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a b s t r a c t 

Background: Tuberculosis (TB) remains a global public health challenge. The existing Bacillus Calmette–Guérin 
vaccine has limited efficacy in preventing adult pulmonary TB, necessitating the development of new vaccines 
with improved protective effects. 
Methods: Computer-aided design and artificial intelligence technologies, combined with bioinformatics and im- 
munoinformatics approaches, were used to design a multi-epitope vaccine (MEV) against TB. Comprehensive 
bioinformatics analyses were conducted to evaluate the physicochemical properties, spatial structure, immuno- 
genicity, molecular dynamics (MD), and immunological characteristics of the MEV. 
Results: We constructed a MEV, designated ZL12138L, containing 13 helper T lymphocyte epitopes, 12 cyto- 
toxic T lymphocyte epitopes, 8 B-cell epitopes, as well as Toll-like receptor (TLR) agonists and helper peptides. 
Bioinformatics analyses revealed that ZL12138L should exhibit excellent immunogenicity and antigenicity, with 
no toxicity or allergenicity, and had potential to induce robust immune responses and high solubility, the im- 
munogenicity score was 4.14449, the antigenicity score was 0.8843, and the immunological score was 0.470. 
Moreover, ZL12138L showed high population coverage for human leukocyte antigen class I and II alleles, reach- 
ing 92.41% and 90.17%, respectively, globally. Molecular docking analysis indicated favorable binding affinity 
of ZL12138L with TLR-2 and TLR-4, with binding energies of − 1173.4 and − 1360.5 kcal/mol, respectively. Nor- 
mal mode analysis and MD simulations indicated the stability and dynamic properties of the vaccine construct. 
Immune simulation predictions suggested that ZL12138L could effectively activate innate and adaptive immune 
cells, inducing high levels of Type 1 T helper cell cytokines. 
Conclusions: This study provides compelling evidence for ZL12138L as a promising TB vaccine candidate. Future 
research will focus on experimental validation and further optimization of the vaccine design. 
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. Introduction 

Tuberculosis (TB), an ancient disease caused by My-

obacterium tuberculosis (MTB), continues to pose a con-
iderable global public health challenge [ 1–3 ]. Accord-
ng to the World Health Organization 2023 report, TB re-
Abbreviations: AI, artificial intelligence; BCG, Bacillus Calmette–Guérin; CAD, co
uman leukocyte antigen; HTL, helper T lymphocyte; IEDB, the Immune Epitope D
olecular dynamics; MEV, multi-epitope vaccine; MHC, major histocompatibility co
ycobacterium tuberculosis ; NMA, normal mode analysis; NK, natural killer; PCA, pr
ean square deviation; TB, tuberculosis; TH, T helper; TLR, Toll-like receptor; 3D, th
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ains one of the leading infectious causes of mortality
orldwide, with millions of new cases and hundreds of

housands of deaths reported annually [ 4 ]. The Bacillus
almette–Guérin (BCG) vaccine, which is in widespread
se and has shown some efficacy in preventing TB in chil-
ren, has a limited protective effect in adults and fails
mputer-aided design; CTL, cytotoxic T lymphocyte; DC, dendritic cell; HLA, 
atabase; IFN- 𝛾, interferon- 𝛾; IL, interleukin; MCS, multiple cloning sites; MD, 
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incipal component analysis; PTM, post-translational modification; RMSD, root 
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o provide long-term immunity [ 5–7 ]. Consequently, the
evelopment of novel vaccines to prevent TB in adults is
ighly desirable. 

Multi-epitope vaccines (MEVs) are an innovative type
f vaccine that can enhance the breadth and intensity
f the immune response by combining multiple immun-
dominant epitopes [ 8–11 ]. Compared with traditional
accines, MEVs can activate a broader range of immune
ell populations, including T cells and B cells, thereby
roviding more comprehensive protection [ 12 ]. Further-
ore, the design of MEVs allows for customization en-

bling different antigens of pathogens to be targeted,
hich provides an effective solution to address pathogen
ariation and immune evasion. 

With the recent considerable advancements in com-
utational power and the continuous optimization of al-
orithms, computer-aided design (CAD) and artificial in-
elligence (AI) technologies have enabled breakthrough
rogress to be made in biomedical applications [ 13–17 ].
hese technologies have been used in the design and de-
elopment of TB vaccines, bringing revolutionary changes
o MEV research for tuberculosis. In the present study,
e employed advanced CAD tools to analyze and pre-
ict epitopes with high immunogenic potential from MTB
ntigens. These epitopes included helper T lymphocyte
HTL) epitopes, cytotoxic T lymphocyte (CTL) epitopes,
nd B lymphocyte epitopes, which are key factors in acti-
ating immune responses [ 18 ]. Furthermore, we used ma-
hine learning and deep learning algorithms from AI tech-
ology to conduct screening and optimization of these
mmunodominant epitopes, subsequently constructing a
ovel TB MEV. We predicted the physicochemical proper-
ies, antigenicity, immunogenicity, solubility, and spatial
tructure of this MEV. We further analyzed the interaction
haracteristics between the candidate MEV and Toll-like
eceptors (TLRs), as well as the features of the immune
esponses induced by the MEV. 

. Materials and methods 

.1. Selection of target antigens and acquisition of sequence 

nformation 

A schematic flowchart of the MEV development and
nalysis process is shown in Fig. 1 . We focused on five
rimary antigens, three antigens used in proliferative vac-
ines that have entered clinical trials: Ag85a, Ag85b, and
tb39A [ 19–22 ] and two antigens being investigated

n preclinical research: MPT64 (Rv1980c) and PPE68
Rv3873) [ 23 , 24 ]. These antigens were selected because
hey are expressed at different stages of the MTB life cycle
nd have the potential to elicit host immune responses. 

We used the Mycobrowser database ( https://
ycobrowser.epfl.ch/ ), a specialized bioinformatics

esource for the Mycobacterium genus that provides ex-
2

ensive genomic and proteomic data, to obtain detailed
equence information on these candidate antigens [ 25 ].
pecifically, the species MTB H37Rv was selected. The
esired antigen gene name (e.g., Rv3873) was entered
n the “Gene name or function ” field. Subsequently,
he full-length amino acid sequence of the antigen in
ASAT format was retrieved from the “Protein sequence ”
ection of the results page. Through this platform, we
uccessfully retrieved and documented the full-length
mino acid sequences of the selected antigens, laying the
oundation for subsequent immunogenic epitope analysis
nd vaccine design. During the sequence acquisition
rocess, particular attention was paid to the accuracy
nd completeness of the sequences to ensure the reliabil-
ty of subsequent bioinformatics analyses. The obtained
equence information will be used for further epitope
rediction and vaccine construction to identify key
pitopes capable of activating host immune responses. 

.2. Screening of immunodominant T-cell and B-cell 

pitopes 

To construct an effective TB vaccine, we focused
n screening T-cell epitopes capable of eliciting strong
mmune responses. Our aim was to identify epitopes
hat bind to major histocompatibility complex (MHC) I
nd MHC II molecules, corresponding to CTL and HTL
pitopes, respectively. Using information from previ-
us studies and a literature review, we employed the
HC class servers in the Immune Epitope Database

IEDB I, http://tools.iedb.org/mhci/ and IEDB II,
ttp://tools.iedb.org/mhcii/ ) for epitope prediction, pre-
isely setting the length range for CTL and HTL epitopes
t 9–10 and 12–18 amino acid residues, respectively.
hen, we used the VaxiJen v2.0 server ( http://www.ddg-
harmfac.net/vaxijen/VaxiJen/VaxiJen.html ) to evalu-
te the antigenicity of the predicted epitopes, ensuring
he selected epitopes possessed high predicted immuno-
enicity [ 26 ]. 

We combined multiple online prediction tools,
ncluding the Interferon (IFN) Epitope Server
 https://webs.iiitd.edu.in/raghava/ifnepitope/predict. 
hp ), IL4pred ( https://webs.iiitd.edu.in/raghava/il4pred
predict.php ), and IL10pred ( https://webs.iiitd.edu.in/
aghava/il10pred/predict3.php ), to assess the ability
f the HTL epitopes to induce specific cytokine secre-
ion [ 27 ]. We prioritized epitopes capable of inducing
FN- 𝛾-positive responses, while suppressing interleukin-4
IL-4) and IL-10 secretion, to enhance Th1-type immune
esponses. To assess the safety of the vaccine candidates,
e evaluated the allergenicity and toxicity of the epi-

opes using AllerTOP v.2.0 ( https://www.ddg-pharmfac.
et/AllerTOP/ ) and ToxinPred ( https://webs.iiitd.edu.in/
aghava/toxinpred/multi_submit.php ) servers [ 28 , 29 ].
inally, we predicted the immunogenicity of the CTL

https://mycobrowser.epfl.ch/
http://tools.iedb.org/mhci/
http://tools.iedb.org/mhcii/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://webs.iiitd.edu.in/raghava/ifnepitope/predict.php
https://webs.iiitd.edu.in/raghava/il4pred/predict.php
https://webs.iiitd.edu.in/raghava/il10pred/predict3.php
https://www.ddg-pharmfac.net/AllerTOP/
https://webs.iiitd.edu.in/raghava/toxinpred/multi_submit.php
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Fig. 1. Schematic flowchart of the ZL12138L vaccine development and analysis process. This process encompasses the selection of candidate antigens, identification 
of immunodominant HTL, CTL, and B-cell epitopes, construction of the ZL12138L vaccine, analysis of the vaccine’s physicochemical properties, analysis of the 
vaccine’s spatial structure, and prediction of the immunological characteristics. 
Abbreviations : HTL, helper T lymphocyte; CTL, cytotoxic T lymphocyte; IFN- 𝛾, interferon- 𝛾; IL, interleukin; IEDB, the Immune Epitope Database. 
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pitopes using the Class I Immunogenicity server
 http://tools.iedb.org/immunogenicity/ ) to determine
hat the selected epitopes were likely to induce effective
mmune responses. 

