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Skin cancer is a growing global concern, with cases steadily rising. Typically, malignant moles are 
identified through visual inspection, using dermatoscopy and patient history. Active thermogra-
phy has emerged as an effective method to distinguish between malignant and benign lesions. Our 
previous research showed that spatio-temporal features can be extracted from suspicious lesions 
to accurately determine malignancy, which was applied in a distance-based classifier.
In this study, we build on that foundation by introducing a set of novel spatial and temporal 
features that enhance classification accuracy and can be integrated into any machine learning 
approach. These features were implemented in a support-vector machine classifier to detect ma-
lignancy. Notably, our method addresses a common limitation in existing approaches—manual 
lesion selection—by automating the process using a U-Net convolutional neural network.
We validated our system by comparing U-Net’s performance with expert dermatologist segmen-
tations, achieving a 17% improvement in the Jaccard index over a semi-automatic algorithm. 
The detection algorithm relies on accurate lesion segmentation, and its performance was evalu-
ated across four segmentation techniques. At an 85% sensitivity threshold, expert segmentation 
provided the highest specificity at 87.62%, while non-expert and U-Net segmentations achieved 
comparable results of 69.63% and 68.80%, respectively. Semi-automatic segmentation lagged be-
hind at 64.45%. This automated detection system performs comparably to high-accuracy methods 
while offering a more standardized and efficient solution. The proposed automatic system achieves 
3% higher accuracy compared to the ResNet152V2 network when processing low-quality images 
obtained in a clinical setting.

1. Introduction

Skin cancer is considered the most common type of cancer, and its early detection is quite relevant, since it has a direct impact 
on the decrease in mortality rates [1]. Moreover, early detection provides the additional benefit of requiring less aggressive and 
lower-cost therapies [2]. It is estimated that globally in 2018, 1.28 million new cases of skin cancer were diagnosed, with 1 million 
corresponding to non-melanoma skin cancer and 280,000 to Malignant Melanoma (MM), which are associated with 65,000 and 
60,000 deaths, respectively [3].

Improving the detection rate along with the use of drugs such as viniferin [4] and simvastatin [5] is important to reduce the 
mortality rate from this disease.
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Currently, skin cancer is diagnosed by anatomical pathology analysis of the biopsy of each suspicious lesion, normally indicated by 
a dermatologist. Typically, a suspicious lesion is analyzed by a dermatologist by performing visual inspection based on Asymmetry, 
Border, Color, Diameter and Evolution over time using the ABCDE rule [6]. In addition, the specialist considered the patient’s medical 
history and other factors to determine if the lesion was probably cancerous and referred the patient for biopsy.

Biopsy is a surgical intervention; therefore, it is an invasive and expensive procedure. Normally, there is a waiting list for pa-
tients requiring biopsy because of the limited availability of both specialized professionals and resources. Moreover, several patients 
are referred for biopsy solely because the practitioner may want to avoid false-negative identification of some lesions [7]. Several 
technological approaches have been developed to optimize resources and minimize the number of patients for whom biopsies can be 
avoided. These technologies include dermoscopy [8], developments based on thermography [9–15], visible image analysis systems 
[16–21], ultrasound-based tools [22–24], and multispectral digital skin lesion analysis [25].

Dermoscopy is commonly performed by dermatologists. This technique enables better visualization of the spatial patterns and 
structures of lesions. When compared with naked-eye evaluation, it increases the sensitivity from 71% to 90% and the specificity 
from 81% to 90%. Moreover, dermoscopy decreases the biopsy ratio from 15:1 (1 of 15 exams corresponds to MM, while the others 
are benign lesions) to 5:1 [3]. A key drawback is that specialists require years of training to achieve this performance. Motivated by 
the importance of improving diagnosis, several tools have been developed based on visible image analysis and infrared thermography 
(IRT).

Technologies that analyze visible images have been of great interest to the scientific community in recent years. Various systems 
have been developed to assist in the diagnosis of skin cancer using machine learning techniques, such as support vector machines, 
artificial neural networks, and K-nearest neighbors [26]. Currently, deep learning techniques are the most commonly used because 
of the successful processing of visible-range images. There are different deep learning approaches that involve pre-processing stages, 
such as artifact removal, contrast enhancement, and the use of different color spaces [27]. Deep learning approaches have proven to 
be effective in two main areas: lesion segmentation and classification of skin cancer lesions [28–30,27]. First, the results reported in 
the literature demonstrate that deep learning can be effectively used to detect the contour of lesions versus the surrounding skin. The 
similarity reaches a Jaccard index of up to 0.9 [31], which is relevant in the proposed work, as explained in Section 2.4.

Second, outstanding results have been obtained by classifying skin lesions, particularly when using strategies that involve pre-
trained networks, exceeding 90% accuracy [18,19,32,33,27,34,35]. However, most of these studies focused on the problem of 
detecting melanoma lesions, unlike this study, which sought to detect any type of malignant lesions.

