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ABSTRACT: This Letter details our efforts to develop novel, non-
acetylene-containing metabotropic glutamate receptor subtype 5
(mGlu5) negative allosteric modulators (NAMs) with improved
pharmacological properties. This endeavor involved replacing the
ether-linked pyrimidine moiety, a metabolic liability, with various
5-membered heterocycles. From this exercise, we identified
VU6043653, a highly brain penetrant and selective mGlu5 NAM
which displayed moderate potency against both human and rat
mGlu5. Moreover, VU6043653 has overall improved pharmaco-
logical and drug metabolism and pharmacokinetic profiles when
compared to its predecessor compounds. Most notably,
VU6043653 exhibits low predicted human hepatic clearance, a
clean cytochrome P450 profile, and minimal inhibition of the dopamine transporter.
KEYWORDS: Metabotropic Glutamate Receptor Subtype 5, mGlu5, Negative Allosteric Modulator (NAM),
Structure−Activity Relationship (SAR), Levodopa-Induced Dyskinesia, Alzheimer’s Disease, Pain, VU6043653

The metabotropic glutamate (mGlu) receptors comprise a
family of eight G protein-coupled receptors (GPCRs)

that are activated by L-glutamic acid, the major excitatory
neurotransmitter of the mammalian central nervous system
(CNS). Once activated, the mGlu receptors modulate the
strength of synaptic transmission. The eight mGlu receptors
are divided into three groups based on structure and sequence
homology, downstream signaling partners/pathways, as well as
pharmacology. The mGlu5 receptor is widely expressed
throughout the CNS and, alongside mGlu1, belongs to group
I mGlu receptors, which are predominantly found postsynap-
tically and couple via Gq to the activation of phospholipase C
(PLC).1,2 While designing selective orthostatic ligands that
preferentially target one mGlu receptor over another has
proven to be extremely challenging, one successful approach to
selectively target individual mGlu receptor subtypes is via
allosteric modulation. Negative allosteric modulators (NAMs)
of mGlu5 are among the most advanced and widely
investigated within the field of mGlu receptor allostery.3−8

Preclinical and clinical efficacy has established a multitude of
potential therapeutic applications for small molecule mGlu5
NAMs, such as anxiety,9,10 Alzheimer’s disease,11 fragile X

syndrome,12−14 autism spectrum disorder,15,16 levodopa-
induced dyskinesia experienced by many Parkinson’s disease
patients,17−19 gastroesophageal reflux disease,20 addiction
disorder,21−23 major depressive disorder,24−26 obsessive-
compulsive disorder,27 migraine, and pain.28−31 Early mGlu5
NAMs (e.g., 1 and 2) were based on a key aryl/heterobiaryl
acetylene pharmacophore, and this moiety has been carried
throughout several subsequent medicinal chemistry optimiza-
tion efforts (highlighted in Figure 1); however, alkynes,
particularly those conjugated to an α-heteroatom, are
potentially reactive functional groups.32,33 In fact, acetylene-
based mGlu5 NAMs have been linked to hepatotoxicity and
glutathione conjugation, as observed in both preclinical and
clinical studies.34 AZD9272 (7) utilized an acetylene
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bioisostere, while fenobam (3) completely lacked the acetylene
moiety. Both were advanced to clinical studies; however, their
development was halted due to psychosis-like symptoms. Most
importantly, further investigation into fenobam and AZD9272
attributed these symptoms to monoamine oxidase-B (MAO-
B)-mediated mechanisms rather than mGlu5-mediated mech-
anisms.35 To date, no mGlu5 NAM has advanced to the market
due, in part, to dose-limiting adverse events (such as
hallucinations or psychotomimetic effects) observed in some
clinical trials.36 Currently, TMP-301 (9) is the only clinical
mGlu5 NAM devoid of the acetylene moiety and is undergoing
Phase I clinical trials for substance abuse disorders.37

Therefore, endeavors in the field have shifted to identifying
novel, non-acetylene-containing mGlu5 NAMs to avoid the
pharmacophore-mediated adverse liabilities while exploiting
the broad therapeutic utility of a selective mGlu5 NAM.
A major focus of our group has been the development of

small molecule mGlu5 NAMs, which ultimately resulted in the
identification of clinical candidate 10 (auglurant, VU0424238)