Because B lymphocytes are important in anti-
nfection immunity, we used the ABCpred server
 https://webs.iiitd.edu.in/raghava/abcpred/ ) to pre-
ict linear B-cell epitopes [ 30 ]. This server employs
ecurrent neural network technology to identify epitopes
hat are likely to induce strong immune responses with
igh accuracy. We restricted the length of the B-cell
pitopes, prioritizing the epitopes with high scores and
engths not exceeding 20 amino acid residues. 

In addition to linear epitopes, discontinuous B-cell epi-
opes are also common and play crucial roles in im-
une responses. Therefore, the accurate prediction of

hese discontinuous epitopes is critical for refining the
patial structure of vaccine candidates. We used the El-
iPro server ( http://tools.iedb.org/ellipro/ ), an advanced
on-linear B-cell epitope prediction tool, to predict dis-
ontinuous B-cell epitopes for use in the candidate MEV.
lliPro identifies potential epitope regions by analyzing
3

he three-dimensional structure of proteins, providing im-
ortant structural information. We set a screening thresh-
ld of 0.693 based on previous studies and server recom-
endations. Only discontinuous B-cell epitopes scoring

bove this threshold were selected for subsequent MEV
onstruction [ 31–33 ]. 

We used the IEDB server ( http://tools.iedb.org/bcell/ )
o predict the surface accessibility, flexibility, 𝛽-turns,
ntigenicity, and hydrophilicity of the epitopes [ 34–37 ].
hrough these stringent screening criteria, we were able
o identify potential epitopes that were likely to enhance
he immunogenicity and protective efficacy of a vaccine.
his refined epitope prediction and screening process pro-
ided a precise structural basis for the MEV design, con-
ributing to the development of an effective and safe TB
accine. 

.3. Construction of MEV and population coverage analysis 

f HLA-I and HLA-II alleles 

We employed an innovative bioinformatics strategy
o predict and screen immunodominant T-cell and B-cell

http://tools.iedb.org/immunogenicity/
https://webs.iiitd.edu.in/raghava/abcpred/
http://tools.iedb.org/ellipro/
http://tools.iedb.org/bcell/
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pitopes. We linked the selected epitopes using carefully
esigned amino acid linkers, including GPGPG, AAY, and
K, aiming to enhance the immunogenicity and improve

he vaccine stability of the epitopes. To further boost the
mmune-stimulating capacity of the MEV, we introduced
pecific TLR agonists, the TLR2 agonist EAST-6 and the
LR-4 agonist RS-09 [ 38 , 39 ], at both ends of the vac-
ine sequence. These agonists were chosen because they
ave known immune-enhancing properties and are capa-
le of effectively activating immune cells. Additionally,
e added the PADRE helper peptide, a widely studied

mmunoenhancing element that helps induce robust im-
une responses [ 40 ], after the RS-09 agonist. To facilitate

accine purification and functional studies, we added a
 × His tag at the end of the MEV sequence, which should
nable the efficient purification of the vaccine candidate
hrough affinity chromatography. 

A crucial factor in the development of a vaccine is its
pplicability to diverse global populations; thus, MHC re-
triction should be considered in the design of epitope
accines. To assess the global coverage potential of our
esigned MEV candidate, we conducted a comprehen-
ive analysis using the population coverage tool in the
EDB database ( http://tools.iedb.org/population/ ), com-
ined with human leukocyte antigen (HLA)-I and HLA-II
llele frequency data from the allele frequency database.
hese data cover 115 countries and 21 ethnicities across
6 geographic regions worldwide, which should ensure
hat our designed vaccine can provide protection for the
ajority of the global population, and thus have the po-

ential for widespread application. 

.4. Biological properties of the candidate MEV 

After constructing the candidate MEV, we conducted
etailed predictive analyses of key biological properties
sing a series of advanced bioinformatics tools. These
roperties, which include the antigenicity, immunogenic-
ty, allergenicity, and toxicity, are crucial for evaluat-
ng the efficacy and safety of a vaccine. We first used
ntigenPro ( https://scratch.proteomics.ics.uci.edu/ ) and
axiJen v2.0 servers to assess the antigenicity and im-
unogenicity of the MEV [ 26 , 41 ]. These tools were
sed to predict the potential of the MEV to activate im-
une cells through an in-depth analysis of specific fea-

ures in the sequence. Additionally, application of the
EDB immunogenicity server allowed further evaluation
f the immunogenicity of the MEV to predict its abil-
ty to induce immune responses [ 42 ]. For the safety as-
essment, we employed Allergen FP v.1.0 and AllerTOP
.2.0 servers to predict the allergenicity of the MEV.
hese analyses helped to identify and exclude epitopes
hat might cause allergic reactions. Simultaneously, to
omprehensively assess the vaccine’s safety, we also used
oxinPred and ToxinPred2 servers ( https://www.ddg-
4

harmfac.net/AllerTOP/ ) to predict the toxicity of the
EV [ 28 , 43 ]. These comprehensive bioinformatics analy-

es indicated that the MEV candidate should possess good
mmunogenicity while meeting safety requirements, i.e.,
hould be non-toxic and non-allergenic. These analyses
rovided a solid foundation for experimental research and
he potential clinical application of the candidate vaccine,
s well as providing an important scientific basis for de-
eloping more effective and safer tuberculosis MEV can-
idate vaccines. 

.5. Physicochemical properties and solubility of the 

andidate MEV 

To comprehensively understand the biological func-
ion and immunogenicity of the candidate MEV, we
onducted a detailed analysis of the physicochemical
roperties. These properties included the predicted in

ivo and in vitro half-lives, theoretical isoelectric point
pI), instability index, aliphatic index, and grand aver-
ge of hydropathicity (GRAVY). These parameters are
rucial for evaluating the structural stability, the behav-
or under physiological conditions, and potential inter-
ctions of the MEV [ 44 ]. Using the Expasy Protparam
erver ( https://www.expasy.org/resources/protparam/ )
e predicted these key physicochemical parameters.
hese data, not only helped to understand the stability
f the MEV, but also provided important information on
he dynamics of the MEV in biological systems. In partic-
lar, the solubility of a vaccine is a key factor affecting
he immunogenicity. A high solubility facilitates the uni-
orm distribution of a vaccine during injection and thus
ontributes to the formation of the correct spatial struc-
ures and induction of effective immune responses. To as-
ess the solubility of the MEV, we used the protein-sol
erver ( https://protein-sol.manchester.ac.uk/ ) for predic-
ion [ 45 ]. From the results obtained, we set a solubility
alue > 0.45 as the standard for good solubility, providing
 scientific basis for vaccine formulation development and
njection formulation strategies. 

It is also essential to consider the potential post-
ranslational modification (PTM) sites of proteins be-
ause these are crucial for vaccine development and
rotein functions. Common PTMs include phosphory-
ation, acetylation, ubiquitination, and methylation.
otably, phosphorylation is a key mechanism for regu-

ating protein activity and cellular signaling pathways.
nalyzing phosphorylation sites can provide valuable

nsights into protein functions, activation states, and
otential interactions within cellular networks. To pre-
ict potential phosphorylation sites in the protein of
nterest, ZL12138L, we employed the NetPhos-3.1 server
 https://services.healthtech.dtu.dk/services/NetPhos- 
.1/ ), a widely recognized tool in the field of compu-
ational biology. This server uses advanced machine

http://tools.iedb.org/population/
https://scratch.proteomics.ics.uci.edu/
https://www.ddg-pharmfac.net/AllerTOP/
https://www.ddg-pharmfac.net/AllerTOP/
https://www.expasy.org/resources/protparam/
https://protein-sol.manchester.ac.uk/
https://services.healthtech.dtu.dk/services/NetPhos-3.1/
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earning algorithms to identify potential phosphorylation
ites based on the primary sequence of a protein. 

.6. Bioinformatics prediction of secondary and tertiary 

tructures of the candidate MEV 

The spatial structure of a vaccine considerably af-
ects the biological function and immunogenicity. To
ain an understanding of the structural characteristics
f the candidate MEV, we employed various bioin-
ormatics tools for predictive analysis. First, we used
SIPRED ( http://bioinf.cs.ucl.ac.uk/psipred/ ) to pre-
ict the secondary structure of the MEV. PSIPRED is a
rotein secondary structure analysis tool that predicts
tructures from the amino acid sequences or PDB struc-
ure files, and is capable of predicting transmembrane
opology, helices, folds, and domains. Additionally, we
sed the SOPMA server ( https://npsa.lyon.inserm.fr/cgi-
in/npsa_automat.pl?page = /NPSA/npsa_sopma.html ), 
hich has an accuracy of approximately 69.5%. This

erver can predict protein secondary structures, includ-
ng 𝛼-helices, 𝛽-sheets, and random coils [ 46–48 ]. 