Another approach explored for skin cancer detection is the use of IRT, which can be either passive or active [36]. The main 
difference between these techniques is that active thermography requires a thermal stimulus that produces a thermal contrast between 
the area of interest and background. Passive thermography is applied to problems where the area of interest is naturally at a higher 
or lower temperature with respect to the background [37]. Passive IRT has not been successful in detecting skin cancer lesions [38], 
and no developments related to skin cancer have been observed using this technology until a few years ago. Through digital image 
processing techniques and statistical analysis, it was determined that passive thermography images can distinguish cancerous from 
healthy skin areas [39,40]. For example, Magalhaes et al. [15] proposed a deep learning configuration to process passive IRT. This 
network could differentiate melanoma from nevi and melanoma from non-melanoma skin cancer lesions with precisions of 96.65% 
and 92.59%, respectively. However, the performance was inferior when working on the problem of distinguishing benign from 
malignant lesions, with a sensitivity of 62.81% and specificity of 57.58%. In contrast, active IRT has been successful in the detection 
of skin cancer [9–14], with sensitivity and specificity of up to 99% in sensitivity and specificity [13]. Another advantage of active IRT 
is that it provides useful information for lesion modeling, which provides more insight into lesion morphology. Verstockt et al. [41]
proposed lesion modeling using the finite element method (FEM), technique that has been successful in modeling different structures 
present in the human body [42–44]. Skin cancer detection can be considered solved based on the results reported by Godoy et al. 
[13]. However, this method and other methods based on active thermography require expert knowledge of the selection of lesion and 
non-lesion areas, as these systems are sensitive to the operator. Moreover, machine-learning techniques have not been well explored 
in the detection of skin cancer using active thermography, probably owing to the key aspects of data pre-processing for successful 
detection.

In this study, an automatic image-based skin cancer detection scheme is proposed for a real clinical environment, where lower-
quality images, partially blurred areas owing to patient movement, poor illumination, and similar factors are common. This scheme is 
intended to boost development using infrared (IR) technology, as IR technology development currently provides low-cost technology 
suitable for clinical use. This scheme provides a key pre-processing stage for the extraction of discriminative features, along with 
the proposal of a pool of features that can be used with any machine learning technique, such as a support vector machine (SVM) 
classifier. Another novel point addressed in this work is the use of a convolutional neural networks (CNN) U-Net to segment the lesion 
area, which was trained to work with low-quality imagery. This was performed to assess the performance of the algorithm in the 
worst-case scenario.

2. Materials and methods

The proposed detection scheme addresses two problems in the area of study: the systems are not automatic, so the results vary 
depending on who operates them, and there is a lack of exploration of machine-learning techniques. In this study, an automatic 
system for skin cancer detection is proposed, which is a base scheme for exploring machine learning techniques. A diagram of the 
methodology used is presented in Fig. 1, which is composed of four blocks: Lesion selection, Pre-processing, Feature extraction, 
2

and Classifier. Lesion selection addresses the automatic detection of the lesion area using a U-Net segmentation CNN, which was 
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Fig. 1. Diagram of the methodology used in the study.

trained and tested with the high-quality dermoscopic dataset HAM10000 and was then tested with the low-quality visible image set 
UdeC, which is the target dataset. The segmentation quality was measured with respect to expert manual segmentation, non-expert 
manual segmentation, and the semi-automatic segmentation method proposed by Diaz et al. [45]. The next block corresponds to 
Pre-processing, which corresponds to the selection considerations of features to be processed, based on the work proposed by Godoy 
et al. [12]. Feature extraction corresponds to the computation of the parameters that are then processed by the classifier. In this study, 
a large set of features is proposed, which are described in Section 2.3. Finally, there is a classifier in which any machine-learning 
technique can be used. In this study, an SVM classifier was used because in a previous study [46], the classifier that reported the best 
performance. In this scheme, a feedback loop was observed because, in this study, we searched for the best combination of up to five 
features.

2.1. Datasets

The development of this work considered the use of two datasets: the HAM10000 [47] set, which was used for training and 
validating the CNN. The HAM10000 dataset contains 10,015 dermoscopic images, of which 3,327 were selected as belonging to 
common skin cancer categories, namely, lesions declared as MM, Basal Cell Carcinoma (BCC), and benign. Second, a dataset called 
the UdeC set was used for the testing. This dataset is private and was acquired by one of the authors of his doctoral research with 
the support of the University of New Mexico Dermatology Clinic staff. The data were captured with informed consent, which did not 
allow public release. As explained below, the UdeC set contained lower-quality, poorly illuminated imagery acquired in clinical trials 
conducted by our team. The UdeC set contained 144 image cubes of size 𝑀 ×𝑁 ×𝐾 , where 𝐾 is the number of images contained in 
the cube, 𝑀 is the number of rows, and 𝑁 is the number of columns in each picture. 𝐾 −1 of 𝐾 images are IR images corresponding 
to the thermal recovery of the skin after cold excitation. The remaining image corresponds to a visible image that was captured using 
a smartphone, unlike the HAM10000 set. The spatial dimensions of the data were variable because the size of the lesions was variable. 
A lesion typically involves an area of 5x5 cms., which corresponds to images of 100x100 pixels, i.e., 𝑀 =𝑁 = 100. The IR data were 
captured for 1.5 minutes at a rate of 60 frames per second, so each cube contained 𝐾 − 1 = 5400 IR images. This set was composed 
of MM, BCC, Squamous Cell Carcinoma (SCC) and benign lesions. Visible images of the set were used to evaluate the performance of 
the segmentation algorithm by contrasting the segmentation with manually generated masks. Table 1 shows the distribution of the 
datasets according to lesion type.

