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A B S T R A C T

Spatial disorientation is an early symptom of Alzheimer’s disease (AD). Detecting this impairment effectively in animal models can provide valuable 
insights into the disease and reduce experimental burdens. We have developed a markerless motion analysis system (MMAS) using deep learning 
techniques for the Morris water maze test. This system allows for precise analysis of behaviors and body movements from video recordings. Using 
the MMAS, we identified unilateral head-turning and tail-wagging preferences in AD mice, which distinguished them from wild-type mice with 
greater accuracy than traditional behavioral parameters. Furthermore, the cumulative turning and wagging angles were linearly correlated with 
escape latency and cognitive scores, demonstrating comparable effectiveness in differentiating AD mice. These findings underscore the potential of 
motion analysis as an advanced method for improving the effectiveness, sensitivity, and interpretability of AD mouse identification, ultimately 
aiding in disease diagnosis and drug development.

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that can lead to dementia, affecting over 55 million people 
globally. This widespread impact has heightened the focus on understanding the disease, early diagnosis, and drug development [1–3]. 
Spatial disorientation and navigation impairments are among the earliest symptoms of AD and can serve as early diagnostic indicators 
[4,5]. In rodent models, particularly rats and mice, the Morris water maze (MWM) is a widely used behavioral test to evaluate spatial 
learning and memory in neurodegenerative diseases, especially AD [6,7]. Developed by Richard G. Morris in 1981, the test involves a 
circular pool filled with opaque water, where animals must swim to find a hidden platform [8]. The rodents learn to use distal and 
proximal cues to locate the submerged escape platform and navigate directly to it. Spatial learning is assessed through repeated trials, 
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while reference memory is evaluated based on performance in the platform area when the platform is absent. This test is routinely 
employed in studies to investigate disease pathogenesis and progression, as well as to evaluate the efficacy of therapeutic interventions 
[8–10].

With advancements in high-speed video equipment, scientists can now record extensive datasets of animal behavior in exquisite 
detail during MWM tests. Commercial software such as Smart 3.0, Ethovision (Noldus), AnyMaze (Stoelting Co.), and Top Scan 
(CleverSys Inc.) are widely used in laboratories to assist with basic mouse tracking and behavior analysis [11]. In recent decades, deep 
learning-based pose estimation algorithms have significantly advanced markerless human motion analysis. This burgeoning technique 
allows for the simultaneous tracking of multiple body parts with high accuracy, elevating behavioral analysis to a more detailed 
level—motion analysis. Several studies have successfully applied human pose estimation to screen neurological disorders such as AD 
and Parkinson’s disease (PD) [12–14]. Concurrently, various well-designed neural networks have been developed for mouse pose 
estimation [15–17]. These efforts have been applied to mouse behavior and gait analysis in open-field tests for deficit detection, 
enabling a more detailed understanding and differentiation of movement patterns [18–20]. However, this advanced technique has not 
been well applied in the MWM swimming conditions, a crucial experiment for understanding behavior and developing drugs for AD 
[21,22]. To address this gap, we developed a markerless motion analysis system (MMAS). This system enables accurate and automatic 
detection of the environment and seven distinct body parts, along with a detailed analysis of mouse behaviors and body movements 
from video recordings. Consequently, it has the potential to enhance the efficiency, sensitivity, and interpretability of behavioral 
studies in neurological disorders research, compared to current rudimentary tracking methods [11,23].

The performance in MWM is traditionally quantified using parameters such as latency to reach the platform, average speed, average 
distance from the platform, and swimming distance. While these behavioral parameters provide an overall picture of memory per
formance, they do not elucidate how an animal solves a spatial task [6,24,25]. Treating the entire body as a single point fails to capture 
the complexity of searching and swimming behaviors, resulting in a lack of interpretability and robustness. Neurological impairments 
are expected to directly influence decision-making and movement at every moment, accumulating over time to create behavioral 
variance. Therefore, motion analysis is anticipated to offer higher sensitivity to spatial disorientations and cognitive deficits. Addi
tionally, functional disturbances such as gait and balance issues are common symptoms observed in AD patients [26–28]. Impaired 
motor abilities in AD mice have been linked to the development of AD-related pathology, including intraneuronal amyloid-β accu
mulation, extracellular plaques, increasing myelopathy, and axonal damage in the spinal cord [29–31]. Although immobility and 
swimming speed are commonly used as control parameters in the MWM test [8], the relationship between motor deficits and cognitive 
performance in the MWM test requires further exploration. It is crucial to understand how abnormal movements and decisions are 
made at every moment and how they ultimately lead to behavioral disorders.