For predicting protein interactions, which is cru-
ial for understanding cellular functions and rational
accine design, we employed the latest AlphaFold-
 server ( https://golgi.sandbox.google.com/ ). This
pgraded version of AlphaFold-2 can predict the
tructures of complexes including proteins, nucleic
cids, small molecules, ions, and modified residues
 15 , 49 ]. AlphaFold-3 has improved accuracy com-
ared with many specialized tools, particularly in
redicting protein–ligand, protein–nucleic acid, and
ntibody–antigen interactions [ 50 ]. After obtaining
he tertiary structure prediction, we used the Galaxy
efine web server ( https://galaxy.seoklab.org/cgi-
in/submit.cgi?type = REFINE ) to optimize the model,
 crucial step in ensuring the reliability of the 3D struc-
ure prediction of the MEV [ 51–54 ]. Through these
omprehensive structural prediction and optimization
nalyses, we were able to obtain a solid structural foun-
ation for the design and optimization of a MEV with
ood performance as a vaccine. 

.7. 3D structure model validation of the candidate MEV 

After completing the 3D structure prediction and
ptimization of the MEV, we implemented validation
rocedures to ensure the accuracy and reliability of
he obtained model. This process is crucial for refining
accine design as it helps to identify and correct po-
ential structural defects. First, we used the ProSA-web
erver ( https://prosa.services.came.sbg.ac.at/prosa.php )
o conduct a detailed validation of the 3D structure
odels before and after optimization. ProSA-web is a

ool that uses PDB format files to detect errors in pro-
ein models by calculating Z-scores to evaluate model
5

uality [ 55 , 56 ]. A comparison of the Z-scores with lo-
al quality scores of proteins provided an indication
f possible errors in the model [ 57 ]. Subsequently, to
urther assess the structural quality of the MEV, we em-
loyed the ERRAT server ( https://saves.mbi.ucla.edu/ ).
RRAT evaluates the quality of protein spatial struc-
ures based on non-covalent interactions between atoms,
dentifying potentially erroneous regions in the struc-
ure and providing important information for structural
ptimization. In addition, to comprehensively assess
he stability of the protein structure, we generated Ra-
achandran plots using UCLA-DOE LAB-SAVES v6.0

 https://saves.mbi.ucla.edu/Jobs/1564711/pc/saves_01. 
ng ) [ 10 , 58–61 ]. Ramachandran plots are a visualization
ool for evaluating protein spatial structures. By display-
ng the distribution of amino acid residues in the core,
llowed, and disallowed regions, the stability of a protein
tructure can be assessed. A higher number of residues
n the core region indicate a more stable structure, while
 higher number in the disallowed region may suggest
tructural instability. Through these comprehensive val-
dation steps, the 3D structural model of the candidate
EV was shown to possess high accuracy and reliability

or use in vaccine design. 

.8. Molecular docking analysis of the candidate MEV with 

LRs 

TLRs, especially TLR-2 and TLR-4, play crucial roles
n the innate immune system by recognizing MTB and
ctivating signaling pathways for pro-inflammatory
ytokines. To enhance the immunogenicity of the
andidate MEV, TLR-2 and TLR-4 agonists were in-
orporated into the vaccine design to boost the im-
une responses by targeting TLR-2 and TLR-4. We

btained the three-dimensional structural information
f TLR-2 (PDB ID: 2Z7X) and TLR-4 (PDB ID: 3FXI)
rom the NCBI molecular modeling database (MMDB;
ttps://www.ncbi.nlm.nih.gov/structure/ ). These de-
ailed structural data provided the foundation for con-
ucting precise molecular docking analyses. Using the
lphaFold-3 server, we performed ligand–receptor dock-

ng analyses to predict the interactions between the MEV
nd both TLR-2 and TLR-4. To visually demonstrate the
nteractions between the MEV and the TLRs, we gen-
rated 3D visualization models using PyMOL software
nd created DIMPLOT diagrams showing cross-interface
nteraction effects using LigPlot software. These im-
ges not only provided an intuitive perspective of the
inding modes between the MEV and the TLRs but also
evealed key interaction sites. This information is crucial
or understanding how a MEV enhances immunogenicity
hrough its interactions with TLRs [ 58 , 59 ]. The molecular
ocking analysis provided valuable insights into (1) the
inding affinity between the MEV and the TLRs; (2) the

http://bioinf.cs.ucl.ac.uk/psipred/
https://npsa.lyon.inserm.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://golgi.sandbox.google.com/
https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://prosa.services.came.sbg.ac.at/prosa.php
https://saves.mbi.ucla.edu/
https://saves.mbi.ucla.edu/Jobs/1564711/pc/saves_01.png
https://www.ncbi.nlm.nih.gov/structure/
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pecific amino acid residues involved in the interactions;
3) the types of interactions (e.g., hydrogen bonds and hy-
rophobic interactions); and (4) potential conformational
hanges upon binding. This detailed analysis of the MEV–
LR interactions contributed to our understanding of the
accine’s mechanism of action and its potential efficacy in
timulating the immune response against tuberculosisbr
 62 , 63 ]. 

.9. NMA, MD simulations, and MM/GBSA analysis of the 

andidate MEV complex 

To understand the dynamic properties and stability of
he candidate MEV, we implemented the following steps:

.9.1. Normal mode analysis (NMA) 

We used the iMODS web server ( https://imods.
qf.csic.es/ ) to perform NMA, a computational method for
xploring collective motions of macromolecules at biolog-
cally relevant scales. This analysis is crucial for under-
tanding the biological function of molecules [ 64 ]. We
onducted detailed studies of the dynamic behavior of
he MEV complex using covariance matrices, deformation
lots, eigenvalues, elastic network models, and B-factor
alues [ 65 ]. These analyses revealed the primary motion
odes and potential function-related changes of the MEV

omplex, providing important insights into its dynamic
roperties under biological conditions. 

.9.2. MD simulations 

To further understand the interactions between the
EV and its target proteins, we performed 150 ns MD

imulations using Desmond software from Schrödinger
LC. We simulated the stability of protein–ligand com-
lexes under near-physiological conditions. Prior to
imulation, we optimized the protein and ligand us-
ng Maestro’s Protein Preparation Wizard to eliminate
otential steric hindrances and unfavorable contacts.
e constructed the simulation system using the System

uilder tool, employing the TIP3P solvent model and
PLS_2005 force field. Counter ions were added for
eutralization, and 0.15 M sodium chloride was included
o mimic physiological conditions. A temperature of
00K and pressure of 1 atm were maintained throughout
he simulation. Through these simulations, we were able
o evaluate the stability of the MEV in a physiological
nvironment and analyze the dynamics of protein–ligand
omplexes using root mean square deviation (RMSD) and
rincipal component analysis (PCA) [ 66 , 67 ]. 

.9.3. Mechanics/generalized Born surface area 

MM/GBSA) analysis 

We used the prime module of Schrödinger software
o perform MM/GBSA analysis and calculate the bind-
ng free energies. Specific components included the total
6

inding free energy ( ΔGbind ), molecular mechanics gas-
hase energy ( ΔEgas ), solvation free energy ( ΔGsol ), and
ntropy ( T ΔS ). The specific equations used for these cal-
ulations can be found in previously published papers
 68–70 ]. 

These analyses provided insights into the interactions
etween the MEV and its targets, contributing to further
ptimization of the vaccine design. The combination of
MA, MD simulations, and MM/GBSA analysis enabled a
omprehensive view of the behavior, stability, and bind-
ng characteristics of the MEV, which are crucial for pre-
icting its efficacy as a vaccine candidate. 

.10. C-ImmSim immune simulation of the candidate MEV 

To evaluate the immunogenicity of the candi-
ate MEV, particularly its effectiveness against tu-
erculosis infection, we used the C-ImmSim server
 https://150.146.2.1/CIMMSIM/index.php ) to simulate
nd predict immune responses. This simulation in-
luded (1) innate immune cells: natural killer (NK) cells,
acrophages, and dendritic cells (DCs); (2) adaptive im-
une cells: B cells, HTLs, and CTLs; and (3) antibody

nd cytokine levels induced by the MEV in these immune
ells. This comprehensive simulation provided insights
nto how the MEV might stimulate various components
f the immune system, offering a prediction of its poten-
ial efficacy as a vaccine candidate. 

.11. Codon optimization and in silico cloning 

Because codon usage has an impact on pro-
ein antigen expression in vitro , we optimized the
odons of the candidate MEV to enhance its ex-
ression success rate. We used the Optimizer server
 http://genomes.urv.es/OPTIMIZER/ ) for this optimiza-
ion, following the method used in previous reports
 71 , 72 ]. Specifically, (1) Expression Host: we selected
he widely used Escherichia coli 536 as the expression
ost; (2) Output Parameters: the server provided several
mportant parameters, including the codon adaptation
ndex (CAI; the ideal value is 1) and GC content per-
entage (the recommended range is 30%–70%); (3)
loning Simulation: using SnapGene software, we simu-

ated the insertion of the optimized MEV gene sequence
nto the pET28a( + ) plasmid through XhoI and BamHI
estriction sites to construct a recombinant plasmid; (4)
lectrophoresis Simulation: we simulated 1% agarose
el electrophoresis to visualize the cloning results. This
n silico optimization and cloning process provided a
heoretical foundation for the subsequent experimen-
al validation and expression of the MEV. This process
elps to predict potential issues in protein expression
nd allows for adjustments before actual wet-laboratory
xperiments, potentially saving time and resources in

https://imods.iqf.csic.es/
https://150.146.2.1/CIMMSIM/index.php
http://genomes.urv.es/OPTIMIZER/
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he vaccine development process. For a summary of the
cripts of the key bioinformatics tools used in the design
f the ZL12138L vaccine, as well as the key parameters
nd specified parameter values used in the design and
xecution, the reasons for selecting these parameters,
nd any potential impact they may have on the results,
lease refer to the Supplementary Material Table S1 for
etailed information on the key parameters of the servers
nd software used in the design and execution of the
L12138L vaccine model. 