It is important to note that for all images in both sets, there is a mask that defines the lesion area. For the HAM10000 set, the 
mask was defined as the pigmented area of the skin, i.e., the area whose color stands out from the healthy skin. For the UdeC set, the 
lesion area may coincide with the pigmented area; however, the expert who made the masks considered the nature of the lesions; 
thus, sometimes he defined that the suspicious parts of the lesion encompassed more or less of the area than solely the pigmented 
3

area.
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Table 1

Distribution of lesions captures from the HAM10000 and 
UdeC datasets according to type of lesion: Malignant 
Melanoma (MM), Basal Cell Carcinoma (BCC), Squamous Cell 
Carcinoma (SCC) and benign (BN).

Dataset MM BCC SCC BN Total

HAM10000 1113 514 0 1700 3327

UdeC 7 41 9 87 144

Fig. 2. Base detection scheme for skin cancer using active thermography and machine learning.

2.2. Skin-cancer detection algorithms

It has been shown that in the detection of skin cancer using active thermography, the comparison between a descriptive ther-
moregulation curve (TRC) from a healthy skin area with the descriptive TRC contained in the lesion area is key to obtaining good 
classification results. The algorithm proposed by Godoy et al. [12] provides a solid foundation for feature extraction and subsequent 
classification, with the key stage being the selection of TRCs to obtain features that facilitate discrimination between benign and ma-
lignant lesions. For this reason, it is proposed to use the pre-processing stage of this algorithm as a basis for detection (Section 2.2.1), 
incorporating new techniques for feature extraction and classification described in Section 2.2.2.

2.2.1. Euclidean distance detection algorithm

The Euclidean distance detection algorithm (ED) proposed by Godoy et al. [12] comprises the following five stages, as shown in 
Fig. 2.

1. Lesion selection. A mask was generated over the visible image, which defined the lesion area. The original algorithm proposes 
creating a mask that manually encloses the pigmented area to generate the set 𝐿 which contains the list of pixel locations of the 
lesion area (mask). With the remaining pixel locations of the visible image, another set, named 𝑁 is created. It contains a list of 
pixel locations that are not within the lesion, but the surrounding skin.

2. Initial temperature estimation. The next stage corresponds to the selection of the TRCs, which depends on the initial temperature 
of each TRC. To select curves whose initial temperature is less affected by non-uniformities in the cooling process, the TRC of the 
(𝑖, 𝑗)-th pixel is modeled as a double exponential function by

𝑓𝑖,𝑗 (𝑡) = 𝜃
(1)
𝑖,𝑗

+ 𝜃
(2)
𝑖,𝑗

exp
[
𝜃
(3)
𝑖,𝑗

𝑡

]
+ 𝜃

(4)
𝑖,𝑗

exp
[
𝜃
(5)
𝑖,𝑗

𝑡

]
, (1)

whose parameters 𝜽𝒊,𝒋 =
[
𝜃
(1)
𝑖,𝑗

⋯ 𝜃
(5)
𝑖,𝑗

]
are computed using a non-linear least-squares fitting approach. With this model, the 

initial temperature is estimated by setting 𝑡 = 0, i.e., 𝑓(𝑖,𝑗)(0) = 𝜃
(1)
𝑖,𝑗

+ 𝜃
(2)
𝑖,𝑗

+ 𝜃
(4)
𝑖,𝑗

.

3. TRCs selection. The reference temperature is calculated as 𝑇𝑟𝑒𝑓 =𝐸
[
𝒇𝐿(0)

]
, where 𝐸 is the expectation operator, and 𝒇𝐿(0) is 

the vector function of the initial temperature of the TRCs of the modeled lesion area within set 𝐿. Simply put, pixels within set 
𝐿 are selected, and the average initial temperature is calculated to determine 𝑇𝑟𝑒𝑓 .

The selection of points for processing by the algorithm considers a margin of error of 𝑝 ⋅ 100% with respect to 𝑇𝑟𝑒𝑓 . Thus, the 
set of points of interest for the algorithm is defined as{ }
4

𝑆 = (𝑖, 𝑗) ∶ |||𝑓𝑖,𝑗 (0) − 𝑇𝑟𝑒𝑓
||| ≤ 𝑝 ⋅ 𝑇𝑟𝑒𝑓 . (2)
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Experimentally 𝑝 = 0.01 was defined as a good value. Using the set 𝑆 of all the location within a 𝑝% of 𝑇𝑟𝑒𝑓 , the sets of TRCs with 
similar initial temperature from the lesion and non-lesion areas are defined as 𝐿∗ =𝐿 ∩ 𝑆 and 𝑁∗ =𝑁 ∩𝑆 , respectively.

