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Abstract

Single-cell multi-omics refers to the various types of biological data at the single-cell level. These data have enabled insight
and resolution to cellular phenotypes, biological processes, and developmental stages. Current advances hold high potential for
breakthroughs by integrating multiple different omics layers. However, singlecell multi-omics data usually have different feature
dimensions and direct or indirect relationships. How to keep the data structure of these different data and extract hidden relationships is
a major challenge for omics data integration, and effective integration models are urgently needed. In this paper, we propose an irregular
tensor decomposition model (GSTRPCA) based on tensor robust principal component analysis (TRPCA). We developed a weighted
threshold model for the decomposition of irregular tensor data by combining low-rank and sparsity constraints, which requires that
the low-dimensional embeddings of the data remain lowrank and sparse. The major advantage of the GSTRPCA algorithm is its ability
to keep the original data structure and explore hidden related features among omics data. For GSTRPCA, we also designed an effective
algorithm that theoretically guarantees global convergence for the tensor decomposition. The computational experiments on irregular
tensor datasets demonstrate that GSTRPCA significantly outperformed the state-of-the-art methods and hence confirm the superiority
of GSTRPCA in clustering single-cell multiomics data. To our knowledge, this is the first tensor decomposition method for irregular
tensor data to keep the data structure and hence improve the clustering performance for single-cell multi-omics data. GSTRPCA is a
Matlabbased algorithm, and the code is available from https://github.com/GGL-B/GSTRPCA.
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Introduction
Single-cell multi-omics technology is a powerful approach for
the simultaneous detection of multi-omics layers, including
the genome, transcriptome, epigenome, metabolome, and
proteome, in individual cells [1]. This integrative approach
offers a comprehensive and precise understanding of cellular
information, thereby facilitating deeper insights into cell function
and phenotypic characteristics. CITE-seq (cellular indexing of
transcriptomes and epitopes) is a commonly used method in
single-cell multi-omics studies because it combines single-cell
RNA sequencing (scRNA-seq) with protein epitome analysis to
achieve high-resolution profiling of both RNA and proteins.
However, the use of single-cell multi-omics technology has several
challenges, including the sparsity of high-dimensional data, inher-
ent dropout and noise, intricate non-linear structures, and the
inherent heterogeneity observed among different omics datasets.
Effectively overcoming these challenges, successfully integrating
the diverse omics features, and accurately extracting cellular
heterogeneity at the single-cell level are crucial prerequisites for
downstream analysis of single-cell multi-omics data.

Several single-cell omics data integration methods have been
developed to gain a more comprehensive understanding of

the interactions and regulatory relationships among various
biomolecules in organisms, thereby discovering important biolog-
ical issues such as the pathogenesis of complex diseases, genetic
differences between individuals, and cell types. Early integration
methods include TotalVI (total variational inference) [2], a
deep learning model that was designed to process histological
datasets. SCMDC (single-cell multi-omics data clustering) [3]
uses advanced clustering algorithms and machine learning
techniques to analyze and process integrated multi-omics data,
thereby exploring the biological complexity at the single-cell
level. BREM-SC (Bayesian random effects mixture model) [4],
an advanced technology that combines Bayesian statistics and
representation learning, models and analyzes single-cell data,
and provides powerful tools and methods to uncover biological
complexity at the single-cell level. scMNMF (single-cell multi-
omics clustering based on non-negative matrix factorization) [5] is
a joint learning method that integrates dimensionality reduction
and cell clustering analysis on single-cell multi-omics data using
non-negative matrix factorization.

In addition, single-cell multi-omics data can be naturally
characterized and analyzed as tensor data [6–8], whereby each
single-cell omics dataset can be viewed as a regular tensor.
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Multi-omics data composed of different types and dimensions of
single-cell omics data form irregular tensors that define potential
connections between cells and genes from various perspectives.
Extensive explorations have been conducted into the application
of structured tensors in biology, extending robust principal
component analysis (RPCA) [9] to conventional tensor data to
develop tensor robust principal component analysis (TRPCA) [10].
TRPCA efficiently manages high-dimensional tensor data and
extracts information from structured tensor data in biostatistics
[11]. By representing protein interaction data as a third-order
tensor, methods such as CP decomposition [12] and Tucker decom-
position [13] can be used to discover latent structural insights,
such as key interaction patterns or the composition of protein
complexes. These decomposition methods effectively manage
high-dimensional tensor data by handling outliers and missing
values within datasets. Although robust methods for identifying
differentially expressed genes in biological contexts are available,
their application is confined to regular tensor omics data. Current
approaches often use zero-padding to convert irregular tensors
into structured tensors for processing, leading to issues such
as high data redundancy and incomplete extraction of internal
information structures, which adversely affect downstream
analyses. Therefore, developing effective models and algorithms
to handle irregular tensor multi-omics data is a pressing need.

Considering the aforementioned limitations and inspirations,
we focused on the analysis of single-cell multi-omics data, with
particular emphasis on irregular tensor data structures. We
propose an irregular tensor singular value decomposition method
(GSTRPCA) based on GSVD and weighted thresholding.Unlike
traditional approaches,GSTRPCA does not require zero-padding of
the original data, ensuring accurate recovery of low-rank compo-
nents. We used weighted thresholding algorithms and techniques
based on nuclear norms to effectively mine information from
single-cell multi-omics data. We also conducted theoretical con-
vergence analysis on the algorithm, and compared the iterative
error curves between GSTRPCA and the competing algorithms
to confirm the superior convergence rate of our method. In the
clustering performance experiments, we combined irregular low-
rank tensors and irregular sparse tensors for clustering. The
results demonstrate that this approach outperformed traditional
methods.