. Results 

.1. Identification of immunodominant epitopes, MEV 

onstruction, stability, solubility, and population coverage 

nalysis 

We screened and identified 13 HTL epitopes, 12 CTL
pitopes, and 8 B-cell epitopes from five potential MTB
ntigens ( Fig. 2 A). These epitopes exhibited favorable
djusted rank, antigenicity, and IFN- 𝛾 scores, and were
on-toxic and non-allergenic ( Table 1 ). To enhance the
mmunogenicity of the MEV, we linked these epitopes
sing amino acid linkers (GPGPG, AAY, and KK) and
ncorporated the TLR-4 agonist RS-09, the TLR-2 agonist
AST-6, and the PADRE helper peptide using EAAAK
inkers ( Fig. 2 B). The final MEV construct was designated
L12138L. 

The ZL12138L vaccine antigen molecule comprised
91 amino acids with a molecular weight of 67331.45
a. We further analyzed the physicochemical properties
f ZL12138L (Table S2), revealing the molecule had a
heoretical pI value of 7.24, instability index of 28.42,
liphatic index of 71.36, and GRAVY value of − 0.025.
hese parameters collectively indicated the stability of
L12138L and its behavior under physiological condi-
ions. The predicted half-life of ZL12138L was determined
o be 30 h in mammalian reticulocytes, 20 h in yeast, and
0 h in E. coli . These results demonstrated the favorable
tability of ZL12138L in various host cells, contributing
o its role in effecting an immune response. 

Additionally, ZL12138L exhibited a predicted solubil-
ty value of 0.47, surpassing the acceptable threshold of
.45 ( Fig. 2 C). As previously mentioned, PTM sites play
 crucial role in vaccine design. Our comprehensive anal-
sis of the ZL12138L protein sequence revealed several
otential phosphorylation sites, primarily on serine, thre-
nine, and tyrosine residues (Fig. S1). Phosphorylation, a
ey PTM, can appreciably alter protein function, stability,
nd interactions, thereby influencing the immune recog-
ition and vaccine efficacy. The identified phosphoryla-
ion sites were predominantly clustered in specific regions
f the protein, suggesting functional importance. Serine
esidues showed the highest propensity for phosphoryla-
ion, followed by threonine and tyrosine. This pattern was
7

onsistent with the general distribution of phosphoryla-
ion sites in eukaryotic proteins. These findings provided
aluable insights into the complex regulatory mechanisms
overning protein activity and the pivotal roles of pro-
eins in signaling pathways. 

Secondary structure analysis of the ZL12138L antigen
olecule revealed proportions of 32.71% 𝛼-helix, 17.08%
-sheet, and 41.53% random coil conformation ( Fig. 2 D).
e conducted a population coverage analysis of the im-
unodominant HTL and CTL epitopes within the MEV
sing the IEDB database ( Fig. 2 E). This analysis demon-
trated that the designed ZL12138L vaccine achieved a
lobal coverage of 90.17% for HLA-II alleles (HTL epi-
opes) and 92.41% for HLA-I alleles (CTL epitopes). These
ata suggested that the designed MEV had broad applica-
ility and the potential to provide protection for the ma-
ority of the global population. 

.2. Analysis of the antigenicity, immunogenicity, and 

afety of the ZL12138L vaccine 

To comprehensively evaluate the immunological char-
cteristics of the ZL12138L vaccine, we employed a series
f advanced bioinformatics tools for predictive analysis;
he results are summarized in Table S2. Initially, assess-
ent through the IEDB immunogenicity server yielded a
igh score of 4.14449 for ZL12138L, indicating its poten-
ial to elicit robust immune responses. Further antigenic-
ty predictions using VaxiJen v2.0 and AntigenPro servers
esulted in scores of 0.763582 and 0.8843, respectively,
uggesting that ZL12138L had the capacity to induce ef-
ective antibody responses and was a potential vaccine
andidate. 

In a safety evaluation, ZL12138L demonstrated non-
llergenic and non-toxic properties, which are crucial fac-
ors for the clinical application of a vaccine. These safety
haracteristics were investigated through predictive anal-
ses using Allergen FP v.1.0, AllerTOP v.2.0, ToxinPred,
nd ToxinPred2 servers. Collectively, these bioinformat-
cs analyses revealed that ZL12138L should not only ex-
ibit excellent immunogenicity and antigenicity but also
redicted a good safety profile, establishing a solid sci-
ntific foundation for further vaccine development and
valuation. 

.3. 3D structure prediction of the ZL12138L vaccine 

To investigate the 3D spatial configuration of the
L12138L vaccine, we employed the AlphaFold-3 server,
uccessfully predicting five 3D models. After careful eval-
ation, we selected model 0 as the basis for further analy-
is. To enhance the accuracy and reliability of the model,
e used the Galaxy Refine web server for optimiza-

ion. During this process, we considered multiple evalua-
ion metrics, including the global distance test-high accu-
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Fig. 2. Comprehensive characterization of the ZL12138L vaccine construct: design strategy, amino acid composition, solubility profile, and global population 
coverage. (A) The ZL12138L vaccine construct integrates multiple immunostimulatory components, including the TLR-2 agonist EAST-6, the pan-DR T helper 
epitope PADRE, 12 HTL epitopes, 13 CTL epitopes, 8 B-cell epitopes, and the TLR-4 agonist RS-09, to enhance immunogenicity. (B) The primary sequence of 
ZL12138L is depicted with the distinct immunological elements highlighted in different colors to facilitate the visual identification of each component. (C) Solubility 
assessment using the Protein-Sol server revealed a calculated solubility score exceeding 0.45, indicative of favorable solubility properties. (D) The secondary structure 
of ZL12138L was predicted using the PSIPRED server. The structural elements, 𝛼-helices (pink), 𝛽-strands (yellow), and coils (gray), provide a detailed view of the 
conformational landscape. (E) Global demographic analysis of HLA allele coverage by the ZL12138L vaccine. 
Abbreviations : HLA, human leukocyte antigen. 
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Table 1 

Detailed information on the HTL, CTL, and B-cell epitopes selected to construct the ZL12138L vaccine. 

Protein Peptide sequence Length (aa) Alleles Percentile 
rank a 

Antigenicity 
score b 

IFN- 𝛾 score c Immunogenicity 
score d 

ABC pred 
score e 

AllergenFP 
v.2.0 f 

Toxin Pred g IL-4 h IL-10 i 

HTL epitopes 

Ag85a VSGLVGAVGGTATAGA 16 HLA-DQA1∗ 05:01/DQB1∗ 03:01/ 
DQB1∗ 06:02 

0.39 1.184 0.80257189 Non Non Non Non 

GLVGAVGGTATAGAF 15 HLA-DQA1∗ 05:01/DQB1∗ 03:01 0.27 0.840 0.47981667 Non Non Non Non 
SGLVGAVGGTATAGA 15 HLA-DQA1∗ 05:01/DQB1∗ 03:01 0.21 1.245 0.59277922 Non Non Non Non 
VSGLVGAVGGTATAG 15 HLA-DQA1∗ 05:01/DQB1∗ 03:01 

/DPB1∗ 04:02/DRB1∗ 01:01/DRB1 
∗ 09:01 

0.31 1.203 0.49398202 

Ag85b GLAGGAATAGAFSRPGL 17 HLA-DQA1∗ 05:01/DQB1∗ 03:01 0.37 0.542 1.5668744 Non Non Non Non 
LPGLVGLAGGAATAGA 16 HLA-DQA1∗ 05:01/DQB1∗ 03:01 0.45 0.786 1.0183619 Non Non Non Non 
VGLAGGAATAGA 12 HLA-DQA1∗ 05:01/DQB1∗ 03:01 0.27 1.282 0.52408286 
AAIGLSMAGSSAMILAA 17 HLA-DRB1∗ 09:01/DQA1∗ 01:02 

HLA-DQB1∗ 06:02 
0.26 0.689 1.1091804 

Mtb39A ARMYAGPGSASLVAA 15 HLA-DQA1∗ 05:01/DQB1∗ 03:01 0.35 0.564 
0.015333722 

Non Non Non Non 

Rv1980 SDPAYNINISLPSYYPDQ 18 HLA-DRB3∗ 02:02/DRB1∗ 09:01 
HLA-DRB1∗ 14:01 

0.41 1.047 0.8399143 Non Non Non Non 

Rv3873 
GSDKALAAATPMVVWLQ 

17 HLA-DQA1∗ 06:01/DQB1∗ 03:03 0.36 0.533 0.55646741 Non Non Non Non 

GSDKALAAATPMVVW 15 HLA-DQA1∗ 06:01/DQB1∗ 03:03 0.22 0.744 0.13794349 
CTL epitopes 

Ag85a RVWVYCGNGK 10 HLA-A∗ 11:01,HLA-A∗ 30:01 
HLA-A∗ 68:01 

0.42 0.715 0.10358 Non Non 

GLPVEYLQV 9 HLA-A∗ 02:01, HLA-A∗ 02:03, 
HLA-A∗ 02:06, HLA-A∗ 02:06 

0.27 0.706 0.05492 Non Non 

MGPTLIGLAM 10 HLA-B∗ 35:01/ HLA-B∗ 07:02 0.47 0.524 0.19966 

( continued on next page ) 
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Table 1 ( continued ) 