(Figure 2).38 Unfortunately, 10 failed in development due to
species-specific toxicities observed during a 28-day toxicologic
assessment in cynomolgus monkeys, which were not previously
observed in rats. Accumulation of a cyno-unique aldehyde
oxidase (AO) metabolite was observed after 14 days and
resulted in pronounced anemia (non-mechanism-based).
Metabolism studies revealed the oxidation of the pyrimidine
ring to a 6-oxopyrimidine metabolite, followed by the
subsequent formation of a 2,6-oxopyrimidine metabolite. In
humans, monkeys, and rats, it was determined that the
formation of the 6-oxopyrimide metabolite was mediated by
AO; however, there were apparent species differences between
monkeys and rats in the enzyme involved in the formation of
the 2,6-oxopyrimidine metabolite. While the second metabolite
was mediated by AO metabolism in monkeys, it was
determined that this process was mediated by xanthine oxidase
(XO) metabolism rats.39,40 Therefore, it is possible that species
differences in the involvement of AO/XO metabolism may
play a role in the observed monkey-specific toxicity.

Figure 1. Prototypical mGlu5 NAM chemotypes. NAMs 1 and 2 were crucial early tool compounds, and NAMs 4−9 entered human clinical
testing.

Figure 2. Previously published compounds that emerged from optimization of high-throughput screening hits: clinical candidate VU0424238
(auglurant, 10) and backup scaffold 11. Further optimization led to potent mGlu5 NAMs 12.
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Attention was shifted to the development of backup analogs
11 in an effort to identify a compound devoid of AO
metabolism. While this strategy allowed us to mitigate the role
of AO, it did not allow us to fully eliminate this route of
metabolism. Additionally, analogs 11 typically suffered from
high predicted human hepatic clearance, high plasma protein
binding, inhibition of cytochrome P450s (CYPs; in particular
1A2 but also 3A4 and 2C9), and/or inhibition of dopamine
transporters (DAT). Thus, further optimization was required.
This Letter describes the structure−activity relationship (SAR)
development of novel mGlu5 NAMs (12) with various 5-
membered heteroaryl groups as replacements for the
pyrimidine moiety responsible for the AO-mediated metabo-
lism observed in 10.
The synthesis of analogs 22 was straightforward and began

by reacting commercially available nitrile 13 with various
commercially available 5-membered heteroaryl alcohols under
basic conditions to afford the SNAr products 14 (Scheme 1).
Basic hydrolysis of nitriles 14 to the carboxylic acids 18
proceeded smoothly in 32−98% yield. Finally, conversion to

the acid chloride and reaction with various heterocyclic amines
in situ afforded analogs 22. We next turned our attention to
exploring further modifications to the central pyridine core
with the synthesis of intermediates 15−17. To prepare
intermediate 15, we utilized standard SNAr protocols to react
commercially available bromide 26 with alcohol 27 to provide
intermediate 28, which could then undergo a palladium-
catalyzed cross-coupling with zinc cyanide to afford nitrile 15
(Scheme 2). Similar to intermediate 14, nitrile 15 underwent
basic hydrolysis to yield carboxylic acid 19. Subsequent
conversion to the acid chloride and reaction with various
heterocyclic amines in situ afforded analogs 23. The
heterocyclic amines (R4) highlighted in Table 1 were select
for evaluation based on prior endeavors in which these amines
provided potent compounds with promising plasma protein
binding and plasma clearance profiles.38

Preparation of intermediate 16 began with commercially
available iodide 29, which underwent an Ullmann biaryl ether
formation in the presence of alcohol 27 to afford ether 30
(Scheme 3). A subsequent palladium-catalyzed carbonylation

Scheme 1. Synthesis of mGlu5 NAM Analogs 18−25a

aReagents and conditions: (a) R3 = OH, K2CO3, DMF, μW 150 °C, 74−98%; (b) NaOH, EtOH/H2O, 100 °C, 32−98%; (c) NaOH, 1,4-dioxane/
H2O, 98%; (d) POCl3, R4 = NH2, pyridine, 0 °C to r.t., 8−89%.