Methods
Tensor robust principal component analysis model
The regular tensor X ∈ R

N×M×K is processed by TRPCA. The
original data are decomposed into low-rank tensors L ∈ R

N×M×K

and sparse tensor E ∈ R
N×M×K, which can be approximated as the

sum of low-rank tensors and sparse tensors:

X ≈ L + E , (2.1)

where L represents the reconstruction of the original data in low-
rank space and E represents the reconstruction of the original
data in sparse space. The general form of the tensor low-rank
sparse decomposition model is formulated as:

min
L,E

[Trank(L) + λ ‖E‖0],

s.t. X = L + E .
(2.2)

Tensors L and E that satisfy the condition X = L + E are
calculated to minimize the objective functions Trank(L) + λ ‖E‖0,

where Trank(L) is the rank of L, ‖E‖0 is the ‖L‖0 norm on E , and
λ > 0 is a constant.

Because the solution of Equation (2.2) is an NP-complete prob-
lem, the usual strategy is to transform Equation (2.2) using ‖L‖∗
and replace ‖E‖0 with ‖E‖1. Then the objective function of TRPCA
becomes

min
L,E

‖L‖∗ + λ ‖E‖1

s.t. X = L + E ,
(2.3)

where ‖·‖∗ represents the tensor kernel norm and λ is the degree
of punishment that affects sparse structures.

Decomposition method for irregular tensor (GSTRPCA)
The single-cell multi-omics data are irregular tensor data X ∈
R

(N1,N2,...,NK)×M×K, where X represents a matrix composed of N1∗M,
N2 ∗ M, . . . , NK ∗ M matrices. For X , the irregular tensor forms are
all assumed to be irregular three-dimensional array forms, and
the matrix size for constructing tensors is different in the rows
and the same in the columns. The irregular tensor dimensions
are referred to as R

Ni×M×K.
Based on the TRPCA model (2.3), L ∈ R

Ni×M×K represents an
irregular low-rank tensor and E ∈ R

Ni×M×K represents an irregular
sparse tensor. We aimed to decompose the original irregular
tensor into an irregular low-rank tensor and an irregular sparse
tensor. Then, by combining the low-rank and sparse constraints,
the global subspace and local geometric structure of the data
can be captured by the reconstruction tensor while maintaining
the low-rank and sparsity constraints in the low-dimensional
embedding of the data to ensure overall optimality. Further-
more, by integrating the global subspace and local geometric
structure into a unified framework using low-rank and sparse
embeddings, optimal clustering performance can be ensured at
all times.

Optimization of the algorithm
To solve ‖L‖∗, GSTRPCA uses GSVD instead of SVD to solve
the kernel norm. (Specific details of the GSVD algorithm are
given in the supplementary file.) For the irregular tensor data,
GSVD can decompose it directly, whereas SVD requires the
original data to be filled a regular tensor before decomposition,
which destroys the structure of the data and makes it sparser.
Thus, GSTRPCA, which based on GSVD, has greater potential
to capture data structures and improve single-cell multi-omics
clustering.

It is difficult to directly find the optimal solution of the objec-
tive function for E1 norm as the regularization of sparse terms.
Under the alternating direction method of multipliers (ADMM)
framework, an augmented Lagrangian function is introduced to
eliminate equality constraints. Equation (2.3) can be rewritten as
augmented Lagrangian functions:

P(L,E ,Y , μ) = ‖L‖∗ + λ ‖E‖1 + < Y ,L + E − X >

+ μ

2
‖L + E − X ‖2

F ,
(2.4)

where Y is the dual variable, and μ is the introduced equilibrium
parameter.
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Then under the ADMM framework, the preliminary updating
formulas for Lk+1 and Ek+1 are:

Lk+1 = arg min
L

P(L,Ek,Yk, μk)

= arg min
L

‖L‖∗ + μk

2

∥∥∥∥∥L + Ek − X + Yk

μk

∥∥∥∥∥
2

F

.

(2.5)

Ek+1 = arg min
E

P(Lk+1,E ,Yk, μk)

= arg min
E

λ ‖E‖1 + μk

2

∥∥∥∥∥Lk+1 + E − X + Yk

μk

∥∥∥∥∥
2

F

.

(2.6)

Details of how to solve irregular low-rank tensors Lk+1 and irregu-
lar sparse tensors Ek+1 are given in the supplementary file. Prove
of the global theoretical convergence of the Algorithm 1 is also
provided in the supplementary file. The run-time efficiency of
GSTRPCA was consistently more than that of the other methods
on different datasets (Supplementary Table 2). The framework of
the algorithm is summarized in Algorithm 1.

Algorithm 1 GSTRPCA algorithm

Input: Given X ∈ R
Ni×M×K, μ = 1e−5, ξ , μmax = 1e+5 and set k = 1;

1: While certain stopping criterion is not reached, do
2: Update primary variable

Lk+1 = DL

(
L − Ek − Yk

μk

)
.

Ek+1 = proxμ

(
X − Lk+1 − Yk

μk

)
.

3: Compute the Lagrangian multipliers

Yk+1 = Yk + μk(Lk+1 + Ek+1 − X ).

4: Update step size

μk+1 = min(ρμk, μmax).

5: Set k := k + 1.
Output: Lk+1, Ek+1.

Irregular tensor decomposition was performed on simulated
and real datasets to decompose them into low-rank and sparse
irregular tensors. Then the tensor X ∗ was reconstructed using the
L and E . Finally, we conducted cell clustering experiments on X ∗

using the method proposed in [14] and the clustering performance
was further evaluated.

Here, we developed a novel method (GSTRPCA) based on TRPCA
to improve the weighted threshold for the decomposition of irreg-
ular tensor data (Fig. 1). On the Fig. 1A left side, the input single-
cell multi-omics data comprises three types: ATAC, RNA, and ADT.
While the dimensions of the rows differ among these datasets,
they share the same number of columns. On the right side,
an irregular tensor singular value decomposition (ITSVD) is per-
formed. The input data Di ∈ R

Mi×N is processed through GSVD,
which first constructs a common subspace S for the data matrix,
followed by the computation of its decomposition. After decom-
position, we obtain Ui ∈ R

Mi×N, �i ∈ R
Mi×N, V ∈ R

N×N, where
� is a diagonal matrix with the singular values as its elements.