Protein Peptide sequence Length (aa) Alleles Percentile 
rank a 

Antigenicity 
score b 

IFN- 𝛾 score c Immunogenicity 
score d 

ABC pred 
score e 

AllergenFP 
v.2.0 f 

Toxin Pred g IL-4 h IL-10 i 

Ag85b NAAGGHNAVF 10 HLA-B∗ 35:01,HLA-B∗ 53:01 
HLA-A∗ 26:01 

0.33 1.475 0.16235 Non Non 

NTPAFEWYY 9 HLA-A∗ 26:01,HLA-C∗ 03:04, 
HLA-B∗ 15:01 

0.1 1.945 0.4288 Non Non 

NAAGGHNAV 9 HLA-A∗ 68:02 0.2 1.995 0.12765 
Mtb39A ATATATATL 9 HLA-A∗ 68:02/∗ 32:01 0.47 1.001 0.1821 Non Non 

LPPEINSARM 10 HLA-B∗ 35:01,HLA-B∗ 51:01 0.4 1.064 0.12798 
Rv1980 GGTHPTTTYK 10 HLA-A∗ 11:01,HLA-B∗ 15:02, 

HLA-C∗ 07:02 
0.02 1.627 0.13929 Non Non 

VSIAPNAGL 9 HLA-C∗ 03:04, HLA-C∗ 01:02 0.16 0.764 0.1185 
Rv3873 DAQAVELTAR 10 HLA-A∗ 33:03 0.36 1.389 0.18465 Non Non 

SLPEIAANHI 9 HLA-C∗ 01:02 0.4 0.608 0.31512 Non Non 
GINTIPIAL 9 HLA-A∗ 02:01 0.49 0.861 0.2913 

B cellular epitopes 

Ag85a AGGYKASDMWGPKEDP 16 0.84 Non Non 
QDAYNAGGGHNGVFDF 16 0.73 Non Non 

Ag85b LRAQDDYNGWDINTPA 16 0.85 Non Non 
YCGNGTPNELGGANIP 16 0.79 Non Non 

Rv1980 YELNITSATYQSAIPP 16 0.86 Non Non 
RKPITYDTLWQADTDP 17 0.88 Non Non 

Rv3873 PGASQSTTNPIFGMPS 16 0.85 Non Non 
VNTLFEKLEPMASILD 0.8 Non Non 

Abbreviations : HTL, helper T lymphocyte; CTL, cytotoxic T lymphocyte; IFN- 𝛾, interferon- 𝛾; IL, interleukin. 
a The percentile ranking of the selected epitopes; the inclusion criterion was a ranking score < 0.5. 
b The antigenicity score; epitopes with antigenicity score > 0.5 were selected. 
c IFN- 𝛾 score; the epitopes with the highest positive scores were selected. 
d The immunogenicity score; epitopes were selected in order of score. 
e The linear B-cell epitope prediction score; epitopes were selected in order of score. 
f The result of the sensitization or toxicity test, “Non ” indicates that the epitope was non-toxic or non-sensitizing. 
g The result of the Toxin; “Non ” indicates that the epitope was non-toxic. 
h Stimulated cytokine IL-4 secretion. HTL epitopes were selected that do not secrete cytokine IL-4. 
i Stimulated cytokine IL-10 secretion. HTL epitopes were selected that do not secrete cytokine IL-10. 
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Fig. 3. Structural analysis and optimization of the ZL12138L vaccine. (A) Representation of the ZL12138L vaccine structure before and after structural optimization. 
The left panel shows the vaccine’s initial structure, while the right panel illustrates the optimized structure, highlighting improvements in secondary and tertiary 
structural features. (B) Z-score distribution of residues in the initial ZL12138L vaccine structure, compared with X-ray and NMR reference datasets. The plot dis- 
plays the Z-scores indicating structural deviations of individual residues relative to high-resolution structures. (C) Z-score distribution of residues in the optimized 
ZL12138L vaccine structure, compared with X-ray and NMR reference datasets. Post-optimization Z-scores demonstrated reduced structural deviations and improved 
stability. (D) Knowledge-based energy profile of the initial ZL12138L vaccine structure, calculated using different window sizes (10 and 40). Peaks in the energy 
profile indicate regions with higher energy and potential instability. (E) Knowledge-based energy profile of the optimized ZL12138L vaccine structure, highlighting 
energy minimization and increased stability across the sequence positions. (F) Ramachandran plot of the initial ZL12138L vaccine structure, showing the distribution 
of dihedral angles (phi and psi) for all residues. The plot identifies energetically favorable (dark red), allowed (yellow), and disallowed (white) regions. (G) Ra- 
machandran plot of the optimized ZL12138L vaccine structure. Post-optimization, a greater proportion of residues fall within the most favored and allowed regions, 
reflecting improved structural quality and reduced steric clashes. 
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acy (GDT-HA), RMSD, MolProbity, Clash score, poor ro-
amers, and Ramachandran score. Ultimately, we selected
odel 1, which exhibited the highest GDT-HA value, low-

st MolProbity score, and highest Ramachandran score, as
he final 3D model for the ZL12138L vaccine ( Fig. 3 A). 
11
Further validation was conducted using ProSA-web
nd UCLA-DOE LAB SAVES v6.0 servers. The Z-scores
efore and after optimization were − 3.2 ( Fig. 3 B) and
 3.55 ( Fig. 3 C), respectively, indicating an improvement

n statistical energy of the optimized model, bringing the
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odel closer to known high-quality protein structures.
igs. 3 D and 3 E illustrates the energy changes in the
L12138L vaccine 3D model before and after optimiza-
ion. In Fig. 3 D, some non-uniformity was observed in
he energy distribution of the pre-optimized model, po-
entially indicating local instabilities in certain regions.
ost-optimization, as shown in Fig. 3 E, the energy distri-
ution became more uniform, suggesting a considerable
mprovement in the overall model stability. 

Additionally, we performed Ramachandran plot anal-
sis to assess the stereochemical quality of the conforma-
ions of the amino acid residues in the model. Prior to
ptimization, 85% of the amino acid residues were lo-
ated in the core region, 12.7% in the allowed region,
.4% in the generously allowed region, and 1.0% in the
isallowed region ( Fig. 3 F). After optimization, these pro-
ortions improved to 97.3% in the core region, 2.1% in
he allowed region, 0.4% in the generously allowed re-
ion, and 0.2% in the disallowed region ( Fig. 3 G), fur-
her indicating the effectiveness of the model optimiza-
ion. Through this series of analyses and optimizations,
he accuracy of the ZL12138L vaccine 3D model was im-
roved and a solid structural foundation was established
or further research and development of the vaccine. 

.4. Analysis of discontinuous B-cell epitopes in the 

L12138L vaccine 

To further enhance the immunogenicity of the
L12138L vaccine, we used the ElliPro server to predict
nd analyze the discontinuous B-cell epitopes. These epi-
opes play a crucial role in vaccine design because of
heir ability to activate B-cell responses and induce pro-
ective antibodies. In our prediction process, we typically
elected models with scores > 0.69 for in-depth analy-
is. Using this criterion, we successfully predicted 10 dis-
ontinuous B-cell epitopes in the ZL12138L vaccine (Fig.
2A). These epitopes contained 3, 5, 12, 12, 31, 46, 37,
8, 22, and 20 residues, with corresponding core scores
f 0.987, 0.953, 0.926, 0.897, 0.854, 0.837, 0.799, 0.744,
.731, and 0.701, respectively (Table S3). These results
ndicated that the ZL12138L vaccine possessed multiple
otential antigenic epitopes capable of activating B-cell
esponses and potentially inducing protective antibodies
gainst MTB. 

Using the IEDB online server, we systematically ana-
yzed various properties of the ZL12138L vaccine anti-
en sequence, revealing potential epitope regions. The
epipred linear epitope prediction (Fig. S2B) showed high
cores for many residues in the 340–640 position range,
articularly in the yellow regions, suggesting a high prob-
bility of these residues being part of epitopes. The 𝛽-turn
rediction (Fig. S2C) similarly displayed high scores in
he same region, reflecting favorable characteristics for
-turn formation in these residues. Surface accessibility
12
nalysis (Fig. S2D) revealed high scores in the 520–640
egion, indicating these residues may be easily recognized
y antibodies. In contrast, flexibility analysis (Fig. S2E)
howed high flexibility scores for residues in the 380–580
ange, which are crucial for epitope dynamics and accessi-
ility. Antigenicity prediction (Fig. S2F) highlighted the
00–520 region as having high antigenicity scores, sug-
esting these residues may play important roles in induc-
ng immune responses. Hydrophilicity analysis (Fig. S2G)
howed high hydrophilicity scores in specific regions. The
resence of hydrophilic regions aids in exposing epitopes
o the aqueous environment for immune system recogni-
ion. In conclusion, the data indicated that certain residue
egions, particularly between positions 340 and 640, com-
ine multiple favorable epitope characteristics. These re-
ults provided strong theoretical information for design-
ng vaccines and diagnostic tools aimed at targeted im-
une responses. 

.5. The ZL12138L vaccine binds tightly to TLR-2 and 

LR-4 

We employed computational simulation methods to
nalyze in detail the interactions between the ZL13128L
accine and TLR-2 ( Fig. 4 A) and TLR-4 ( Fig. 4 B). The
esults demonstrated that ZL13128L formed complex in-
eraction networks when bound to both TLR-2 and TLR-
. The binding regions were magnified to showcase the
nteractions between key amino acid residues. Detailed
nalysis revealed that multiple forces contributed to the
table binding of ZL13128L with TLRs, including ligand
onds, hydrogen bonds, and hydrophobic contacts. 