2. Results

Our posture and motion analysis method, named MMAS, comprises several modular components. At its core, MMAS utilizes a deep 
convolutional neural network trained for mouse pose estimation and environment detection in MWM videos. This network identifies 
12 two-dimensional markers, or “key points,” representing mouse anatomical locations and environmental landmarks, as illustrated in 
Fig. 1. For each video frame, the mouse’s pose and spatial location are detailed. Additionally, we have developed downstream 
components capable of processing key point time series, determining start and end times, and calculating behavioral and motion 
parameters. MMAS significantly enhances our ability to perform automatic statistical comparisons on large datasets across various 
parameters.

Fig. 1. Diagram of key point detection and the corresponding visualized results. (a) Diagram illustrating the seven critical points of mouse posture 
and the five essential environmental points in MMAS. The body parts included the nose, left ear, right ear, body center, tail base, mid-tail, and tail 
tip (points 1–7 in order). The environmental points included the center of the platform (point 14) and four start locations of NW, N, E and SE (points 
10–13 in order). The head turning angle (HTA) was defined as the angle created by the nose’s position before and after the movement, measured 
between points 1 and 8, with reference to the butt at point 5. The tail wagging angle (TWA) was similarly defined by the positions of the butt (point 
5) and the tail tip before and after the movement (points 7 and 9). The division into four quadrants—TQ, SecQ, ThirQ, and FourQ—on the sixth 
testing day was defined as illustrated. (b) The tracking results visualized in our experimental videos.
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2.1. Pose estimation and environment detection

A total of 27 wild-type (WT) mice (12 males and 15 females) and 20 AD mice (11 males and 9 females) were included in this study. 
Following five days of training and a sixth day of testing, approximately 1000 experimental videos were recorded at a resolution of 640 
× 480 pixels and a frame rate of 30 fps. We automatically extracted 1500 keyframes using k-means clustering for the dataset, which 
were then manually labeled by an experienced researcher. As illustrated in Fig. 1(a), each frame included 12 key points to capture the 
mouse’s pose and environment: 7 key points on the mouse (nose, left ear, right ear, body center, tail base, mid-tail, and tail tip) and 5 
key points on the water tank (center of the platform and the four start locations: NW, N, E, and SE).

The deep convolutional neural network was trained on the DeepLabCut platform, utilizing 95 % of the data as the training set, with 
Resnet_50 as the backbone and applying image augmentations [15]. The cross-entropy loss values during training rapidly converged 
from 0.0341 to 0.0038 after 100,000 iterations and stabilized around 0.0020 after 500,000 iterations (Fig. 2(a)), indicating an effective 
training process. In model evaluation, the mean training error and test error were 2.37 and 2.25 pixels, respectively, with the mean test 
errors for all key points being less than 3 pixels (Fig. 2(b)). The likelihood distribution of key point estimations is shown in Fig. 2 (C), 
with only 6 out of 18,000 key points having a likelihood lower than 0.95. The mean likelihood for all key points exceeded 0.999. A 
visualized demo of key point estimation in our data is presented in Fig. 1(b). These results demonstrate the successful training and 
accurate tracking capability of MMAS, enabling its use for further analysis.

2.2. Behavior analysis

In the MMAS, automatic analysis of mouse motion was accomplished by further processing the trajectories of key points in each 
trial, combined with prior knowledge of the water tank. MMAS compared escape latency, cognitive score, and swimming speed across 
the five training days between the 5xFAD and WT mice (Fig. 3(a)–c). Escape latency, defined as the duration between the starting and 
stopping points, was automatically detected by the dropping and landing of the mice. The curves generated by MMAS closely matched 
those from the commercial video tracking software Smart 3.0 (Panlab, Harvard Apparatus, Cambridge, MA, USA) (p = 0.4251). Both 
analysis methods indicated a significant increase in escape latency in 5xFAD mice on the 2nd and 5th training days (Fig. 3(a, p) values 
were 0.0027 and 0.0034).