4. Feature extraction. From the representative TRCs, a combination of features was extracted (feature vector). The detection 
algorithm proposed by Godoy et al. [12] uses only Euclidean distance as a feature to feed the next step. The formula used to 
compute this feature is given in Eq. (3).

5. Classifier. In the final step, the feature vector is processed by a classifier that defines whether the lesion is suspicious. The original 
detection algorithm used a simple threshold to discriminate between malignant and benign lesions. This threshold was defined 
by the training set.

2.2.2. Proposed detection algorithm

The proposed detection algorithm considers the following 3 modifications to the algorithm described above:

1. Lesion selection. The main drawback of the base algorithm is that when a non-expert selects the lesion the performance drops 
from 86% to 75%, as shown in Section 3.2. As such, the first proposed modification to use the CNN U-Net described in Section 2.4
to automatically select the lesion by the segmentation of the pigmented area.

2. Feature extraction. As already mentioned, the base algorithm uses only one feature that accounts for the difference between the 
thermal responses. In Section 2.3, 32 feature extraction techniques are described, of which 31 were proposed in this study. Using 
the complete detection scheme, the feature vector that provides the highest accuracy was selected, considering a maximum of 
five features out of the 32 available.

3. Classifier. Based on prior work, the SVM classifier with a radial basis function (RBF) kernel provides the best performance 
compared to techniques such as XGBoost and Random Forest for skin cancer detection using active thermography [46]. SVM 
works by finding a hyperplane that best separates the data points of different classes in a way that maximizes the margin, i.e., the 
distance between the hyperplane and the closest data points from both classes. The closest data points are called support vectors. 
The hyperplane’s position and orientation are determined by the data distribution, and the SVM aims to find the hyperplane that 
minimizes the classification error and generalizes well to new, unseen data [48]. SVM classifiers are known for their ability to 
handle complex decision boundaries, their resistance to overfitting, and their effectiveness in high-dimensional spaces. Owing 
to the property of projecting the features onto a kernel such as RBF, it is possible to map the characteristics into a higher-
dimensional space where the data might become separable or enhance their separability. As such, whereas the base algorithm 
only uses thresholding of one feature, here the best combination of up to five features selected by an SVM classifier was used.

2.3. Descriptive feature extracted from TRCs

Initially, Euclidean distance was a good discriminating parameter between benign and malignant cases of TRCs, as demonstrated 
by Godoy et al. [12]. However, when considering new data acquired after the publication of the article, this performance decreased 
from an accuracy of 89% to 60%. Therefore, new features are proposed in this study to improve the differentiation between malignant 
and benign cases in a more general manner.

From the representative TRC of the lesion (𝑇𝑅𝐶𝐿∗ ) area and non-lesion area (𝑇𝑅𝐶𝑁∗ ), the following features were extracted:

1. Euclidean distance (𝑑). This feature is calculated as the norm of the difference 𝑇𝑅𝐶𝐿∗ − 𝑇𝑅𝐶𝑁∗ , normalized by the number of 
points, i.e., as shown in the following equation:

𝑑 = 1
𝐾 − 1

‖𝑇𝑅𝐶𝐿∗ − 𝑇𝑅𝐶𝑁∗‖. (3)

The idea behind this feature is that if the Euclidean distance is small, the curves are similar, and it is very likely that the lesion 
is benign (i.e., the thermal recovery of the lesion behaves like normal tissue). Conversely, if the Euclidean distance is large, the 
curves show differences in thermal recovery, and the lesion is likely to be malignant because the lesion thermal recovery does 
not behave like a normal tissue [12].

2. Energy difference (𝐸𝑑 ). Let 𝑇𝑅𝐶𝑋∗ = 𝑇𝑅𝐶𝑋∗ −𝑚𝑖𝑛(𝑇𝑅𝐶𝑋∗ ), i.e., the unbiased TRC of the 𝑋∗ area. The energy difference 𝐸𝑑

is calculated as follows:

𝐸𝑑 =
||||‖𝑇𝑅𝐶𝐿∗‖2 − ‖𝑇𝑅𝐶𝑁∗‖2|||| . (4)

This feature is closely related to 𝑑. However, because of the triangular inequality 𝐸𝑑 ≤ 𝑑, thus 𝐸𝑑 quantifies smaller differences 
than 𝑑.

3. Rise time difference (𝑅𝑇𝑑 ). To calculate this characteristic, unbiased characteristic TRCs of each area were used. Over 𝑇𝑅𝐶𝐿∗

and 𝑇𝑅𝐶𝑁∗ the time at which 63.2% of the maximum amplitude is reached is calculated, which is referred to as 𝑇 63𝐿 and 𝑇 63𝑁 , 
respectively. The rise time difference was then calculated as 𝑅𝑇𝑑 = |𝑇 63𝐿 − 𝑇 63𝑁 |.