As shown in Figure 1B, we leverage and enhance TRPCA and
GSVD to decompose single-cell multi-omics data. Building on
the foundation of TRPCA, we implement an improved threshold-
based weighted algorithm to decompose the irregular tensor X ∈
R

Ni×M×K into an irregular low-rank tensor L and E . As shown
in Figure 1C, we conducted subsequent downstream analyses on
the results. The UMAP clustering visualization of the single-cell
multi-omics data reveals a pronounced clustering effect using the
GSTRPCA method. We performed gene selection on all resulting
genes, ultimately identifying the top 50 genes and generating a
heatmap to illustrate their expression. Additionally, we conducted
Gene Ontology (GO) enrichment analysis on these selected genes.

Experimental results
Datasets
We evaluated the clustering performance of the GSTRPCA using
five irregular single-cell multi-omics tensor datasets with dif-
ferent matrix sizes (two were simulated and three were real
datasets). Details of these datasets are summarized in Table 1.

• Simulated datasets We used two single-cell multi-omics
datasets (Sim1 and Sim2), each containing gene expression
omics and epigenetics omics data, that were generated
previously [15]. Sim1 contains 529 cells with 5 cell types,
and Sim2 contains 249 cells with 5 cell types.

• scGEM dataset The scGEM dataset contains 177 cells with 5
cell types. The data were extracted from [16].

• Specter dataset The Specter dataset contains 3762 cells with
16 cell types. The true labels are from Specter [17].

• 10X_inhouse dataset The 10X_inhouse dataset is a in_house
CITE-seq dataset of human peripheral blood mononuclear
cells from a healthy donor under institutional review board
approval from the University of Pittsburgh, generated by [4].
This dataset contains 1182 cells with 6 cell types.

Data preprocessing
The main purpose of data preprocessing is to eliminate low-
quality and non-expressed feature gene to enhance the accuracy
and reliability of subsequent analyses. The preprocessing steps
for the irregular tensor X ∈ R

(N1,N2,...,NK)×M×K in this paper are as
follows:

1. Remove unexpressed genes.
For the single-cell multi-omics data

X ∈ R
(N1,N2,··· ,NK)×M×K,

feature gene are filtered based on gene expression levels,
chromatin accessibility data, and protein expression across
individual cells. Specifically, we exclude genes that exhibit
zero expression in all omics cells.

2. Remove low expressed genes.
We filter out feature genes detected in only a small subset
of cells. To achieve this, we calculate the proportion of each
characterized gene that is expressed in the cell: genes are
recorded as 1 when they are expressed in the cell and 0
when they are not expressed. We select genes that have
expression in over 80% of the total cells to reduce noise and
computational burden.

After that, we can get the integrated irregular tensor. Table 2
shows the detailed information of the five datasets. Taking the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae649#supplementary-data
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Figure 1. Comprehensive overview of GSTRPCA. (A) Input single-cell multi-omics data types and construct them as irregular tensor data for the
generalized singular value decomposition of irregular tensors. (B) Decompose the irregular tensor data into an irregular low-rank tensor and a
sparse tensor, which is more complex than a straightforward low-rank approximation, as it incorporates considerations of sparsity. In the depicted
irregular sparse tensor, the majority of the elements are zero. (C) We conducted a comprehensive analysis of single-cell multi-omics data, employing
UMAP (uniform manifold approximation and projection) for the visualization of cellular clustering. Additionally, we performed gene selection and GO
enrichment analysis to identify biological processes and functions associated with the selected genes.

Table 1. Single-cell multi-omics datasets used in this study

Dataset Cell RNA ADT ATAC Type Refs

Sim1 529 2000 5000 5 [15]
Sim2 249 2500 5000 5 [15]
scGEM 177 34 27 5 [16]
Specter 3762 33538 49 16 [17]
10X_inhouse 1182 33538 10 6 [4]

real dataset 10X_inhouse as an example, before data preprocessing
this dataset consists of 1182 cells with an RNA gene expression
number of 33538 and an ADT expression of 10. After data prepro-
cessing, the data consists of a 10 × 1182 matrix and 10362 × 1182

matrix-type data. These data consist of matrices representing two
different dimensions in the rows, with a sample cell number of
1182 and a total of six cell types, corresponding to irregular tensor
data of the form X ∈ R

(10,10362)×1182×2.
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Table 2. Irregular tensors for single-cell multi-omics datasets

Dataset Cells Features Type Irregular tensor data

Sim1 529 [1717;2296] 5 (1717,2296)×529×2
Sim2 249 [2088;4564] 5 (2088,4564)×249×2
scGEM 177 [27;32] 5 (27,32)×177×2
Specter 3762 [49;1000] 16 (49,1000)×3762×2
10X_inhouse 1182 [10;10362] 6 (10,10362)×1182×2

Clustering performance
We compared our proposed GSTRPCA method with eight
advanced methods; five methods based on tensor decomposition
and three typical single-cell multi-omics data clustering methods.
The five typical tensor decomposition clustering methods are:

• t-TRPCA (tensor robust principal component analysis) [18],
which has been extended to the TRPCA model and widely
applied to image processing and bioinformatics.

• LRTV (low-rank matrix total-variation-regularized) [19],
which can be used to evaluate the informativeness of
features and help select the most relevant and effective
features for model construction in data mining and machine
learning.

• LRTD (low-rank tensor decomposition) [20], which is widely
applied method in data analysis and machine learning where
it is used to decompose and reduce the dimensionality of
high-order tensors. In bioinformatics, LRTD has been applied
to analyze genomic data where it aided the discovery of
intricate patterns and relationships among organisms.

• TT-TRPCA (tensor train for tensor robust principal compo-
nent analysis) [21], which considers a new model for TRPCA
based on tensor train rank that aims to recover a low-rank
tensor corrupted by sparse noise.

• LLRGTV (local low-rank matrix recovery and global total
variation) [22], which is commonly used for dimensionality
reduction, signal processing, and image restoration where it
has achieved excellent results.