Specifically, 27 hydrogen bonds were observed be-
ween the ZL13128L vaccine and TLR-2, with lengths
anging from 2.7 to 3.9 Å. For example, the hydrogen
ond between Arg587 and Glu455 had a length of 2.7
, while the bond between Arg460 and Trg592 was 3.3
( Fig. 4 A). Similarly, 41 hydrogen bonds were observed

etween the ZL13128L vaccine and TLR-4, with lengths
arying from 2.3 to 3.5 Å ( Fig. 4 B). Numerous amino
cid residues participated in hydrophobic contacts and
igand bond formation, further enhancing the stability of
he complexes. The binding sites involved, not only lig-
nd bonds and hydrogen bonds, but also the hydrophobic
ontacts of many non-ligand residues, demonstrating the
omplexity and diversity of the binding interfaces. 

Overall, the ZL13128L vaccine formed stable bonds
ith TLR-2 and TLR-4 receptors through various inter-
olecular forces, including hydrophobic interactions, lig-

nd bonds, and multiple hydrogen bonds involving key
mino acids. These findings, not only revealed the po-
ential of the ZL13128L vaccine to stimulate immune re-
ponses through molecular interactions, but also provided
 valuable structural biology basis for future vaccine de-
ign and optimization. 
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Fig. 4. Molecular docking and interaction analysis of the ZL12138L vaccine with TLRs. 3D structural representation of the docking configuration between the 
ZL12138L vaccine (teal) and the TLR-2 molecule (pink, A upper panel) or TLR-4 molecule (pink, B upper panel), predicted using AlphaFold-3 and visualized with 
PyMOL. The inset shows a magnification of the key interface region, displaying detailed interactions between the vaccine and TLR-2 at the atomic level, highlighting 
potential binding sites and interaction residues. Then, LIGPLOT was used to analyze the key interacting residues between the ZL12138L vaccine and TLR-2 (A lower 
panel) or TLR-4 (B lower panel). This visualization identified critical residues involved in the interactions, including hydrogen bonds, hydrophobic contacts, and 
ligand bonds. 
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.6. Normal mode analysis of ZL12138L vaccine complexes

ith TLR-2 and TLR-4 

To investigate the dynamic interactions between the
L12138L vaccine and TLR-2 and TLR-4 in depth, we
mployed the iMOD server for NMA. This analysis pro-
ided crucial information regarding the dynamic char-
cteristics of both complexes. For the TLR-2-ZL12138L
omplex (Fig. S3): (1) The deformability plot (Fig. S3A)
howed appreciable peaks, especially near the first 200
nd around the 800 positions, indicating high flexibil-
ty in these regions; (2) the eigenvalue plot (Fig. S3B)
isplayed the distribution of eigenvalues for the first 20
odes, with the first mode having a particularly small

igenvalue (1.527547e− 5), suggesting its importance in
he overall dynamics; (3) the variance plot (Fig. S3C)
howed that the first seven modes explained over 80%
f the variance, indicating that most dynamic informa-
ion was concentrated in a few modes; (4) the B-factor
omparison (Fig. S3D) demonstrated good agreement be-
ween NMA-calculated and PDB-derived B-factors, vali-
ating the reliability of the dynamic model; (5) the co-
ariance matrix (Fig. S3E) revealed positive and negative
ovariances between residues, suggesting coordinated or
pposing motions; and (6) the correlation plot (Fig. S3F)
howed the strength of motion coupling between atoms,
ith high-density areas indicating important correlated
otions. 
For the TLR-4-ZL12138L complex (Fig. S4): (1) the de-

ormability plot (Fig. S4A) showed appreciable fluctua-
13
ions, with notable peaks around indices 200, 800, and
300, indicating high flexibility in these regions; (2) the
igenvalue plot (Fig. S4B) showed a very small eigenvalue
or the first mode (3.275133e− 5), emphasizing its impor-
ance in overall dynamics; (3) the variance plot (Fig. S4C)
ndicated that the first 10 modes explained approximately
0% of the variance; (4) the B-factor comparison (Fig.
4D) showed good agreement between NMA-calculated
nd PDB-derived B-factors; (5) the covariance matrix (Fig.
4E) revealed appreciable coordinated or opposing mo-
ions, especially in regions around indices 200, 800, and
300; and (6) the correlation plot (Fig. S4F) highlighted
he areas of strong motion coupling, particularly around
ndices 500 and 1500. These analyses provided valuable
nsights into the dynamic behavior of the ZL12138L vac-
ine in complex with TLR-2 and TLR-4, highlighting key
egions of flexibility and correlated motions that may be
rucial for the function and stability of the vaccine. 

.7. MD simulation and principal component analysis of 

L12138L vaccine-TLR-4 complex 

Further analysis was conducted of the MD simulation
f the ZL12138L vaccine-TLR-4 complex. Fig. 5 A illus-
rates the RMSD values of the C𝛼 atoms in the ZL12138L
accine over the course of the MD simulation. RMSD,
 widely used metric for assessing protein structural
tability, provides insight into structural changes over
ime. The graph shows that there were three distinct
hases: an initial phase (0− 20 ns) characterized by a rapid
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Fig. 5. MD simulations and principal component analysis (PCA) of the ZL12138L vaccine-TLR-4 complex. (A) Root Mean Square Deviation (RMSD) plot of the 
ZL12138L vaccine-TLR-4 complex over 100 ns of MD simulation. The RMSD values indicate structural deviations from the initial configuration, providing insights 
into the stability of the complex over time. (B) RMSD fluctuation per residue index over the simulation time. This plot highlights specific regions within the 
ZL12138L vaccine-TLR-4 complex that exhibit appreciable conformational changes, suggesting potential flexible and stable regions. (C) Secondary structure element 
(SSE) distribution along the residue index. The plot indicates the percentage of time each residue spends in specific secondary structures (e.g., 𝛼-helices and 𝛽- 
strands) throughout the simulation, providing insights into the structural dynamics of the complex. (D) Time evolution of the SSE. The upper part of the plot shows 
the percentage of each SSE over time, and the heatmap below illustrates the temporal changes in secondary structure along the residue index, highlighting regions 
of structural transitions and stability during the simulation. (E) PCA of the ZL12138L vaccine-TLR-4 complex. The first panel shows a projection of the motion 
along the first two principal components (PC1 and PC2), capturing 42.68% and 12.79% of the variance, respectively. The clusters in the plot indicate distinct 
conformational states visited during the simulation. The second panel shows the projection of the motion along PC2 and PC3, capturing 12.79% and 7.86% of the 
variance, respectively. The third panel shows the projection of the motion along PC1 and PC3. The last panel shows the plot of the proportion of variance explained by 
each principal component, with an inset showing the cumulative variance. This analysis quantifies the contribution of each mode to the overall motion, demonstrating 
the dominant dynamics captured by the first few principal components. 
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ncrease in the RMSD value from approximately 3 to 6
, indicating considerable conformational changes and
djustments; a middle phase (20–60 ns) showing over-
ll stability with fluctuations between 6 and 7 Å, sug-
esting a more balanced conformation; and a late phase
60− 100 ns) where the RMSD value was stabilized be-
ween 7 and 8 Å with minimal fluctuations, indicating
tructural equilibrium. Fig. 5 B presents the RMSD values
or each residue of the ZL12138L vaccine, providing a
etailed analysis of the distribution of the flexibility and
14
tability during the simulation. Regions near residue in-
ices 0− 300 and 1000 exhibited higher flexibility, po-
entially indicating areas of instability or considerable
onformational changes. In contrast, the central region
residue indices 300− 1000) demonstrated greater stabil-
ty. The secondary structure analysis depicted in Fig. 5 C
hows the percentage of secondary structure elements
 𝛼-helices and 𝛽-sheets) for each residue. The region span-
ing residue indices 0− 400 was predominantly 𝛼-helical,
hile the area between 200− 500 contained some 𝛽-sheet
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tructures. The middle region exhibited lower secondary
tructure content, potentially indicating unstructured or
ynamic areas. The region from indices 800− 1100 dis-
layed rich structural diversity. Fig. 5 D provides com-
rehensive structural dynamics information, illustrating
he proportion of secondary structure elements over time
nd the changes in secondary structure for each residue
uring the MD simulations. The upper portion of the fig-
re shows the stability of the overall secondary structure
roportions throughout the 100 ns simulation, indicat-
ng overall structural stability of the protein. The lower
eatmap in the figure shows local structural stability in-
ormation, with some regions, such as residue indices
00− 400 and 900− 1100, showing relative stability in the
econdary structure, while the region from 500− 700 ap-
ears more dynamic. 

PCA of the protein dynamics elucidated the trajectory
otions of the ZL12138L vaccine and TLR-4 in the MD

imulations. Fig. 5 E presents multiple graphs illustrating
he distribution of these trajectories in different princi-
al component spaces and the variation in eigenvalues.
catter plots (PC1 vs. PC2, PC2 vs. PC3, and PC1 vs.