4. Area difference (𝐴𝑑 ). Let 𝑇𝑅𝐶𝐿∗ and 𝑇𝑅𝐶𝑁∗ be the unbiased characteristic TRCs of lesion and non-lesion areas, respectively. 
5

The normalized area of a 𝑇𝑅𝐶𝑋∗ is calculated as:
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𝐴𝑋 =

𝐾−1∑
𝑘=1

𝑇𝑅𝐶𝑋∗ (𝑘)

(𝐾 − 1) ⋅max(𝑇𝑅𝐶𝑋∗ )
. (5)

Then, 𝐴𝑑 was calculated as 𝐴𝑑 = |𝐴𝐿 −𝐴𝑁 |.
5. Statistical similitude features. Here, six base features were defined to measure the similarity of a set of TRCs with a normalized 

modeled TRC using the dual exponential model shown in Eq. (1). It is assumed here that the modeled TRC has 𝐾 sample points, 
and thus, 𝑓𝑚 ∈ ℝ𝐾 . With this, it inner product is computed by < 𝑓, 𝑔 >= 𝑓𝑇 𝑔, where 𝑓, 𝑔 ∈ ℝ𝐾 and 𝑇 is the column-vector 
transpose. 𝑓𝑚 was obtained by computing the five model parameters 𝜽𝑖,𝑗 using a non-linear least-squares fitting approach. These 
parameters were averaged to obtain the descriptive TRC 𝑓𝑀 for each class (cancerous and non-cancerous TRCs). Then 𝑓𝑚 is forced 
to have a unit norm, i.e., ‖𝑓𝑚‖ ≜√

< 𝑓𝑚,𝑓𝑚 > = 1.
Let 𝑓𝑚 and 𝑓𝑛 be a model TRC and an arbitrary TRC, respectively, both modeled and normalized. (Here, it was assumed that 

‖𝑓𝑚‖ = 1.) The characteristics of projection, correlation, and Euclidean distance are described below.

a. Projection. The projection of 𝑓𝑛 onto 𝑓𝑚 is calculated as 𝑝𝑟𝑜𝑗𝑛 =< 𝑓𝑛, 𝑓𝑚 >. This operation is performed for a set of at least 
10 TRCs, and the mean projection, 𝑝𝑟𝑜𝑗, and the standard deviation of the projection, 𝜎𝑝𝑟𝑜𝑗 , are then calculated over this set 
of projections.

b. Correlation. The correlation between 𝑓𝑛 and 𝑓𝑚 was calculated using the following expression:

𝜌 =
𝑐𝑜𝑣(𝑓𝑚,𝑓𝑛)
𝜎𝑓𝑚

𝜎𝑓𝑛

, (6)

where 𝑐𝑜𝑣(𝑓𝑚, 𝑓𝑛) is the covariance between 𝑓𝑚 and 𝑓𝑛, and 𝜎𝑓𝑚 and 𝜎𝑓𝑛 are the standard deviations (in the time samples) of 
𝑓𝑚 and 𝑓𝑛, respectively. This operation was performed for a set of at least 10 TRCs, and then the 𝜌 (the mean correlation) and 
𝜎𝜌 (the standard deviation of the correlation) were calculated.

c. Distance. This parameter was calculated according to Eq. (3) but using 𝑓𝑚 as a reference and a family of at least 10 TRCs, 𝑓𝑛 . 
The mean value 𝑑 and standard deviation 𝜎𝑑 were calculated for this set of distance values.

Considering a model of malignant and benign TRC, 𝑓𝑀 and 𝑓𝐵 , respectively, for each data cube, the projection charac-

teristics 𝑝𝑟𝑜𝑗 and 𝜎𝑝𝑟𝑜𝑗 , correlation 𝜌 and 𝜎𝜌, and distance 𝑑 and 𝜎𝑑 were calculated for the sets of TRCs 𝐿∗ and 𝑁∗. In this 
manner, 24 features were extracted and grouped into four categories based on the origin of the model curve and the analysis 
group. For example, the malignant model 𝑓𝑀 over a non-lesion area 𝑁∗ allows the extraction 𝑝𝑟𝑜𝑗𝑀−𝑁 , 𝜎𝑝𝑟𝑜𝑗𝑀−𝑁

, 𝜌𝑀−𝑁 , 
𝜌𝑝𝑟𝑜𝑗𝑀−𝑁

, 𝑑𝑀−𝑁 and 𝜎𝑑𝑀−𝑁
features.

6. Difference in temperature at 20 seconds (Δ𝑇20). Let 𝑇𝑅𝐶𝐿∗ and 𝑇𝑅𝐶𝑁∗ be the characteristic TRCs of lesion and non-lesion 
areas, respectively. Each TRC is normalized and modeled as a simple exponential function 𝑔(𝑡) = 1 − 𝑒𝜃𝑡, which is adjusted the 
least-squares method. The benign, 𝑔𝑏(𝑡), and malignant, 𝑔𝑚(𝑡), models are evaluated at 𝑡 = 20 to obtain the temperature value for 
each case. The difference in temperature is defined by

Δ𝑇20 = ||𝑔𝑏(20) − 𝑔𝑚(20)|| . (7)

Experimentally, 𝑡 = 20 was chosen because after this time, the slope of change between malignant and benign TRCs starts to look 
alike. Thus, the difference in the time evolution of the thermal recovery was more easily appreciated at the chosen time.