The three single-cell multi-omics data clustering methods
are:

• SCMDC (single-cell multi-omics data clustering) [3], which is
a deep learning model that was designed to process different
histological datasets. SCMDC extracts complex data features
from raw data using deep learning techniques. After the
integration is completed, clustering analysis is carried out
using the jointly obtained potential features.

• BREM-SC (Bayesian random effects mixture model) [4], which
is a computational model designed for the analysis of scRNA-
seq data that effectively solves the problems of dimensional-
ity reduction, and visualization and clustering of cellular gene
expression profiles.

• TotalVI [2], which is a probabilistic deep learning frame-
work that was specifically designed to address challenges in
scRNA-seq analysis, such as dealing with high-dimensional
data and handling missing values.

The clustering accuracy of GSTRPCA was compared with
the clustering accuracy of the eight methods on the five
datasets (Table 1) using four evaluation metrics, accuracy (ACC),
normalized information (NMI), adjusted rand index (ARI), and
adjusted mutual information (AMI), to evaluate the clustering
performances.

These metrics measure the clustering performance of the
method from different perspectives; high values indicating good
clustering performance. On the Sim1 dataset, the performance
of GSTRPCA was consistently better than those of the other
eight methods in all four metrics (Fig. 2). On the Specter dataset,
the performance of GSTRPCA was also consistently better than
those of the other eight methods in ACC and ARI. In AMI and
NMI, GSTRPCA ranked second and its clustering performance
was comparable to that of TotalVI. And the clustering results
for the other three datasets are given in Supplementary Fig.
8, and confirm the superior performance of GSTRPCA. On the
10X_inhouse dataset, the performance of GSTRPCA slightly
lags that of SCMDC, probably because SCMDC can adapt to
datasets with more cell types. Although SCMDC can extract
complex structural features, the results show that the clustering
performance of SCMDC on most of the datasets was not as good
as that of GSTRPCA. The poorer performance of SCMDC may be
explained by the inability of SCMDC to effectively analyze single-
cell datasets for different molecular levels and to deal with their
interrelationships.

Overall, the ARI, AMI, NMI, and ACC evaluation metrics ranked
GSTRPCA in the top two for the five datasets and GSTRPCA
performed better that the other methods tested. The superior
performance of our method may lie in the weighted threshold
processing used in the subsequent cell clustering process. We
conclude that our proposed GSTRPCA method is effective and
robust for improving the clustering of single-cell multi-omics
data.

To visualize the clustering performance more intuitively, we
used boxplots to summarize the ranking results of GSTRPCA
and the competing methods (Fig. 3). The clustering results for
each of the methods varied for each dataset. Outliers represent
performance results that were not within the overall interval.
Figure 3 shows that GSTRPCA outperformed the other competing
methods on single-cell multi-omics datasets. And the boxplots
for ACC and ARI are given in the Supplementary Fig. 9, which
confirms the stability and superiority of our proposed method.

We also used UMAP (uniform manifold approximation and
projection ) to visualize the clustering performance of GSTR-
PCA and the other competing methods. Taking the 10X_inhouse
dataset as an example, the results show that the different cell
types were effectively separated by GSTRPCA (Fig. 4f), whereas
all the cell types were not separated well by the other methods
(Fig. 4a–e). Similar results were obtained for the other datasets
(Supplementary Figs 4–7). Together, the results demonstrate that
the GSTRPCA model was superior to the other methods tested and
that it improved the cell clustering.

Effect of irregular tensor decomposition
To investigate the effect of irregular tensor decomposition,
we compared GSTRPCA for irregular tensor and the regular
tensor constructed based on irregular tensor using zero-padding.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae649#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae649#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae649#supplementary-data
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Figure 2. Evaluation metrics for the clustering performance of GSTRPCA and eight competing methods on (a) Sim1 and (b) Specter datasets.

Figure 3. (a) Boxplots of GSTRPCA and other competing methods in terms of AMI on five datasets. (b) Boxplots of GSTRPCA and other competing methods
in terms of NMI on five datasets. The minimum value, lower quartile, median (red line), upper quartile, and maximum value are shown. The length of
a box (the interquartile range) indicates the stability of the method; the bigger the range the more unstable the method is, and a high ranking in the
relative stability indicates a better method.

Figure 4. Visualization of cell clusters after dimensionality reduction for different methods on the 10X_inhouse dataset. (a) TT-TRPCA, (b) LRTD, (c)
LLRGTV, (d) t-TRPCA, (e) LRTV, and (f) GSTRPCA.
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Figure 5. Clustering performances of the GSTRPCA decomposition of irregular tensor and fill-GSTRPCA decomposition of regular tensor on the (a) Sim1
and (b) 10X_inhouse datasets.

Figure 6. Clustering performances of fill-GSTRPCA and t-STRPCA decomposition methods on the (a) Sim1 and (b) 10X_inhouse datasets.

We called the decomposition method for regular tensor fill-
GSTRPCA, which implies that applying GSTRPCA to the regular
tensor populated using zeros based on irregular tensor. We
compared the clustering performance of these two methods
on five datasets. The clustering performance of GSTRPCA was
consistently better than that of fill-GSTRPCA on the Sim1 and
10X_inhouse datasets (Fig. 5). The clustering performances on
the other datasets also show that GSTRPCA GSTRPCA was better
than fill-GSTRPCA (Supplementary Fig. 10). These results may be
because fill-GSTRPCA affects its own data structure, making the
data sparser and destroying the geometric structure of the feature
tensor. Therefore, to further develop GSTRPCA it is significantly
important that the irregular tensor keeps the geometric structure
and hence helps to improve the clustering for single-cell multi-
omics data.

Effect of GSVD decomposition
We also determined whether GSVD enhanced the clustering per-
formance by comparing fill-GSTRPCA with weighted threshold
decomposition based on T-SVD under zero-filling structure. We
called the T-SVD decomposition method t-STRPCA.