C3) demonstrate the spatial distribution of ZL12138L
nd TLR-4 across the first three principal components,
ith PC1, PC2, and PC3 explaining 42.68%, 12.79%, and
.86% of the variance, respectively. The scree plot dis-
lays the relationship between eigenvalues and eigenvec-
or indices for the initial 20 principal components, ex-
laining the contribution of the principal components to
he total variance. The first five eigenvectors are par-
icularly prominent, with higher eigenvalues indicating
tronger fluidity regulation, suggesting the considerable
tability and explanatory power of these principal com-
onents in hyperspace fluctuations. These results revealed
he primary changes and intrinsic structural relationships
f ZL12138L and TLR-4 trajectories in low-dimensional
pace, providing insights into the dynamic behavior of
hese proteins in MD simulations. 

.8. MM/GBSA analysis of the ZL12138L-TLR-4 complex 

The MD simulations results revealed strong interac-
ions between the newly designed multi-epitope tubercu-
osis vaccine Z12138L and TLR-4. MM/GBSA calculations
Table S4) indicated the Z12138L-TLR-4 complex had a
otal binding free energy ( ΔGbind ) of − 522.96 kcal/mol,
ndicating exceptionally high binding affinity. This ro-
ust binding was primarily driven by van der Waals
orces (− 519.26 kcal/mol) and hydrophobic interactions
− 306.52 kcal/mol), with additional contributions from
ydrogen bonding (− 20.20 kcal/mol), which are all cru-
ial factors in vaccine–receptor recognition. Despite some
nfavorable electrostatic (30.41 kcal/mol) and solvation
166.90 kcal/mol) effects, the overall binding was highly
avorable. The conformational adaptability of Z12138L,
15
eflected in the strain energy of − 79.22 kcal/mol, fur-
her enabled the binding to TLR-4. On average, each non-
ydrogen atom contributed − 0.13 kcal/mol to the bind-
ng energy, highlighting the efficiency of Z12138L as a
ulti-epitope vaccine. These results strongly supported

he potential of Z12138L to effectively activate TLR-4,
ikely inducing a robust immune response. This analysis
rovided compelling evidence for Z12138L as a promising
andidate for tuberculosis vaccine development. 

.9. Capacity of the ZL12138L vaccine to activate innate 

nd adaptive immune responses 

Both innate and adaptive immune responses play criti-
al roles in a host’s elimination of MTB. We employed the
-IMMSIM server to predict the capacity of the ZL12138L
accine to induce the activation of NK cells, macrophages,
 cells, CD4+ T cells (Th1 and Th2 cells), and CD8+ T cells.
he simulation results indicated the vaccine should have
he ability to activate multiple types of immune cells, pro-
iding robust evidence for its immunogenicity. 

In the innate immune response, NK cell numbers were
redicted to be rapidly increased following initial immu-
ization with ZL12138L, peaking at day 80 and main-
aining elevated levels thereafter ( Fig. 6 A). The predicted
evels of presenting-2 and active macrophages peaked
nd then rapidly decreased 90 days post-immunization,
hile resting macrophage numbers increased correspond-

ngly ( Fig. 6 B). DC ( Fig. 6 C) and epithelial cell ( Fig. 6 D)
umbers exhibited minor fluctuations but generally re-
ained at high levels post-vaccination. ZL12138L was
redicted to induce changes in B lymphocytes, memory
 cells, T helper (TH) lymphocytes, and CTLs, indicat-

ng the potential of ZL12138L to activate adaptive im-
une responses. Post-vaccination simulations showed in-

reased B lymphocyte and memory B cell numbers, sug-
esting the vaccine may have the ability to induce ro-
ust adaptive immune responses ( Fig. 6 E and 6 F). The
ncrease in TH cell numbers and decrease in memory
H cells emphasized that booster vaccinations would be
ecessary to maintain long-term immunity ( Fig. 6 G and
 H). Furthermore, ZL12138L-induced CTL responses and
h1-type immune response activation were crucial mech-
nisms for MTB clearance ( Fig. 6 I, 6 J, and 6 K). Addition-
lly, ZL12138L was predicted to induce the secretion of
igh levels of cytokines by immune cells, including IFN-
, TGF- 𝛽, IL-2, IL-10, and IL-12, which play key roles in
he immune response ( Fig. 6 L). Concurrently, the vaccine
timulated B lymphocytes to produce high levels of anti-
odies, further enhancing the immune defense (Fig. S5).
n conclusion, ZL12138L was predicted to have potential
s an effective vaccine through the activation of both in-
ate and adaptive immune cells and promoting cytokine
nd antibody production, exhibiting promise for further
evelopment. 
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Fig. 6. Prediction of innate and adaptive immune responses induced by the ZL12138L vaccine simulated by the C-ImmSim server. We conducted a simulation of 
three immunizations with the ZL12138L vaccine to predict the innate and adaptive immune responses. (A) NK cell population (cells per mm3 ). This plot shows the 
total number of NK cells over time post-vaccination, indicating the fluctuations in NK cell activation. (B) Macrophage population per state (cells per mm3 ). The 
plot categorizes macrophages into internalized, presenting (two states), and resting states, along with the total population, demonstrating the role of macrophages 
in antigen processing and presentation. (C) Dendritic cell (DC) population per state (cells per mm3 ). DCs are shown in internalized, presenting (two states), and 
resting states, along with the total population, highlighting their involvement in immune activation. (D) Epithelial cell population per state (cells per mm3 ). This 
plot illustrates the total, active, presenting, and actively infected states of epithelial cells, providing insights into the epithelial response post-vaccination. (E) B cell 
population per state (cells per mm3 ). The distribution of B cells in internalized, presenting, active, duplicating, and anergic states, depicting the dynamics of B cell 
activation and antibody production. (F) Total B cell population (cells per mm3 ). The total B cell count over time, including B memory cells and immunoglobulin levels 
(IgM, IgG1, and IgG2), reflecting the humoral immune response to the vaccine. (G) T helper (TH) cell population (cells per mm3 ). The total TH cell count, including 
non-memory and memory TH cells, showing the evolution of helper T cells post-immunization. (H) TH cell population per state (cells per mm3 ). Distribution of TH 

cells in active, resting, duplicating, and anergic states, providing insights into different stages of TH cell activation and function. (I) Cytotoxic T (TC) cell population 
(cells per mm3 ). Total TC cell count, including non-memory and memory TC cells, indicating the cytotoxic response elicited by the vaccine. (J) TC cell population per 
state (cells per mm3 ). The state-wise distribution of TC cells into active, resting, duplicating, and anergic states, reflecting different functional phases of cytotoxic T 
cells. (K) Changes in each subtype of helper T cells (cells per mm3 ). Dynamics of various TH cell subtypes (TH0, TH1, TH2, TH17, and Treg) over time, highlighting 
their respective roles in orchestrating the immune response. (L) Cytokine concentration (ng/mL). Changes in cytokine levels induced by the ZL12138L vaccine, 
showcasing the cytokine environment and immune signaling pathways activated during the immune response. 
Abbreviations : DC, dendritic cell; NK, natural killer; TH, T helper. 
16



L. Zhuang, A. Ali, L. Yang et al. Infectious Medicine 3 (2024) 100148

3

c

Z

 

n  

Z  

t  

v  

t  

m  

fi  

c  

m  

e  

m  

T  

c  

b  

d  

w  

m  

t  

f  

t  

Z  

c  

n  

F

m
i
v
s
t
t
S
r

.10. Codon optimization, recombinant plasmid 

onstruction, and simulated gel electrophoresis of the 

L12138L vaccine 

A detailed analysis of codon optimization, recombi-
ant plasmid construction, and simulated results for the
L12138L vaccine was conducted. The codon optimiza-
ion results revealed a CAI value of 0.81 for the ZL12138L
accine gene sequence, indicating high compatibility with
he host cell’s preferred codon usage pattern. This opti-
ization is expected to enhance the mRNA translation ef-
ciency and protein yield. Fig. 7 A illustrates the plasmid
onstruction circular map. The ZL13128L-pET28a plas-
id, with a total length of 7408 bp, incorporates sev-
ig. 7. Codon optimization and recombinant plasmid construction of the ZL12138
ethods were used to optimize the codons of the ZL12138L vaccine gene for increased

nserted into the pET28a plasmid using XhoI and BamHI restriction sites. The resultin
ital elements, including the T7 promoter, lac operator, ribosome binding site (RBS), 6
imulation. The SnapGene software was employed to simulate agarose gel electropho
he molecular weight marker (ZL12138L), lane 2 shows the uncut pET-28a( + ) plasmid
he successful insertion and expected molecular sizes. (C) GC content analysis. The G
napGene software, revealing a GC percentage of 60%. The plot illustrates the distr
egions of varying GC proportions indicated by different colors: blue (low GC), green

17
ral crucial elements including the T7 promoter, lacI pro-
oter, 6 × His tag, and multiple cloning sites (MCS).
he XhoI and BamHI restriction sites denote the spe-
ific insertion location of the ZL13128L gene, represented
y the pink region in Fig. 7 A. Fig. 7 B displays the pre-
icted agarose gel electrophoresis (1% agarose) results,
hich validated the accuracy of the recombinant plas-
id construction. The observed band sizes aligned with

he expected plasmid construction, indicating success-
ul plasmid assembly and correct target fragment inser-
ion. Fig. 7 C depicts the GC content distribution of the
L12138L gene within the plasmid, with an average GC
ontent of 60%. The optimized gene coding region, span-
ing from the XhoI site at 158 bp to the BamHI site at
L vaccine. (A) Codon optimization and plasmid construction. Computational 
 expression efficiency in E. coli . The optimized gene sequence was subsequently 
g recombinant expression plasmid, named ZL12138L-pET28a( + ), encompasses 
 × His tag, and the multiple cloning site (MCS). (B) Agarose gel electrophoresis 

resis to validate the construction of the recombinant plasmid. Lane 1 represents 
, and lane 3 displays the ZL12138L-pET28a( + ) recombinant plasmid, indicating 
C content of the codon-optimized ZL12138L vaccine gene was assessed using 

ibution of GC content across the length of the optimized gene sequence, with 
 to yellow (medium GC), and red (high GC). 
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237 bp, exhibited a high GC content. This characteristic
s conducive to enhancing gene expression efficiency and
tability in host cells. These findings collectively demon-
trated the successful optimization and construction of
he theoretical ZL12138L vaccine plasmid, providing a
olid foundation for subsequent expression and functional
tudies. 