The cognitive score, reflecting an animal’s ‘spatial IQ’, was automatically quantified by Pathfinder to determine the strategy used 
by mice in the MWM. Mouse path/search strategies for the platform were categorized as hippocampus-dependent or non- 
hippocampus-dependent. Strategies involving spatial searching, such as a ‘direct path’, resulted in a high cognitive score, while 
non-spatial strategies, such as a ‘random search’, resulted in a low cognitive score [6,32,33] (ranking details are described in the 
methods section). Compared to WT mice, 5xFAD mice showed a significant decrease in cognitive scores on the 2nd and 5th training 
days (Fig. 3(b, p) values were 0.0406 and 0.0117, respectively). WT mice preferred high-score search strategies, whereas AD mice 
scored lower. The cognitive score exhibited an inverse relationship with escape latency. These results demonstrated impaired navi
gation in AD mice, as they favored non-spatial search strategies and took longer to find the platform. This situation did not improve as 
significantly as it did in WT mice after training.

Swimming speed was calculated by dividing the cumulative distance of the body center by the escape latency. There were no 

Fig. 2. Evaluation of the deep learning model. (a) Cross-entropy loss values during training, along with training and testing errors after training. (b) 
Test errors of each body part and environmental landmark, measured in pixels, and presented as averages with standard errors. (c) Likelihood 
distribution of all individual data points, represented in different colors. The dashed orange line indicates the 95 % confidence threshold for key 
point detection. Most points are clustered above this line. The mean values for each key point, shown at the bottom as percentages, all exceed 
99.9 %.

Y. Liang et al.                                                                                                                                                                                                           Heliyon 10 (2024) e39353 

3 



significant differences between the two groups during the training period (Fig. 3(c)), ruling out swimming ability as a factor influ
encing escape latency.

On the sixth testing day, the time mice spent in each quadrant was recorded. WT mice spent significantly more time in the target 
quadrant (TQ) than in other quadrants (p values were 0.0316, 0.0189, and 0.0043 in SecQ, FourQ, and ThirQ, respectively), indicating 
better memory of the platform location and training outcomes. In contrast, AD mice spent time evenly across all quadrants with no 
significant differences, indicating poor memory and navigation ability. These three classic parameters evaluated by MMAS robustly 
validate the poorer performance in spatial learning, navigation, and memory of AD mice.

2.3. Motion analysis

These behavioral parameters reflected the overall poorer performance of the AD mice in the MWM test, resulting from abnormal 
movements and decisions at every moment. Understanding these abnormalities—both in motion and decision-making—and their 
impact on behavioral disorders was crucial, as they were directly influenced by neurological impairment and could provide more 
sensitive indicators for AD diagnosis.

Fig. 3. Evaluation of different parameters in training and testing days. (a) Comparison of escape latency between MMAS and Smart 3.0. The solid 
lines denoted results from MMAS and the dashed lines represented the results from the Smart 3.0 system. A paired t-test suggested no significant 
difference. (a-c, e-h) Comparison of escape latency, cognitive score, swimming speed, HTA, TWA, UHTA and UTWA by MMAS between 5xFAD (red) 
and WT (black) mice across five training days. Data presented as mean ± SEM, n = 27 for WT and 20 for 5xFAD. An unpaired t-test was performed 
each day between two groups of mice. (d) Time that 5xFAD and WT mice spent respectively in four quadrants on the sixth testing day. A paired t-test 
was applied to compare the time difference that mice swam in the TQ to the other three quadrants. For all statistical analysis: *p < 0.05, **p < 0.01, 
***p < 0.001. More details of individual data points can be found in Supplementray Fig. 1.
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We proposed the head turning angle (HTA) and tail wagging angle (TWA) as metrics for motion analysis. These cumulative pa
rameters indicated the extent of rotation a mouse exhibits during a trial, without considering the direction of rotation. HTA was 
defined as the angular movement of the nose, while TWA represented the angular movement of the tail (Fig. 1(a)). Both HTA and TWA 
exhibited a decreasing trend across five training days in both AD and WT mice. Significant differences were noted on the second and 
fifth days, correlating with escape latency and cognitive scores (HTA: p = 0.0015 and 0.0004; TWA: p = 0.0652 and 0.0002). This 
suggested that the abnormal angular movements contributed to the longer escape latencies and lower cognitive scores observed in AD 
mice.