Scheme 2. Synthesis of mGlu5 NAM Intermediate 15a

aReagents and conditions: (a) Cs2CO3, DMSO, 79%; (b) Zn(CN)2, Pd(PPh3)4, DMF, μW 140 °C, 68%.
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provided ethyl ester 16. Next, the synthesis of intermediate 17
began with a Wohl−Ziegler bromination of commercially
available ester 31 to yield gem-dibromide 32 (Scheme 4).
Geminal halide hydrolysis of intermediate 32 using AgNO3 as
the oxidizing agent provided aldehyde 33, which could
undergo further transformation with diethylaminosulfur
trifluoride (DAST) to give the difluoro intermediate 34.
Utilizing standard SNAr conditions to react intermediate 34
with alcohol 27 afforded intermediate 17. Saponification of

esters 16 and 17 to carboxylic acids 20 and 21, respectively,
proceeded smoothly in near quantitative yields. Finally,
conversion to the acid chloride and reaction with various
heterocyclic amines in situ afforded analogs 24 and 25.
Select analogs 22−25 were screened against human mGlu5

(hmGlu5) to determine potency, with results highlighted in
Table 1. These results emphasize the importance of the amide
tail (R4). For instance, when the 5-fluoropyridine amide tail
was installed (22aA−22dA), the hmGlu5 IC50’s were >10 μM;

Table 1. Structures and Activities for Analogs 22−25a

aCalcium mobilization assays in human mGlu5-HEK293A cells were performed in the presence of an EC80 fixed concentration of glutamate, n = 2
independent experiments in triplicate. The % GluMin is the measure of efficacy of the NAM to reduce an EC80 response of glutamate.
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however, when the amide tail was exchanged for a 4-
methylthiazole amide tail (22aB−22dB) or 6-methylpyridine
(22aC−22dC), we observed hmGlu5 IC50’s = 1−5 μM.
Moreover, it became evident with further SAR development
that the combination of amide tail (R4) and 5-membered
heteroaryl ether (R3) was crucial for activity. For example,
while the 5-fluoropyridine amide tail provided several analogs
with hmGlu5 IC50’s > 10 μM (22a−dA, 24, and 25), several
analogs containing alternate heteroaryl ethers had IC50’s ≤ 500

nM (22hA, hmGlu5 IC50 = 506 nM; 22iA, hmGlu5 IC50 = 325
nM; and 22gA, hmGlu5 IC50 = 120 nM). This phenomenon
was also observed in the 4-methylthaizole series (22aB,
hmGlu5 IC50 = 5.3 μM vs 22gB, hmGlu5 IC50 = 26 nM) as
well as the 6-methylpyridine series (22aC, hmGlu5 IC50 = 2.8
μM vs 22hC, hmGlu5 IC50 = 91 nM).
With the exceptions of 22f and 22g, di- or trisubstituted 5-

membered heteroaryl analogs (22a−e) only afforded com-
pounds with hmGlu5 IC50’s ≥ 1 μM. Interestingly, comparing

Scheme 3. Synthesis of mGlu5 NAM Intermediate 16a

aReagents and conditions: (a) CuI, Cs2CO3, DMF, μW 150 °C, 40%; (b) CO(g), NaOAc, Pd(dppf)Cl2·CH2Cl2, EtOH/H2O (5:1), 70 °C, 99%.

Scheme 4. Synthesis of mGlu5 NAM Intermediate 17a

aReagents and conditions: (a) NBS, AIBN, CCl4, 90 °C, 63%; (b) AgNO3, EtOH/H2O (10:1), 50 °C, 99%; (c) DAST, DCM, 53%; (d) Cs2CO3,
DMF, μW 150 °C, 22%.

Table 2. In Vitro DMPK and Rat PBL Data for Select Analogs 22fC, 22gA−C, 22hB−C, and 22iA−C

22fC 22gA 22gB 22gC 22hB 22hC 22iA 22iB 22iC

Property VU6043937 VU6044946 VU6045093 VU6073906 VU6043657 VU6043658 VU6043653 VU6043654 VU6043655

MW 337.38 395.31 397.37 391.35 329.38 323.35 327.31 329.38 323.35
xLogPa 1.86 2.07 3.01 2.17 2.5 1.66 1.16 2.1 1.26
TPSAa 81.9 81.9 81.9 81.9 81.9 81.9 81.9 81.9 81.9

hmGlu5 IC50 (nM) 207 120 26 17 96 91 325 28 41

In Vitro PK Parametersb

CLint (mL/min/kg), rat 436 82 817 600 45 320 48 44 234
CLhep (mL/min/kg), rat 60 38 65 63 27 57 28 27 54

CLint (mL/min/kg), human 71 11 70 68 216 241 9 46 77
CLhep (mL/min/kg), human 16 7 16 16 19 19 6 14 17

Rat f u,plasma NDd NDd NDd NDd 0.219 NDd 0.059 0.089 0.059
Human f u,plasma 0.037 0.012 0.004 0.011 0.062 0.034 0.059 0.063 0.041
Rat f u,brain 0.008 0.002 0.003 0.005 0.029 0.021 0.012 0.014 0.013