On Sim1 and 10X_inhouse datasets, the clustering perfor-
mance of fill-GSTRPCA was better than t-STRPCA in most of
the comparisons (Fig. 6). The clustering performance results on
different datasets are given in Supplementary Fig. 11, which also
shows that fill-GSTRPCA slightly outperformed t-STRPCA. For
filled sparse regular tensor data, t-STRPCA failed to effectively

leverage the sparse properties. Inversion of sparse matrices
during computation can lead to numerical stability issues,
resulting in decreased accuracy of the decomposition results. In
tensor decomposition, fill-GSTRPCA leverages information from
different data modes to reduce data dimensionality and enhance
efficiency in data analysis.

The overall evaluation results of GSTRPCA and the competing
methods on different datasets are given in Table 3. The results
show that GSTRPCA outperformed the other methods for various
measures and demonstrate the superiority of decomposition on
irregular tensor and GSVD.

Downstream analysis
We conducted downstream analysis of the GSTRPCA results and
identified 50 differentially expressed information genes from the
Specter dataset. Details of the 50 marker genes are listed in
Supplementary Table 3. We conducted a GO enrichment analysis
to predict the biological properties of the 50 genes using Metas-
cape (https://metascape.org) (Fig. 7).

The functional enrichment analysis assigned GO terms under
the biological processes, cellular component, and molecular func-
tion GO categories. The entire genome was used as the back-
ground for identifying enriched terms with P-values < 0.01. Terms
with a minimum count of 3, and enrichment factor > 1.5 were
collected and clustered based on their membership similarities.
A protein–protein interaction network was constructed using the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae649#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae649#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae649#supplementary-data
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Table 3. Evaluation metrics for GSTRPCA and the competing methods

Dataset Evaluation
indicators

Original t-STRPCA fill-GSTRPCA GSTRPCA

Sim1 ACC 81.08 90.07 92.44 99.76
ARI 71.12 83.69 82.27 99.28
AMI 83.20 86.78 85.42 99.06
NMI 83.38 86.96 85.57 99.08

Sim2 ACC 79.39 83.00 87.94 94.98
ARI 74.27 74.14 74.76 88.67
AMI 84.51 66.67 86.51 91.35
NMI 84.50 67.24 86.70 91.57

scGEM ACC 85.71 87.14 89.02 92.86
ARI 69.86 71.09 75.31 82.76
AMI 71.14 72.90 76.05 83.86
NMI 72.23 73.92 76.95 84.47

Specter ACC 62.94 67.84 69.11 70.24
ARI 50.80 56.78 53.29 56.83
AMI 62.83 67.73 66.83 68.37
NMI 63.33 68.14 67.31 68.83

10X_inhouse ACC 85.79 75.93 83.88 95.44
ARI 74.97 68.96 73.50 92.28
AMI 86.60 88.19 87.65 92.25
NMI 86.41 87.84 87.40 92.24

STRING, BioGrid, OmniPath, and InWeb_IM databases. Only phys-
ical interactions in STRING (physical score > 0.132) and BioGrid
were considered.

Four marker genes associated with protein-arginine deiminase
activity are shown in Fig. 7B, seven genes identified as com-
ponents of the telomeric region on chromosomes are shown
in Fig. 7C, and three genes identified as components of motile
cilia are shown in Fig. 7D. A protein–protein interaction enrich-
ment analysis predicted interactions among LUZP1, CAPZB, RPA2,
KDM1A, and PHF13 (Fig. 7E). These genes are associated with DNA
repair, cellular response to stress, and DNA metabolic processes
(Fig. 7F).

Recent research suggests that the marker genes are primarily
involved in crucial biological processes, such as protein arginine
deaminate activity, DNA damage response, regulation of telomere
stability, and ciliary motility. PADI2 and PADI4 have been impli-
cated in neutrophil extracellular trap formation, which is linked
to tumor metastasis and immune evasion as well as autoimmune
diseases and cancers [23], insight into neutrophil extracellular
traps [24], and prostate cancer cells [25]. RPA2 and KDM1A regu-
late the expression of immune-related genes to impact immune
cell activation and function [26–28]. ZBTB48 modulates immune
cell lifespan and function by preserving telomere integrity and
genomic stability [29]. CATSPER4 influences intracellular calcium
levels to affect T cell and natural killer cell activation and
function [30, 31]. CAPZB and CROCC govern dynamic changes
in cilia and cellular cytoskeleton to influence immune cell
migration as well as the formation of immune synapses [32,
33]. Together, these findings suggest that the identified genes
are significantly involved in modulating the immune response to
tumors.

Conclusions
Cell clustering is an important and rapidly developing direc-
tion in single-cell research. Clustering combines different types
of single-cell data, such as gene expression, protein expression,

and chromatin states, to comprehensively classify and cluster
individual cells. This integrated analysis provides comprehensive
cell type identification and functional interpretation, which aids
in understanding the complex biological characteristics of cells.
Single-cell multi-omics data form an irregular tensor, but, so far,
no effective tensor decomposition methods have been developed
to keep the original data structure and identify hidden related
features among omics data.

In this study, we propose a novel method (GSTRPCA) based on
TRPCA to improve the weighted threshold for the decomposition
of irregular tensor data. For datasets that contained two types of
genomic data, we first compared GSTRPCA with traditional tensor
methods. Unlike previous rule tensor processing kernel norm
methods, we performed generalized singular value decomposition
on irregular tensors, and threshold processing on irregular low-
rank tensors to better approximate the rank function and extract
more unit structure information. We also validated the effec-
tiveness and superiority of decomposition based on the irregular
tensor. Furthermore, we compared the performance of GSTR-
PCA and t-STRPCA to illustrate the effectiveness of generalized-
SVD. The results of the single-cell multi-omics data clustering
experiments show that the clustering accuracy of GSTRPCA is
superior to the other state-of-the-art methods probably because
it can reduce redundant features and capture the global sub-
space and local geometric structure of the data. In summary, the
GSTRPCA method can better handle single-cell multi-omics data
and detect multiple omics layers in a single cell. This method
provides a comprehensive and accurate understanding of cellular
information, thereby promoting downstream clustering analysis
and enrichment analysis.