We also introduced two additional parameters: unilateral head turning angle (UHTA) and unilateral tail wagging angle (UTWA). 
These parameters captured the cumulative vectors reflecting the extent of rotation in a specific direction during a trial, calculated as 
the absolute difference between clockwise and counterclockwise angles. Unlike the previously mentioned parameters, UHTA and 
UTWA (Fig. 3(g and h)) did not show a trend across the two groups, although a notable difference between the curves was observed, 
indicating a potential intrinsic preference for unilateral turning in AD versus WT mice. Significant differences were identified not only 
on the second and fifth training days but also on the third training day, with higher confidence (UHTA: p = 0.0003, 0.0001, and 
0.0011; UTWA: p = 0.0025, 0.0004, and 0.0005). This suggested that these parameters were more sensitive in distinguishing between 
AD and WT mice across multiple experimental days.

2.4. Further evidence of abnormal motion performance

To further validate the relationship between the proposed angular parameters and classic behavioral metrics, we conducted cor
relation and linear regression analyses. The confusion matrix in Fig. 4 (c) revealed a strong correlation among escape latency, HTA, and 
TWA, all showing statistical significance. Conversely, the cognitive score demonstrated a negative correlation with these parameters. 
Linear regression results in Fig. 3(b–e) indicated a linear relationship between HTA and escape latency, TWA and escape latency, HTA 
and cognitive score, and TWA and cognitive score (p < 0.0001 for all). Data distribution confirmed that AD mice exhibited larger 
escape latencies, HTA, and TWA, along with lower cognitive scores. This strong correlation and linear regression provided compelling 
evidence that abnormal angular movements contribute to longer escape latencies and lower cognitive scores in AD mice. Detailed 
correlations for each experimental day can be found in Supplementary Fig. 2.

Changes in UHTA and UTWA during swimming were plotted in Fig. 5, including data from all trials of AD and WT mice, averages, 
and daily changes. Linear regression was applied to each trial, using the coefficient of determination to assess curve fluctuations. The 

Fig. 4. Correlation and linear regression of HTA, TWA, escape latency and cognitive scores. (a-b, d-e) Linear regression results of HTA and escape 
latency, TWA and escape latency, HTA and cognitive score as well as TWA and cognitive score between AD (pink) and WT (grey) mice. Each dot 
denoted individual data point. The line of regression was plotted too. (c) Confusion matrix among cognitive score, escape latency, HTA and TWA. 
Different colors and numbers in the cells denoted the positive/negative correlation and coefficients of two parameters. For all statistical results: 
****p < 0.0001.
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Fig. 5. UHTA and UTWA changes of AD or WT mice during swimming. The horizontal axis was percentage of swimming time, which were 
normalized from putting the mice into the water tank to finding the platform or the time was up. The curves were taken negative values when the 
last value was negative to make sure the final unilateral angles were positive. (a, b) Angular changes in all trials. Each red line denoted one AD 
mouse. And black lines were for WT mice. (c, d) The average (solid line) and standard error (area). Red and black denoted AD and WT mice 
respectively. The mean R2 from linear regression of all the trials were noted in the corresponding color next to the AD or WT curves. (e–h) Angular 
changes in five training days. Solid lines denoted the average and areas in the same color denoted the corresponding standard error. Mean R2 and 
curves on each day were presented in five colors as shown in the legend.
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distribution of UHTA and UTWA in Fig. 5(a, b) indicated that AD mice had steeper slopes, while WT mice displayed smaller fluctu
ations. Average values in Fig. 5(c, d) further supported this finding, with AD mice showing a higher mean R2 than WT mice, suggesting 
better linear fitting and less deviation. In essence, AD mice exhibited a preference for continuous unilateral turning and wagging. 
Consistent results were observed across daily performances, as shown in Fig. 5(e–h), where both UHTA and UTWA revealed higher 
slopes and greater mean R2 for AD mice, highlighting a prevalent unilateral movement preference as a significant distinction in AD 
mice.

3. Discussions

Spatial disorientation and navigation impairments are among the earliest indicators leading to an Alzheimer’s disease (AD) 
diagnosis, supported by substantial evidence [4,32]. Classic behavioral parameters—such as escape latency, search strategies, and 
cognitive scores—have been extensively utilized in Morris Water Maze (MWM) tests to identify these deficits [25,33]. With ad
vancements in deep learning, automatic pose estimation and motion analysis for swimming mice can be realized, enabling a deeper 
understanding of how AD impacts motion and subsequently leads to behavioral changes.