Brain Distribution (0.25 h) (SD Rat; 0.2 mg/kg IV)c

Kp, brain:plasma 1.02 3.08 5.57 2.98 1.13 2.42 1.68 1.37 1.04
Kp,uu, brain:plasma NDd NDd NDd NDd 0.15 NDd 0.34 0.22 0.23

aTPSA and xLogP were calculated using Dotmatics platform. bf u = fraction unbound; equilibrium dialysis assay; brain = rat brain homogenates; cKp
= total brain-to-plasma partition ratio; Kp,uu = unbound brain-to-plasma partition ratio [(brain f u × total brain)/(plasma f u × total plasma)]. dND =
not determined; samples had low analyte peaks, possibly unstable in rat plasma.
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22bC (hmGlu5 IC50 = 1.6 μM) with a constitutional isomer
22fC (hmGlu5 IC50 = 207 nM) gave a 7.8-fold increase in
potency. Introduction of a trifluoromethyl electron-with-
drawing group to the 1-methyl-1H-pyrazole (22gA, hmGlu5
IC50 = 120 nM) resulted in a ∼3-fold increase in potency in
the context of the 5-fluoropyridine amide tail when compared
to 22iA (hmGlu5 IC50 = 325 nM); however, this modification
had no effect on potency when comparing analogs with the 4-
methylthaizole amide tail (22gB, hmGlu5 IC50 = 26 nM vs
22iB, hmGlu5 IC50 = 28 nM). It was also noted that analogs
22iA-C were generally more potent than regioisomers 22hA-
C; however, the changes in potency varied with the amine tail
(22iA vs 22hA, 1.6-fold increase; 22iB vs 22hB, 3.4-fold
increase).
Finally, we evaluated alternative picolinamide cores (23−

25). Exchanging the 6-methylpicolinamide core (22iA;
hmGlu5 IC50 = 325 nM) to a 5-fluoropicolinamide core
(23A) resulted in a complete loss of activity. While the 5-
(trifluoromethyl)picolinamide core was tolerated, only micro-
molar potencies could be achieved (24B, hmGlu5 IC50 = 2.8
μM and 24C, hmGlu5 IC50 = 1.3 μM). Additionally, the 5-
(difluoromethyl)picolinomide core was tolerated only with the
6-methylpyrdine tail (25C, hmGlu5 IC50 = 844 nM). These
results highlight the significance of the 6-methylpicolinamide
core.
Of these compounds, 22f-C, 22gA-B, 22hB-C, and 22iA-C

were advanced into a battery of in vitro DMPK assays and our
standard rat plasma:brain level (PBL) cassette paradigm
(Table 2).41,42 Regarding physicochemical properties, these
analogs all possessed molecular weights less than 450 Da, with
22gA, 22gB, 22hB, and 22iB having the most attractive CNS
xLogP values (2.07−3.01). Analogs 22fC, 22gB, 22hC, and
22iC displayed high human and rat predicted hepatic clearance
(CLhep) based on microsomal CLint data (human CLhep > 15
mL/min/kg; rat CLhep > 46 mL/min/kg); however, analogs
22gA and 22iB were predicted to have moderate human and
rat hepatic clearance (human CLhep of 7 and 14 mL/min/kg,
rat CLhep of 38 and 27 mL/min/kg, respectively). Interestingly,
22hB was predicted to have moderate rat hepatic clearance
(CLhep = 27 mL/min/kg) but high human hepatic clearance
(CLhep = 19 mL/min/kg). Analog 22iA provided the best
predicted hepatic clearance profile, with low human (CLhep = 6
mL/min/kg) and moderate rat (CLhep = 28 mL/min/kg)
clearances.
Of the compounds tested, only 22gB displayed high protein

binding to human plasma with unbound fraction ( f u,plasma) <
0.01. Conversely, the best human plasma binding profiles
belonged to compounds 22hB and 22iA-C ( f u,plasma > 0.04).
Analogs 22fC, 22gA, and 22gB were highly bound to rat brain
homogenates ( fu,brain < 0.01) and were determined to possibly
be unstable in rat plasma. By contrast, compounds 22hB
( f u,brain = 0.029), 22hC ( f u,brain = 0.021), and 22iA-C ( fu,brain =
0.012−0.014) were moderately bound to rat brain homoge-
nates. Although 22hC was determined to potentially be
unstable in rat plasma, analogs 22hB and 22iA-C displayed a
high free fraction in rat plasma ( f u,plasma’s > 0.04). All analogs
tested were determined to have excellent CNS penetration (rat
brain:plasma Kp ≥ 1.0); however, compound 22iA displayed
the best CNS distribution of unbound drug (Kp,uu = 0.34). The
moderate CNS distribution of unbound drug of VU6043653 is
likely due to moderate binding to brain homogenate ( f u,brain =
0.012). VU6043653 (22iA) gave the best overall DMPK
profile and was selected for further characterization.