The results in this paper are customised for the third-order
irregular tensor. However, the single-cell multi-omics data in the
real world are partially represented as d-order irregular tensors
(usually d ≥ 4). For instance, single-cell multi-omics introduces
time and spatial factors, resulting in higher-order irregular
tensors. Therefore, in the future, a key focus of our research
will be to explore how to extend GSTRPCA to accommodate
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Figure 7. Enrichment analysis of 50 differentially expressed marker genes using Metascape. (A) Enriched GO terms under the biological process category.
The colors are based on the P-values. (B–D) Heatmaps of genes associated with the three best-scoring GO groups, GRP1 (B), GRP2 (C), and GRP3 (D). The
blue heatmaps (left) represent genes across groups. The darkness of the blue indicates the proportion of GO terms in a group associated with the gene.
The orange heatmaps (right) represent genes across terms in the activated group. The darkness of the orange indicates the P-value of the GO term. (E)
Protein–protein interaction network identified in the marker genes. (F)The three best-scoring GO terms by P-value.

higher-order irregular tensors or to investigate ways to decompose
higher-order irregular tensors into third-order irregular tensors,
thereby making our results applicable to these complex data
structures.

Key Points

• The paper proposed a new model that introduces irreg-
ular tensor decomposition and clustering into the field
of single-cell multi-omics data.

• The paper developed a new method (GSTRPCA) and com-
pared with the state-of-the-art clustering model. Aiming
at the shortcomings of previous models, a weighted
threshold model for irregular tensor data decomposition
is proposed by integrating low rank and sparse con-
straints.

• We also conducted theoretical convergence analysis on
the algorithm, and compared the iterative error curves
between GSTRPCA and the competing algorithms to con-
firm the superior convergence rate of our method.

• Experimental results have shown that GSTRPCA has
excellent predictive and generalization ability.

Acknowledgements
The authors would like to thank Professor Xile Zhao for his
guidance in tensor decomposition theory. The authors thank the
anonymous reviewers for their valuable suggestions.

Author contributions
All authors contributed code or conceptualization of GSTRPCA
functionality. Conceptualization: L.B.C., Q.Z, Y.S.Q. Methodology:
L.B.C., G.L.G., M.K.N. Software: L.B.C., G.L.G. Formal Analysis:
Q.Z, Y.S.Q. Writing Original Draft: L.B.C., G.L.G., Y.S.Q. All the
authors discussed the experimental results and commented on
the manuscript.



10 | Cui et al.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.

Conflict of interest: None declared.

Funding
This work was supported by the National Natural Science
Foundation of China [grant numbers 62372303, 62002234,
62131004, 12326310, 12326339]; the Guangdong Basic and Applied
Basic Research Foundation [grant number 2024A1515010113];
Shenzhen Science and Technology Program [grant number
RCYX20231211090244048]; National Natural Science Foundation
of Henan Province [grant number 242300420251].

References
1. Mimitou EP, Cheng A, Montalbano A. et al. Multiplexed detection

of proteins, transcriptomes, clonotypes and CRISPR perturba-
tions in single cells. Nat Methods 2019;16:409–12. https://doi.
org/10.1038/s41592-019-0392-0.

2. Gayoso A, Steier Z, Lopez R. et al. Joint probabilistic mod-
eling of paired transcriptome and proteome measurements
in single cells. bioRxiv [Preprint] 2020;2020–05. https://doi.
org/10.1101/2020.05.08.083337 (Accessed 12 December 2020).

3. Lin X, Tian T, Wei Z. et al. Clustering of single-cell multi-omics
data with a multimodal deep learning method. Nat Commun
2022;13:7705. https://doi.org/10.1038/s41467-022-35031-9.

4. Wang X, Sun Z, Zhang Y. et al. BREM-SC: a Bayesian random
effects mixture model for joint clustering single cell multi-omics
data. Nucleic Acids Res 2020;48:5814–24. https://doi.org/10.1093/
nar/gkaa314.

5. Qiu Y, Guo D, Zhao P. et al. scMNMF: a novel method for single-
cell multi-omics clustering based on matrix factorization. Brief
Bioinform 2024;25:bbae228. https://doi.org/10.1093/bib/bbae228.

6. Vasaikar SV, Straub P, Wang J. et al. Linkedomics: analyzing
multi-omics data within and across 32 cancer types. Nucleic Acids
Res 2018;46:D956–63. https://doi.org/10.1093/nar/gkx1090.

7. Bersanelli M, Mosca E, Remondini D. et al. Methods for the
integration of multi-omics data: mathematical aspects.
BMC Bioinformatics 2016;17:167–77. https://doi.org/10.1186/
s12859-015-0857-9.

8. Bodein A, Scott-Boyer M-P, Perin O. et al. Interpretation of
network-based integration from multi-omics longitudinal data.
Nucleic Acids Res 2022;50:e27–7. https://doi.org/10.1093/nar/
gkab1200.

9. Liu J-X, Wang Y-T, Zheng C-H. et al. Robust PCA based method
for discovering differentially expressed genes. BMC Bioinformat-
ics 2013;14:1–10 Springer. https://doi.org/10.1186/1471-2105-14-
S8-S3.

10. Lu C, Feng J, Chen Y. et al. Tensor robust principal component
analysis: exact recovery of corrupted low-rank tensors via con-
vex optimization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5249–57. 2016.

11. Hu Y, Liu J-X, Gao Y-L. et al. Differentially expressed genes
extracted by the tensor robust principal component analy-
sis (TRPCA) method. Complexity 2019;2019:6136245. https://doi.
org/10.1155/2019/6136245.

12. Liu Y, Shang F, Cheng H. et al. Factor matrix trace norm min-
imization for low-rank tensor completion. In: Proceedings of the
2014 SIAM International Conference on Data Mining, Society for
Industrial and Applied Mathematics, pp. 866–74. SIAM, 2014.