. Discussion 

Recent advances in computational power and algo-
ithm optimization have established CAD and AI as piv-
tal forces driving biomedical research. CAD technology,
hrough precise 3D modeling and simulation, enables the
rediction and optimization of the structural features of
accine candidates at the atomic level. AI techniques, par-
icularly machine learning and deep learning algorithms,
ave markedly improved the ability to screen and op-
imize immunodominant epitopes from vast datasets by
ecognizing complex patterns and associations. The inte-
ration of these technologies has not only accelerated the
accine design process but also enhanced the precision
nd success rate [ 73 , 74 ]. 

In the present study, we employed advanced CAD tools
o analyze and predict immunodominant epitopes of MTB
ntigens, including HTL, CTL, and B lymphocyte epitopes,
hich are crucial for immune response activation. We fur-

her refined these epitopes using machine learning and
eep learning algorithms, which can identify patterns and
redict epitope immunogenicity, guiding the selection of
he most effective epitope combinations [ 74 , 75 ]. 

Our vaccine design incorporated amino acid link-
rs, including GPGPG, AAY, and KK, as well as TLR
gonists, to enhance the immunogenicity and stability
 76 ], consistent with strategies employed in our previ-
us studies [ 11 , 31 , 32 , 61 , 77–79 ]. Physicochemical analy-
is of the ZL12138L vaccine revealed a molecular weight
f 67331.45 Da and a predicted solubility value of 0.47,
ndicating an acceptable size and solubility [ 80 ]. The pre-
icted instability index of 28.42, well below the threshold
f 40, suggested good stability [ 81 ]. Bioinformatics anal-
ses indicated excellent immunogenicity and antigenic-
ty, with an immunogenicity score of 4.14449 and high
lobal population coverage for HLA class I and II alleles
92.41% and 90.17%, respectively), suggesting the poten-
ial for broad applicability and efficacy. 

The structural analysis of ZL12138L revealed rich sec-
ndary and tertiary structural features crucial for biolog-
cal function. The vaccine comprised 32.71% 𝛼-helices,
7.08% extended strands, and 41.53% random coils, fa-
ilitating antigen-specific antibody recognition [ 9 , 27 , 82 ].
ertiary structure prediction showed 97.3% of the amino
cid residues were in core regions, indicating an ac-
eptable spatial model quality. Molecular docking anal-
ses demonstrated good binding capacity with TLR-2 and
18
LR-4, with binding energies of − 1173.4 and − 1360.5
cal/mol, respectively. Previous studies have shown that
LR-2 induces the secretion of pro-inflammatory cy-
okines, limiting MTB replication [ 83 ], while TLR-4 plays
 crucial role in anti-tuberculosis immune responses [ 84 ].
MA and MD simulations provided insights into the dy-
amic properties and stability of the vaccine under bio-
ogical conditions. NMA revealed the major motion modes
nd potential function-related changes, particularly in the
exible regions near the TLR-2 and TLR-4 binding sites.
D simulations showed that ZL12138L could reach equi-

ibrium in physiological environments, which is crucial
or immunogenicity. MM/GBSA analysis calculated the
inding free energy between ZL12138L and TLR-4, in-
icating high binding affinity primarily because of van
er Waals forces, hydrophobic interactions, and hydrogen
onding. 

Innate and adaptive immune responses both play cru-
ial roles in the elimination of MTB from a host [ 5 , 85–88 ].
he immune simulation results demonstrated the ability
f ZL12138L to effectively activate various immune cells,
ncluding NK cells, macrophages, DCs, B lymphocytes,
nd T lymphocytes. The vaccine was predicted to induce
n increase in the numbers of B lymphocytes and memory
 cells, and high levels of IFN- 𝛾 and IL-2 production by
 lymphocytes, which are crucial Th1-type cytokines for
esisting MTB infections [ 58 , 89–91 ]. 

This method for designing vaccines based on bioinfor-
atics tools offers considerable advantages over conven-

ional techniques, which are primarily reflected in the
ollowing five aspects: (1) Efficient screening and anal-
sis. Bioinformatics tools can rapidly screen for key anti-
en sequences of pathogens. This process can consider-
bly shorten the time and cost required by traditional ex-
erimental methods, enabling the rapid identification of
he targets of candidate vaccines. (2) Personalized vac-
ine design. Bioinformatics methods allow the analysis
f genetic variations in pathogens across different pop-
lations, as well as analysis of the genetic diversity of
osts. This analysis facilitates the design of personalized
accines for specific populations, thereby improving the
accine efficacy and reducing adverse reactions. (3) Pre-
icting vaccine immunogenicity and safety. Bioinformat-
cs technologies can predict the immunogenicity (such
s T-cell and B-cell epitopes) and safety (such as avoid-
ng the risk of autoimmune reactions) of candidate vac-
ines. This early-stage elimination of unsuitable vaccine
andidates reduces the risks associated with subsequent
linical trials. (4) Accelerating the development of new
accines. During outbreaks of emerging pathogens (such
s COVID-19), bioinformatics methods can quickly iden-
ify potential vaccine targets by analyzing the genetic se-
uences of the pathogens. For instance, in the develop-
ent of COVID-19 vaccines, bioinformatics played a cru-

ial role in identifying the spike protein of the SARS-CoV-
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 virus as a vaccine target. (5) Reducing the number of
xperiments and animal use. Bioinformatics tools can sim-
late and predict experimental results, thereby, reducing
he number of experiments and the use of animals in the
accine design process. This approach not only improves
he ethical standards of research but also considerably re-
uces the costs. 

However, while the bioinformatics analyses provided
trong evidence supporting the potential of ZL12138L, we
cknowledge the limitations of the present study. Firstly,
he effectiveness of the predicted immunodominant epi-
opes in actual immune responses requires experimental
alidation. The diversity of MHC molecules among indi-
iduals increases the complexity of epitope selection, ne-
essitating extensive experimental verification in future
ork. Secondly, experimental research is required on the
accine stability and immunogenicity in real biological
ystems, an essential step toward clinical application. 

Future research directions will focus on continuously
ptimizing the design of MEVs while conducting appro-
riate experiments to evaluate their safety and effective-
ess in real-world environments. To this end, we propose
he following steps for future in vitro and in vivo valida-
ion of the vaccine designed in the present study: (1) Pro-
ein expression and purification. The use of recombinant
NA technology to express and purify vaccine proteins or
eptides in E. coli expression systems. Identification and
nalysis of the molecular weight and purity of the vaccine
ntigens using mass spectrometry to verify the correct ex-
ression of the designed antigen sequence. (2) Analysis of
he spatial structure of the ZL12138L vaccine. X-ray crys-
allography analysis of the 3D structure of vaccine anti-
ens, ensuring that their folded state conforms to their
atural configuration, which is crucial for eliciting effec-
ive immune responses. (3) Immunogenicity evaluation.
etection of the levels of antigen-specific antibodies and
ytokines induced by the ZL12138L vaccine in mice using
LISA, ELISPOT, and other methods to investigate the re-
iability of the immune simulation results obtained in the
resent study. (4) Safety and protective efficiency evalu-
tion: Evaluation of the safety of the vaccine and the pro-
ective efficiency against infection with the H37Rv strain
sing a ZL12138L vaccine-immunized mouse model. By
ollowing these steps, we aim to further substantiate the
otential of ZL12138L as a highly effective and stable vac-
ine candidate, paving the way for its clinical application.

. Conclusions 

A novel MEV, ZL12138L, was successfully designed
n the present study using CAD techniques and AI al-
orithms. The designed vaccine incorporated precisely
creened HTL, CTL, and B-cell epitopes, and integrated
LR agonists and PADRE helper peptides to enhance the

mmunostimulatory capacity. Bioinformatics analyses re-
19
ealed the predicted MEV had excellent immunogenic-
ty and antigenicity, as well as being non-toxic and non-
llergenic, with broad applicability across global popula-
ions. Furthermore, molecular docking and dynamics sim-
lations indicated that ZL12138L had strong binding ca-
acity toward TLR-2 and TLR-4 receptors, providing cru-
ial evidence for its ability to activate innate immune re-
ponses. The immune simulation results suggested that
he ZL12138L vaccine could induce high levels of Th1-
ype immune responses. Although further experimental
alidation is needed to support these findings, these anal-
ses of ZL12138L have already provided new strategies
oward tuberculosis prevention. 

We anticipate that through continued research and de-
elopment, the ZL12138L vaccine could become an effec-
ive tool to prevent tuberculosis infections, making a con-
iderable contribution to global public health efforts. The
resent study demonstrated the potential of integrating
dvanced computational methods with immunological in-
ights in the design of next-generation vaccines, paving
he way for more efficient and targeted approaches in vac-
ine development against challenging pathogens such as
TB. 
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