The rapid convergence of training loss indicates that our model effectively captures patterns and reduces errors between predicted 
and actual values, demonstrating the appropriateness of key point selection. In both the training and testing sets, evaluation errors 
were only 0.30 % and 0.48 % of the image resolution, respectively. And the test errors are evenly distributed on each key point with a 
very high likelihood, suggesting that the model is not overfitted and possesses strong tracking capabilities for multiple body parts. This 
accuracy enables the implementation of our automated system for further analysis. Notably, when compared to the commercial Smart 
3.0 system in terms of escape latency, no significant differences were found, underscoring the precision and reliability of our auto
mated approach.

Importantly, we observed no significant difference in swimming speed between the two groups, ruling out swimming ability as a 
factor influencing escape latency. The reduction in time taken to locate the platform over successive training days indicates that both 
groups were learning to escape. However, the AD group exhibited a slower rate of improvement compared to the WT group, suggesting 
deficits in spatial learning ability. Furthermore, cognitive scores revealed that WT mice employed high-scoring search strategies, 
predominantly spatial strategies that rely on hippocampal function, while AD mice demonstrated lower scores. These findings 
highlight the navigation impairments in AD mice, who tended to favor non-spatial and non-hippocampal-dependent strategies, with 
little improvement observed after training. On the sixth testing day, results further confirmed memory impairments in AD mice. WT 
mice spent significantly more time in the target quadrant (TQ) compared to other quadrants, indicating superior recall of the plat
form’s location and training outcomes. In contrast, AD mice exhibited an even distribution of time spent across all quadrants, reflecting 
poor memory and navigation abilities. Collectively, these three classic parameters robustly validate the spatial learning, navigation, 
and memory impairments observed in the AD group.

These behavioral parameters reflect the overall poorer performance of AD mice in the Morris Water Maze (MWM) test, resulting 
from abnormal movements and decision-making at every moment. Understanding these abnormal motions and decisions is crucial, as 
they are directly influenced by neurological impairment and could serve as sensitive indicators for AD diagnosis. The results for head 
turning angle (HTA) and tail wagging angle (TWA) indicate that AD mice exhibited larger angular movements and a slower decrease in 
both metrics over five training days. Notably, significant differences in the WT group were observed on the second and third days, 
correlating with escape latency and cognitive scores. This suggests that abnormal angular movements may contribute to the longer 
escape latencies and lower cognitive scores observed in AD mice, as well-targeted mice navigate more directly to their goals with 
minimal turns, requiring good spatial memory and path-planning capabilities.

Further analysis of unilateral head turning angle (UHTA) and unilateral tail wagging angle (UTWA) reveals that AD mice are more 
prone to unilateral rotations, suggesting a tendency to spin aimlessly in small circles, indicative of spatial disorientation. This inef
ficient strategy reflects reduced exploration and searching capabilities. In contrast, bilateral turning and larger radius turns can cover 
more area, facilitating platform discovery. While the differences between UHTA and UTWA curves are clear, they do not show a 
consistent upward or downward trend after training, suggesting these metrics might represent intrinsic differences between AD and 
WT mice. The consistent preference for unilateral turning among AD mice, evidenced by less fluctuation in their curves, highlights a 
behavioral pattern potentially linked to neurological impairments. This aimless swimming could result from an inability to effectively 
organize search routes. An alternative interpretation could involve a left-right imbalance in AD mice, supported by reports of balance 
dysfunction in AD models, as indicated by their poorer performance in balance tasks [29,30,34,35]. While our 6-month-old AD mice 
may not show significant deficits in swimming speed, balance impairments could lead to altered swimming trajectories and 
UHTA/UTWA values, causing a tendency to swim toward the imbalanced side. Both interpretations converge on the conclusion that 
the increased UHTA and UTWA in AD mice are consistent with neurological impairments linked to behavioral disorders. Importantly, 
these parameters demonstrated greater sensitivity in distinguishing AD from WT mice, with significant differences noted not only on 
the second and fifth training days but also on the third day with high confidence. The lack of clear trends across days suggests that these 
metrics can effectively differentiate between the two groups with fewer experimental trials. The potential of these parameters as 
indicators for drug testing and early AD diagnosis is substantial.

In summary, we developed a modular motion analysis system for detecting spatial disorientation in the MWM test using deep 
learning, achieving comparable accuracy to commercial software while excelling in multi-body part analysis. This system revealed that 
the spatial searching impairment in AD mice led to aimless turning decisions, resulting in increased steering and unilateral turning 
angles, ultimately worsening behavioral performance. The motion curves further illustrated that these deficits consistently affected 
turning movements and decision-making during swimming. Moreover, the sensitivity of these angular parameters in detecting 
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differences without requiring extended MWM testing holds promise for efficient evaluation of preclinical drug effects in Alzheimer’s 
and other neurological disorders.