13. Malik OA, Becker S. Low-rank tucker decomposition of
large tensors using TensorSketch. Adv Neural Inf Process Syst
2018;31:10117–27.

14. Qiu Y, Yan C, Zhao P. et al. SSNMDI: a novel joint learning model
of semi-supervised non-negative matrix factorization and data
imputation for clustering of single-cell RNA-seq data. Brief Bioin-
form 2023;24:bbad149. https://doi.org/10.1093/bib/bbad149.

15. Jin S, Zhang L, Nie Q. scAI: an unsupervised approach for
the integrative analysis of parallel single-cell transcriptomic
and epigenomic profiles. Genome Biol 2020;21:25–19. https://doi.
org/10.1186/s13059-020-1932-8.

16. Adossa N, Khan S, Rytkönen KT. et al. Computational strategies
for single-cell multi-omics integration. Comput Struct Biotechnol J
2021;19:2588–96. https://doi.org/10.1016/j.csbj.2021.04.060.

17. Ringeling FR, Canzar S. et al. Linear-time cluster ensembles of
large-scale single-cell RNA-seq and multimodal data. Genome
Res 2021;31:677–88. https://doi.org/10.1101/gr.267906.120.

18. Wright J, Ganesh A, Rao S. et al. Robust principal component
analysis: exact recovery of corrupted low-rank matrices via
convex optimization. Adv Neural Inf Process Syst 2009;22:2080–88.

19. He W, Zhang H, Zhang L. et al. Total-variation-regularized
low-rank matrix factorization for hyperspectral image restora-
tion. IEEE Trans Geosci Remote Sens 2015;54:178–88. https://doi.
org/10.1109/TGRS.2015.2452812.

20. Chen Y, Huang T-Z, Zhao X-L. Destriping of multispectral remote
sensing image using low-rank tensor decomposition. IEEE J Sel
Top Appl Earth Obs Remote Sens 2018;11:4950–67. https://doi.
org/10.1109/JSTARS.2018.2877722.

21. Yang J-H, Zhao X-L, Ji T-Y. et al. Low-rank tensor train for
tensor robust principal component analysis. Appl Math Comput
2020;367:124783. https://doi.org/10.1016/j.amc.2019.124783.

22. He W, Zhang H, Shen H. et al. Hyperspectral image denoising
using local low-rank matrix recovery and global spatial–spectral
total variation. IEEE J Sel Top Appl Earth Obs Remote Sens 2018;11:
713–29. https://doi.org/10.1109/JSTARS.2018.2800701.

23. Zhu C, Liu C, Chai Z. Role of the PADI family in inflam-
matory autoimmune diseases and cancers: a systematic
review. Front Immunol 2023;14:1115794. https://doi.org/10.3389/
fimmu.2023.1115794.

24. Holmes CL, Shim D, Kernien J. et al. Insight into neutrophil extra-
cellular traps through systematic evaluation of citrullination
and peptidylarginine deiminases. J Immunol Res 2019;2019:1–11.
https://doi.org/10.1155/2019/2160192.

25. Luo H, Chen G. Neutrophil extracellular traps promote the
proliferation, invasion and migration of prostate cancer cells by
upregulating IL-8 expression in DU145 human prostate cancer
cells. Chin J Cell Mol Immunol 2023;39:261–7.

26. Rasti G, Becker M, Vazquez BN. et al. SIRT1 regulates DNA
damage signaling through the PP4 phosphatase complex.
Nucleic Acids Res 2023;51:6754–69. https://doi.org/10.1093/nar/
gkad504.

27. Ghantous L, Volman Y, Hefez R. et al. The DNA damage response
pathway regulates the expression of the immune check-
point CD47. Commun Biol 2023;6:245. https://doi.org/10.1038/
s42003-023-04615-6.

28. Ismail T, Lee H-K, Kim C. et al. KDM1A microenvironment,
its oncogenic potential, and therapeutic significance. Epigenet-
ics Chromatin 2018;11:1–15. https://doi.org/10.1186/s13072-018-
0203-3.

