and inhibitors: Autophagy activators inhibit cellular stress and induce autophagosome

formation and fusion of autophagosome with the lysosomes; the reverse is done by autophagy inhibitors.
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showed that there was no strong clinical evidence to rec-
ommend use of hydroxychloroquine in the management
of T2D.161 These findings proposed that hydroxychloro-
quine may have some beneficial effect in the manage-
ment of T2D, despite of the inhibitory effect on the
autophagy function.

Moreover, lys01 is a dimeric form of two chloroquine
moieties that is 10 time more potent autophagy inhibitor
compared to hydroxychloroquine.162 A water-soluble
form of lys01 is known as lys05 has higher ability to dea-
cidifying the lysosomes and inhibition of autophagy.163

However, the effects of lys01 and lys05 were not evalu-
ated on insulin sensitivity and pancreatic β-cell functions.

3.2.2 | Cycloheximide

Cycloheximide is a protein synthesis inhibitor produced
by Streptomyces griseus. Cycloheximide is widely used in
various biomedical research regarding autophagy func-
tion. Because of the toxic adverse effects of cyclohexi-
mide, including teratogenesis and DNA damage, it used
in research only.164 It has a potent inhibitor effect on the
autophagy function by inhibiting the formation of autoly-
sosomes.164,165 Cycloheximide inhibits starvation-induced
autophagy through activation of mTOR signaling.164 Pre-
vious preclinical studies exposed that cycloheximide pro-
motes the expression of insulin-like growth factors in
hepatoma cell lines.166,167 In addition, cycloheximide
reduces glucose transporters in adipocytes.168 Therefore,
cycloheximide has detrimental effect on glucose homeo-
stasis and insulin signaling.

3.2.3 | Bafilomycins

Bafilomycins are macrolide antibiotics produced by Strep-
tomycetes. Bafilomycins have a wide-range biological
activities including antifungal, antiparasitic, antitumor,
and immunosuppressant.169 Bafilomycin A1 inhibits
autophagy leading to mitochondrial dysfunction and cell
death, particularly, bafilomycin A1 block vacuolar type
H-ATPase (V-ATPase) enzyme, which is responsible for
acidification of lysosomes and other intracellular organ-
elles.170 It has been shown that V-ATPase inhibits insulin
release, and the use of bafilomycin A1 for 1 week attenu-
ates renal gluconeogenesis and improves glucose homeo-
stasis in rats with T2D.171 However, transplacental
exposure to bafilomycin A1 inhibits pancreatic organo-
genesis and accelerates diabetes in mice.172 Moreover,
the expression of V-ATPase is downregulated in T2D
patients.173 Therefore, bafilomycin A1 has a detrimental
effect on the T2D outcomes by inhibiting autophagy.

Different sites of actions are affected by autophagy
activators and inhibitors (Figure 6).

Taken together, both autophagy activators and inhibi-
tors have conflicting effects regardless of autophagy
function.

4 | CONCLUSIONS AND
PERSPECTIVES

T2D is a chronic metabolic disorder associated with dys-
function autophagy pathway Basal autophagy under nor-
mal physiological conditions seems to be protective
against the development of pancreatic β-cell dysfunction.
During the development of IR and overt T2D with the
development of chronic hyperglycemia and associated
ER stress, autophagy is activated as a compensatory path-
way against oxidative stress and inflammatory to preserve
homeostasis of pancreatic β cell. However, in late T2D
autophagy is over-activated due to unresolved oxidative
stress leading to the induction of pancreatic β-cell apopto-
sis. Therefore, autophagy plays a double-edged sword role
in T2D seeming protective in the early stage and detri-
mental in the late stage. Therefore, autophagy activators
improve defective autophagy in early T2D preventing fur-
ther deteriorations. However, autophagy inhibitors seem
to produce a protective effect in late T2D to prevent exag-
gerated autophagy which implicated in the induction of
pancreatic β-cell apoptosis. Most autophagy activators
seem to have protective effects; however, the majority of
autophagy inhibitors have detrimental effects. Collectively,
autophagy activators improve pancreatic β-cells and
reduce IR in T2D. In this claim, repurposing of natural
products that have potential effects on the autophagy pro-
cess as adjuvant treatment with antidiabetic agents could
be promising as a novel therapeutic strategy. Preclinical
and clinical studies are warranted in this concern.
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