4. Limitations of the study

Several limitations should be addressed in future research. First, increasing the sample size could yield more robust insights into 
cognitive domains related to identification. Second, enhancing the diversity of the dataset is essential; this could involve including AD 
mice from various strains, ages, genetic mutations, and medical interventions, which would broaden the generalizability of our 
findings. Third, incorporating biological tests alongside motion analysis could enhance the completeness and interpretability of the 
evidence. Finally, utilizing close-up and lateral camera recordings to track and analyze the movement of the mice’s paws during 
swimming could provide additional evidence and insights into the observed unidirectional rotation preference.

5. Method details

5.1. AD mice

In this study, we used transgenic 5xFAD mice models, obtained from Jackson Laboratory (stock no: 34848), which do not carry the 
retina degeneration allele Pde6brd1. These 5xFAD transgenic mice overexpress familial Alzheimer’s disease mutations of human APP 
(695) with the Swedish (K670N/M671L), Florida (I716V), and London (V717I) mutations, as well as human PS1 with two FAD 
mutations, M146L and L286V. To maintain the colony, C57BL/6J mice were purchased from the Laboratory Animal Unit (LAU) of the 
University of Hong Kong and bred with 5xFAD mice. Both hemizygous 5xFAD mice and non-transgenic wild-type littermates were 
used. The mice were housed in groups of no more than four per cage and kept on a 12-h light/12-h dark cycle, with all experiments 
conducted during the light phase. All procedures, including handling, were performed in accordance with the National Institutes of 
Health guide for the care and use of laboratory animals and the Animals (Control of Experiments) Ordinance, Hong Kong, China. The 
Committee on the Use of Live Animals in Teaching and Research of the University of Hong Kong (CULATR, no: 5724-21) approved all 
animal work. Efforts were made to minimize the number of animals used and their suffering. This study included a total of 27 wild-type 
(WT) mice and 20 5xFAD mice, all aged 6 months.

5.2. Morris water maze

Spatial learning and memory were evaluated using the MWM following the established protocol [8]. The MWM was conducted in a 
circular pool with a diameter of 90 cm and a height of 60 cm, filled with white opaque water maintained at approximately 22 ◦C. 
Reference cues of various colors and shapes were placed along the walls surrounding the pool. During the initial training phase, a 
platform (10 cm in diameter) was positioned in a target quadrant, submerged 1 cm below the water surface. Two days prior to the 
commencement of behavioral studies, the mice were acclimated to the environment and handling procedures. Mice were removed 
from the cage rack, placed on the lab bench, and handled by grasping the tail for no more than 5 s each time, allowing them to 
acclimate over two consecutive days.

During the trials, mice were placed into the tank facing the side wall and near the edge at one of four randomly chosen points. They 
were given 60 s to locate the platform, and if unsuccessful, were gently guided to it. Mice were allowed to remain on the platform for 
15 s for training purposes. Four trials were conducted daily with a 1-h intertrial interval. Between trials, mice were gently dried and 
warmed on a heating pad. The training phase lasted for 5 days, with videos recorded for subsequent analysis. The escape latency for 
mice that failed to find the platform was recorded as 60 s. On the sixth day, the platform was removed, and the mice were placed in the 
pool from the opposite side of the previous platform location. The number of crossings over the former platform area was recorded. On 
average, around 20 min of video footage was recorded for each mouse.

5.3. Pose estimation and environment detection

Pose estimation and environment detection in MMAS were achieved simultaneously by training a deep neural network using 
DeepLabCut [15]. An experienced researcher manually labeled 1500 images of swimming mice, with 95 % of the dataset used for 
training and the remaining 5 % for testing. These images were keyframes automatically extracted from experimental videos using the 
k-means algorithm. In each frame, seven key points were labeled on the mouse: the nose, left ear, right ear, body center, tail base, 
mid-tail, and tail tip. Additionally, five markers were labeled on the water tank, including the center of the platform and four start 
locations (NW, N, E, and SE) (Fig. 1). We utilized Resnet_50 as the network backbone and trained the model over 500,000 iterations 
with image augmentation. Post-training, the model was evaluated and selected based on minimum pixel errors in both the training and 
testing sets. This model was then used to analyze each experimental video to identify key points in every frame. The test error for each 
key point and the likelihood of key point estimation were also taken into account.