29. Cheng Z-Y, He T-T, Gao X-M. et al. ZBTB transcription factors:
key regulators of the development, differentiation and effector
function of T cells. Front Immunol 2021;12:713294, 1–19. https://
doi.org/10.3389/fimmu.2021.713294.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae649#supplementary-data
https://doi.org/10.1038/s41592-019-0392-0
https://doi.org/10.1038/s41592-019-0392-0
https://doi.org/10.1038/s41592-019-0392-0
https://doi.org/10.1038/s41592-019-0392-0
https://doi.org/10.1101/2020.05.08.083337
https://doi.org/10.1101/2020.05.08.083337
https://doi.org/10.1101/2020.05.08.083337
https://doi.org/10.1038/s41467-022-35031-9
https://doi.org/10.1038/s41467-022-35031-9
https://doi.org/10.1038/s41467-022-35031-9
https://doi.org/10.1038/s41467-022-35031-9
https://doi.org/10.1093/nar/gkaa314
https://doi.org/10.1093/nar/gkaa314
https://doi.org/10.1093/nar/gkaa314
https://doi.org/10.1093/nar/gkaa314
https://doi.org/10.1093/nar/gkaa314
https://doi.org/10.1093/bib/bbae228
https://doi.org/10.1093/bib/bbae228
https://doi.org/10.1093/bib/bbae228
https://doi.org/10.1093/bib/bbae228
https://doi.org/10.1093/bib/bbae228
https://doi.org/10.1093/nar/gkx1090
https://doi.org/10.1093/nar/gkx1090
https://doi.org/10.1093/nar/gkx1090
https://doi.org/10.1093/nar/gkx1090
https://doi.org/10.1093/nar/gkx1090
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1093/nar/gkab1200
https://doi.org/10.1093/nar/gkab1200
https://doi.org/10.1093/nar/gkab1200
https://doi.org/10.1093/nar/gkab1200
https://doi.org/10.1093/nar/gkab1200
https://doi.org/10.1186/1471-2105-14-S8-S3
https://doi.org/10.1186/1471-2105-14-S8-S3
https://doi.org/10.1186/1471-2105-14-S8-S3
https://doi.org/10.1186/1471-2105-14-S8-S3
https://doi.org/10.1186/1471-2105-14-S8-S3
https://doi.org/10.1155/2019/6136245
https://doi.org/10.1155/2019/6136245
https://doi.org/10.1155/2019/6136245
https://doi.org/10.1093/bib/bbad149
https://doi.org/10.1093/bib/bbad149
https://doi.org/10.1093/bib/bbad149
https://doi.org/10.1093/bib/bbad149
https://doi.org/10.1093/bib/bbad149
https://doi.org/10.1186/s13059-020-1932-8
https://doi.org/10.1186/s13059-020-1932-8
https://doi.org/10.1186/s13059-020-1932-8
https://doi.org/10.1186/s13059-020-1932-8
https://doi.org/10.1016/j.csbj.2021.04.060
https://doi.org/10.1016/j.csbj.2021.04.060
https://doi.org/10.1016/j.csbj.2021.04.060
https://doi.org/10.1016/j.csbj.2021.04.060
https://doi.org/10.1016/j.csbj.2021.04.060
https://doi.org/10.1101/gr.267906.120
https://doi.org/10.1101/gr.267906.120
https://doi.org/10.1101/gr.267906.120
https://doi.org/10.1101/gr.267906.120
https://doi.org/10.1109/TGRS.2015.2452812
https://doi.org/10.1109/TGRS.2015.2452812
https://doi.org/10.1109/TGRS.2015.2452812
https://doi.org/10.1109/TGRS.2015.2452812
https://doi.org/10.1109/JSTARS.2018.2877722
https://doi.org/10.1109/JSTARS.2018.2877722
https://doi.org/10.1109/JSTARS.2018.2877722
https://doi.org/10.1109/JSTARS.2018.2877722
https://doi.org/10.1016/j.amc.2019.124783
https://doi.org/10.1016/j.amc.2019.124783
https://doi.org/10.1016/j.amc.2019.124783
https://doi.org/10.1016/j.amc.2019.124783
https://doi.org/10.1016/j.amc.2019.124783
https://doi.org/10.1109/JSTARS.2018.2800701
https://doi.org/10.1109/JSTARS.2018.2800701
https://doi.org/10.1109/JSTARS.2018.2800701
https://doi.org/10.1109/JSTARS.2018.2800701
https://doi.org/10.3389/fimmu.2023.1115794
https://doi.org/10.3389/fimmu.2023.1115794
https://doi.org/10.3389/fimmu.2023.1115794
https://doi.org/10.3389/fimmu.2023.1115794
https://doi.org/10.1155/2019/2160192
https://doi.org/10.1155/2019/2160192
https://doi.org/10.1155/2019/2160192
https://doi.org/10.1093/nar/gkad504
https://doi.org/10.1038/s42003-023-04615-6
https://doi.org/10.1038/s42003-023-04615-6
https://doi.org/10.1038/s42003-023-04615-6
https://doi.org/10.1038/s42003-023-04615-6
https://doi.org/10.1186/s13072-018-0203-3
https://doi.org/10.3389/fimmu.2021.713294
https://doi.org/10.3389/fimmu.2021.713294
https://doi.org/10.3389/fimmu.2021.713294
https://doi.org/10.3389/fimmu.2021.713294


GSTRPCA: irregular tensor SVD for single-cell multi-omics data clustering | 11

30. Jin J-L, O’Doherty AM, Wang S. et al. Catsper3 and catsper4
encode two cation channel-like proteins exclusively expressed
in the testis. Biol Reprod 2005;73:1235–42. https://doi.org/10.1095/
biolreprod.105.045468.

31. Lin S, Ke M, Zhang Y. et al. Structure of a mammalian sperm
cation channel complex. Nature 2021;595:746–50. https://doi.
org/10.1038/s41586-021-03742-6.

32. Ryu S, Ko D, Shin B. et al. The intercentriolar fibers function as
docking sites of centriolar satellites for cilia assembly. J Cell Biol
2024;223:e202105065. https://doi.org/10.1083/jcb.202105065.

33. Mukherjee K, Ishii K, Pillalamarri V. et al. Actin capping protein
CAPZB regulates cell morphology, differentiation, and neural
crest migration in craniofacial morphogenesis. Hum Mol Genet
2016;25:1255–70. https://doi.org/10.1093/hmg/ddw006.

© The Author(s) 2024. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited.
Briefings in Bioinformatics, 2025, 26(1), bbae649
https://doi.org/10.1093/bib/bbae649
Problem Solving Protocol

https://doi.org/10.1095/biolreprod.105.045468
https://doi.org/10.1095/biolreprod.105.045468
https://doi.org/10.1095/biolreprod.105.045468
https://doi.org/10.1095/biolreprod.105.045468
https://doi.org/10.1038/s41586-021-03742-6
https://doi.org/10.1038/s41586-021-03742-6
https://doi.org/10.1038/s41586-021-03742-6
https://doi.org/10.1038/s41586-021-03742-6
https://doi.org/10.1083/jcb.202105065
https://doi.org/10.1083/jcb.202105065
https://doi.org/10.1083/jcb.202105065
https://doi.org/10.1083/jcb.202105065
https://doi.org/10.1093/hmg/ddw006
https://doi.org/10.1093/hmg/ddw006
https://doi.org/10.1093/hmg/ddw006
https://doi.org/10.1093/hmg/ddw006
https://doi.org/10.1093/hmg/ddw006
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/bib/bbae649

	 GSTRPCA: irregular tensor singular value decomposition for single-cell multi-omics data clustering
	Introduction
	Methods
	Experimental results
	Downstream analysis
	Conclusions
	Key Points
	Acknowledgements
	Author contributions
	Supplementary data
	Funding