When evaluated for a full mGlu selectivity profile in
functional assays, VU6043653 (22iA) displayed high subtype
selectivity across the mGlu receptors (mGlu1, mGlu2, mGlu4,
mGlu7, and Glu8 = inactive; mGlu3 > 10 μM) (Table 3).

Additionally, VU6043653 displayed an excellent cytochrome
(CYP) P450 inhibition profile, with IC50’s ≥ 30 μM across all
isoforms tested (1A2, 2D6, 2C9, and 3A4). Highlighted in
Table 4 are the in vivo rat PK parameters. VU6043653
displayed 40% oral bioavailability at a 10 mg/kg dose and
moderate plasma clearance (41 mL/min/kg) in rats. The
volume of distribution was moderate (2.0 L/kg), indicating
minimal tissue binding, and elimination t1/2 was ∼45 min.
With promising rat PK in hand, VU6043653 was progressed
into higher species in vivo PK studies (Table 4). VU6043653
displayed moderate oral bioavailability (20% at a 3 mg/kg
dose) in dogs; however, suprahepatic plasma clearance (38
mL/min/kg) halted further progress toward clinical candidate
status.
Nonetheless, as a non-aryl/heterobiaryl acetylene mGlu5

NAM with an encouraging in vivo rodent PK profile, we
wished to further assess VU6043653 as a novel chemotype.
Therefore, we compared metabolites in multiple species to
better understand species differences in clearance and
metabolism. These metabolism experiments, utilizing cryopre-
served hepatocytes, identified amide hydrolysis as a major
metabolite across all species tested (rats, dogs cynomolgus
monkeys, and humans). Consistent with the high plasma
clearance observed in dogs, high turnover was observed more
so in dog hepatocytes than any other species tested (see the
Supporting Information for additional details and results). To
further evaluate our novel chemotype, the off-target and
safety/toxicity profiles for this compound were further
investigated. An ancillary pharmacology screen (Eurofins
Panlabs)38 revealed both Adenosine A3 and Androgen
receptors as potential off-target liabilities (≥70% inhibition at
10 μM) (see the Supporting Information for the full ancillary
pharmacology profile).
In conclusion, we have established that 5-membered

heterocycles are able to serve as competent isosteres for the
metabolically labile pyrimidine of clinical candidate
VU0424238 (10) and predecessor compounds 11. Of analogs
assessed, VU6043653 (22iA) displayed the best overall PK
profile, with low human predicted hepatic clearance (CLhep = 6

Table 3. Further In Vitro Characterization of VU6043653
(21iA)

Metabotropic Glutamate Selectivity

IC50 (nM) [%GluMin]

human mGlu1
a inactive

human mGlu2
b inactive

human mGlu3
b >10,000 [58]

human mGlu4
a inactive

human mGlu7
a inactive

human mGlu8
a inactive

P450 Inhibition IC50 (μM)c

1A2 2D6 2C9 3A4

>30 >30 >30 >30
aCalcium mobilization assay. bG-protein-gated inwardly rectifying
potassium channel (GIRK) assay. cAssay performed in pooled human
liver microsomes (HLM) in the presence of NADPH with CYP-
specific probe substrates.
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mL/min/kg), favorable rat and human plasma protein binding
( f u,plasma = 0.059), and high brain penetration (Kp = 1.68; Kp,uu
= 0.34). VU6043653 displayed high selectivity for mGlu5 over
all other mGlu receptors evaluated (mGlu1−4 and mGlu7−8)
and provided an improved CYP inhibition profile (CYP 2C9,
2D6, 3A4 IC50’s ≥ 30 μM) when compared to predecessor
compounds 11. In fact, VU6043653 addressed many other
challenges associated with compounds 11, such as high
predicted human CLhep, poor f u, and DAT inhibition.
However, VU6043653 did not progress forward due to its
moderate potency in inhibiting human mGlu5 as well as poor
higher species PK. Although this exercise did not provide
mGlu5 NAMs with suitable DMPK profiles to warrant further
advancement, it did highlight SAR insights for future scaffold
designs. These refinements will be reported in due course.
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