To validate MMAS, the experimental videos were also processed using the commercial video tracking software Smart v3.0 (Panlab, 
Harvard Apparatus, Cambridge, MA, USA) according to the manual’s instructions. For each video, the size and location of the water 
tank and platform, as well as the start and end times, were manually labeled based on the setup for each trial. Additionally, the body 
center of each mouse was manually labeled in the videos.
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5.4. Behavior and motion analysis

In MMAS, automatic mouse motion analysis was achieved by further processing the trajectories of key points in each trial, utilizing 
prior knowledge of the water tank. The coordinates of key points on the water tank were finalized using median values. The diameter of 
the water tank, measured as the distance between SE and NW, was 90 cm, allowing all measurements to be analyzed on a physical 
scale.

To calculate escape latency in MMAS, the starting and ending points of the swimming were first manually set in Smart 3.0. The 
footage of placing the mice in the water tank was often recorded, but hand occlusion frequently caused incorrect detection and sig
nificant errors. To automate this process, we filtered the starting frames where the body center’s speed exceeded 30 cm/s, determining 
the starting moment based on statistical calculations of our mice’s swimming speed and relevant reports. The ending moment was 
identified when the body center entered the platform area with a diameter of 10 cm, and escape latency was defined as the duration 
between these two time points. This classic parameter was also compared with results from Smart 3.0 for validation. Swimming speed 
was then calculated by dividing the cumulative distance traveled by the body center by the escape latency. On the sixth testing day, the 
water tank was divided into four quadrants: the target quadrant (TQ) with the platform at its center, the second and third quadrants 
(SecQ and ThirQ) adjacent to TQ, and the fourth quadrant (FourQ) opposite TQ (Fig. 1(a)). The cumulative time each mouse spent in 
each quadrant was also calculated.

Spatial navigation search strategies were estimated using the open-source software Pathfinder [32]. The spatial parameters were 
adjusted according to our experimental setup: goal position [x/y] based on the coordinates of the platform center in each trial; goal 
diameter: 10 cm; maze diameter: 90 cm; maze center [x/y] based on the coordinates of the midpoints of SE and NW in each trial; 
angular corridor width: 40◦; chaining annulus width: 15 cm; and thigmotaxis zone size: 10 cm. The output included eight different 
search strategies, each corresponding to different cognitive scores: direct path = 6; directed search = 5; focal search = 4; indirect 
search = 4; chaining = 3; scanning = 2; random search = 1; and thigmotaxis = 0 [6,33]. The daily cognitive scores for each mouse were 
calculated as the average of multiple experiments per day. The final cognitive score for each day was averaged across all the mice.

HTA and TWA were cumulative metrics that measured the extent of rotation in a single trial, without considering the rotation 
direction. As shown in Fig. 1(a), HTA was defined as the angle formed by the nose before and after movement, relative to the butt. 
Similarly, TWA was defined by the angles at the butt and tail tip before and after movement. UHTA and UTWA were cumulative vectors 
indicating the extent of rotation in a specific direction during a trial. These were calculated as the absolute difference between 
clockwise and counterclockwise rotation angles. Changes in UHTA and UTWA during swimming were plotted, including all trials for 
both AD and WT mice, as well as daily averages and changes in Fig. 3. The horizontal axis represented the percentage of swimming 
time, normalized from the moment the mice were placed in the water tank until they found the platform or the time expired in Fig. 4. 
The curves were adjusted to ensure the final unilateral angles were positive, with negative values taken when the last value was 
negative as shown in Fig. 5.

5.5. Statistical analysis

Statistical analyses and plotting were conducted using GraphPad Prism 9.00 and MATLAB R2018a. A paired t-test was used to 
analyze the escape latency results from MMAS and Smart 3.0. During the first five training days, an unpaired t-test compared the 
differences between WT and AD mice each day. On the sixth testing day, a paired t-test compared the time mice spent swimming in the 
target quadrant (TQ) versus the other three quadrants. For escape latency, cognitive score, HTA, and TWA, Pearson correlation was 
initially applied, followed by linear regression on HTA and TWA-related parameters. Significance levels were defined as follows: ****p 
< 0.0001, ***p < 0.001, **p < 0.01, and * p < 0.05. Linear regression was also applied to each trial of UHTA or UTWA changes during 
swimming, with the coefficient of determination used to estimate the fluctuation of each curve.
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