7. Principal component analysis (PCA) of the difference of the exponential model parameters. By using the double-exponential 
model shown in Eq. (1), the TRCs representative of the lesion and non-lesion areas were modeled to obtain sets of parameters 
𝜽𝐿 and 𝜽𝑁 , respectively. The difference between these parameters is calculated as Δ𝜃 = |𝜃𝐿 − 𝜃𝑁 |, generating a vector of five 
components.

Considering the training set, the dimension reduction technique PCA was applied to the five difference parameters Δ𝜃. The 
covariance matrix was analyzed to reduce the dimensions of these five characteristics to three principal components: 𝑃𝐶𝐴Δ𝜃1 , 
𝑃𝐶𝐴Δ𝜃2 and 𝑃𝐶𝐴Δ𝜃3.

2.4. Skin lesion segmentation algorithm

As mentioned previously, the main drawback of the ED algorithm [12] is that it requires good manual selection of the lesion 
to perform well. The algorithm breaks down by wrongfully selecting the lesion tissue. As such, this work focuses on automatically 
identifying the lesions with respect to the surrounding skin to eliminate this weakness of the ED algorithm.

This is not a trivial problem to address because the segmentation algorithm to do so should work with low resolution visible-range 
images acquired in a clinical environment. Namely, the patient may move, and the angle between the lesion and the camera may not 
be the best. Moreover, the main problem with the proposed application is that the images are not acquired with controlled light, as 
they are commonly imaged in the literature.

In recent years, several algorithms have been reported in which a U-Net convolutional network or its variations are used to perform 
6

this task [49,50,31]. U-Net was specially designed to solve biomedical image-segmentation problems [51]. The network merges a 
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Fig. 3. Proposed segmentation scheme.

Table 2

Detail of U-Net training parameters.

Parameter Value

Learning rate 0.0001
Optimizer Adam
Function loss BCE
Data augmentation Vertical and horizontal flip, brightness, saturation, contrast and 

blurring adjustments
Maximum training iterations 100
Best performace iteration 33
Training/validation samples (HAM10000 dataset) 2340
Testing samples 1 (HAM10000 dataset) 987
Testing samples 2 (UdeC dataset) 144

convolutional network architecture with a deconvolutional architecture to generate a semantic segmentation. As described by Ashraf 
et al. [31]: It is an fully connected network that adds network layers to a traditional contracting network, replacing pooling operators with 
up-sampling operators to improve the resolution of the predicted image. A subsequent convolution layer assembles a more specific output for 
localization and backward propagation by concatenating high resolution features from up-sampled output and contraction path. The network 
can spread context information to higher resolution layers with up-sampling components, resulting in a u-shaped architecture. The architecture 
utilized in this study was a U-Net model with modifications proposed by Bisla et al. [52]. The main difference from the original U-Net 
is the consideration of up-sample stages and the use of dilatation kernels of size 2 × 2 and 4 × 4. This allowed us to obtain an output 
with the same spatial resolution, without being clipped. To reiterate, these algorithms work well, but are trained and tested over 
high-quality imagery, which may not always be available in a clinical trial. Here, the U-Net is pushed to the limit so that it can 
operate under these extreme circumstances.

Fig. 3 shows the proposed segmentation scheme, which comprises the following five stages:

1. Color normalization. Standardize the color conditions of images, which can be affected by illumination conditions and the use 
of different setups to acquire images. This study considers the use of the algorithm Shades of Gray [53], which has been shown 
to be effective in obtaining greater performance in the analysis of dermoscopic images [54].

2. Resize. The size of the image was adjusted to dimensions 380×380, to meet the input conditions considered by the implemented U-
Net network. As previously mentioned, images may have been acquired with different setups; therefore, image size standardization 
is necessary.

3. U-Net. Segmentation using a variant of the U-Net network proposed by Bisla et al. [52]. This network requires as input an RGB 
image concatenated with the transformation of the same image to HSV and L*a*b format, generating a cube of size 380 ×380 ×7. 
This size was considered in the design of the network because it is a representative size of the images of the UdeC set, which is 
the objective set to be segmented. This model has nine blocks and 21 convolutional layers as illustrated in Fig. 4.

4. Scrubbing. Morphological dilation and erosion filters were applied to smooth the segmented area and fill the holes. An analysis 
by connected components was also carried out; in the event that there was more than one segmentation, the segment with the 
largest area was selected.

5. Inverse resize. The output mask is adjusted to the original dimensions of the input image.

The segmentation algorithm was trained using the HAM10000 dataset [47], which was split by allocating 70% to train and to 
validate the algorithm, and the remaining 30% was used for testing. This proportion was selected for being a typical division ratio used 
in machine learning, which according to Nguyen et al. [55] reports better performance. As a final test, the algorithm was evaluated 
over the visible images of the UdeC dataset.

The training parameters of the U-Net network were summarized in Table 2. To obtain an algorithm that is robust to variations 
in lighting conditions and the use of different cameras, the following data augmentation techniques were used in the training stage: 
vertical and horizontal flip with a 50% probability of being flipped, adjustments ±50% shuffled brightness, ±20% shuffled saturation, 
and ±50% shuffled contrast, and blur was added using a Gaussian kernel filter of size 5 ×5 and a variable standard deviation randomly 
selected between 0.1 and 20.

In the training process, different learning rates were evaluated, whose value 10−𝑟 varied by modifying 𝑟 between 3 and 5 in steps 
7

of 1. The best performance was achieved by training the network with a learning rate of 0.0001, Adam’s optimizing function [56], 



Heliyon 10 (2024) e40608R.F. Soto and S.E. Godoy

Fig. 4. Scheme of U-Net architecture proposed by Bisla et al. [52].

Fig. 5. Training and validation curves of U-Net network.

and the BCE loss function with sigmoid [57], adjusting the network for 33 epochs. The training and validation curves obtained over 
100 epochs are shown in Fig. 5. Because 33 the result did not improve from epoch 33, it was decided not to continue with the training. 
It can be seen that after 33𝑡ℎ epoch, the loss in the training set was reduced. However, the validation loss increased, indicating that 
the network did not learn, thus overfitting the training set.

3. Results and discussion

3.1. Segmentation performance

As mentioned above, the segmentation algorithm was evaluated on two datasets: with the data partition of the HAM10000 set 
intended for testing and with the UdeC set. The well-known metrics of accuracy [58], sensitivity (also known as true positive rate 
(TPR)) [59], specificity (also known as true negative rate (TNR)) [59], precision (also known as positive predictive value (PPV)) [59]
8

and Jaccard index [60] were used as performance measures.
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Fig. 6. Comparison of segmentation performance indices using different benchmarks. The rows represent the benchmarks and the columns are the evaluated masks.

Table 3

Performance of the segmentation algorithm in terms of accu-
racy, sensitivity (TPR), specificity (TNR), precision (PPV) and 
Jaccard index.

Dataset Acc. TPR TNR PPV Jaccard

HAM10000 0.93 0.85 0.96 0.89 0.79
UdeC 0.98 0.82 0.99 0.74 0.60

Table 3 shows the performance of the algorithm on the HAM10000 and UdeC sets, reporting the aforementioned metrics. A 
considerable reduction in performance was observed when evaluating the segmentation of images of the UdeC set, decreasing the 
Jaccard index by 0.19 points and the precision by 15%. This is because the images of the UdeC set were captured under different 
lighting conditions, with a low-cost visible camera that, unlike a dermatoscope, is not made to provide the highest quality of clinical 
conditions.

Moreover, the HAM10000 set contained segmentations faithfully based on discriminating the pigmented area from the background, 
while the masks of the UdeC set were created considering expert knowledge, adjusting the masks to the criteria of a dermatologist, who 
determined that part of the lesion was malignant or benign. Because the segmentation algorithm was trained with the HAM10000 set, 
its performance was expected to be lower when evaluating masks created with expert criteria. To measure the impact of the proposed 
segmentation algorithm, using the UdeC set, the segmentation performance was contrasted with manual masks (non-experts) adjusted 
solely to the pigmented areas and masks created with the semi-automatic segmentation algorithm proposed by Díaz et al. [45], 
hereinafter referred to as the Díaz algorithm.

Fig. 6 shows the cross performance indices resulting from different segmentation techniques. In contrast to expert segmenta-
tion, it is observed that the highest Jaccard index is obtained by non-expert segmentation, with a value of 0.67, followed by U-Net 
segmentation with 0.60, with the worst performance obtained with the Díaz algorithm. Similarly, the best accuracy performance 
was obtained by non-expert segmentation with 98.26%, followed by the U-Net and Díaz segmentation algorithms with 98.00% and 
97.37%, respectively. Regarding TPR, the best performance was obtained by U-Net segmentation with 82.02%, followed by inex-
perienced segmentation and Díaz segmentation with 77.71% and 48.58%, respectively. Whereas in specificity the worst result was 
obtained by the U-Net segmentation with 98.92%. This last result is consistent with the precision, in which the worst result was 
obtained by the U-Net segmentation. Thus, despite the fact that the U-Net segmentation presents a high specificity, the difference 
that exists with the other techniques generates a lower precision of approximately 15%, since most of the images present a much 
larger zone of no lesion than of injury, which means that generating a mask slightly larger than the reference produces a large drop 
in precision performance.

As expected, the indices indicated that the U-Net segmentation algorithm is similar to non-expert segmentation, with the advantage 
of being a approach with standardized criteria, unlike manual segmentation, which depends on the criteria of each user, whose 
decision can be affected by conditions such as stress and fatigue, among others.

In relation to the multiple image processing stages that include the proposed segmentation scheme, the best result is obtained 
considering all stages, with a Jaccard index value of 0.5963. By deleting the scrubbing step, the index is reduced to 0.5894, while 
removing the color normalization and scrubbing steps, the index is reduced to 0.5721. The segmentation results are reflected in the 
detection performance, such that the complete scheme provides an Area Under Curve (AUC) of 0.792, whereas deleting the scrubbing 
step reduces the AUC to 0.778, and removing the color normalization and the scrubbing steps reduces the AUC to 0.759.

Fig. 7(a) shows an image of a lesion of the UdeC set, together with manual segmentation of the lesion using expert knowledge 
(Fig. 7(b)), manual non-expert segmentation (Fig. 7(c)), and the proposed automatic segmentation (Fig. 7(d)). It was observed that all 
the segmentation algorithms selected the lesion. It should be noted that the expert segmentation selects the inner area of the lesion, 
whereas the other segmentation output contains the lesion with a border of non-pigmented skin. However, the lesion area was small 
with respect to the total area of the image, which implies that small differences in the selection of the lesion negatively affect the TPR, 
PPV and Jaccard indices. This situation is characteristic in the UdeC set, where the lesion area covers an average of 3.34 ± 7.29% of 
the image. While with the HAM10000 set it addresses 27.82 ±19.41%. Despite the fact that to the human eye the segmentation results 
9

are quite similar, the performance index used is highly reduced if the lesion is composed by few pixels. Considering an extreme case 
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Fig. 7. Segmentation contrast. (a) Image with lesion to be segmented, (b) segmentation with expert knowledge, (c) manual non-expert segmentation, (d) automatic 
segmentation using U-Net network, (e) contrast of expert segmentation with non-expert segmentation, (f) expert segmentation contrast with automatic segmentation, 
(g) non-expert segmentation contrast with automatic segmentation.

where lesion is composed by 5 pixels, not detecting one implies reducing the Jaccard index from 1 to 0.8. It could be worse if the 
segmentation algorithm generates an over or under segmentation with a 1-pixel border. Therefore, the fewer the pixels the lesion 
has, the worse the index when the algorithm mis-segments one pixel. This problem will always be present when the suspicious lesion 
is imaged with low quality sensors.

3.2. Detection performance

The detection algorithms described in Section 2.2 were evaluated using the four lesion segmentation techniques previously de-
scribed: (i) Expert, (ii) Non-expert, (iii) Díaz, and (iv) U-Net. Both expert and non-expert segmentations are manually performed, 
whereas Díaz is semi-automatic in the sense that it requires interaction with the user. In contrast, the proposed approach (U-Net) is 
fully automatic in the sense that it does not require any input from the user.

The proposed detection algorithm considers a novel feature-extraction stage that feeds an SVM classifier. From the set of features 
described in Section 2.3, a combination of up to five characteristics that provided the greatest accuracy was sought. When working 
with expert segmentation, the best feature combinations were [𝐴𝑑 , 𝑅𝑇𝑑, Δ𝑇20, 𝑃𝐶𝐴Δ𝜃3, 𝜎𝜌𝐵−𝐿 ]. Whereas, with the other types of 
segmentations, the following feature vectors were selected: [𝐸𝑑, 𝜎𝜌𝐵−𝐿 , 𝜎𝑝𝑟𝑜𝑗𝐵−𝑁 , 𝜎𝑑𝑀−𝑁

].
The performance and variability of the ED algorithm and proposed detection algorithm based on the new features were evaluated 

using the bootstrap method. This technique entails drawing multiple samples with replacements from the original dataset, creating a 
new dataset of the same size. The modified dataset was then divided by allocating 80% of the data for training and 20% for testing. 
The entire procedure was repeated 2,000 times such that the mean results were presented, as well as the minimum and maximum 
results for each approach.

Table 4 lists the performance of the ED detection algorithm on the active thermography dataset. Considering a sensitivity of 
85% as a reference point, the best result was achieved with expert segmentation, followed by the U-Net, non-expert, and Díaz 
segmentation algorithms, with an average specificity of 42.72%, 32.39%, 28.90%, and 17.03%, respectively. Similarly, Table 5
shows the performance of the detection algorithm using a SVM detection algorithm; it is observed that the best result is obtained with 
the expert segmentation, followed by the non-expert, U-Net, and Díaz segmentation algorithms, with average specificities of 87.62%, 
69.63%, 68.50%, and 64.45%, respectively.

Both detection algorithms exhibited their best performance using expert segmentation as input, followed by detection when non-
expert and U-Net segmentation algorithms were used. The worst result was obtained using Díaz segmentation as input. Analyzing 
these results, it is evident that the selection of TRCs is crucial for the performance of skin cancer detection algorithms that process 
active thermography. These results indicate that the detection algorithm used, which is based on active thermography analysis, 
requires expert selection of the lesion area to obtain the best performance. Thus, expert knowledge is relevant for determining the 
key pigmented area to determine whether a lesion is benign or malignant.

By linking the performance of the detection algorithm using different lesion segmentation techniques with the performance in 
segmentation quality, it is observed that these are highly correlated. The proposed detection algorithm, when working with U-Net 
segmentation, exhibited superior performance compared to the Díaz segmentation algorithm, and similar performance to that of 
10

non-expert segmentation. Thus, it was demonstrated that accurate selection of the lesion area is relevant for successful detection. 
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Table 4

Detection performance using Euclidean classifier and different lesion area selection techniques.

Lesion 
selection

Expert Non-expert U-Net Díaz

Index Min. Max. AVG SD Min. Max. AVG SD Min. Max. AVG SD Min. Max. AVG SD

Accuracy 31.03 86.21 60.03 8.91 20.69 82.76 51.63 9.01 20.69 82.76 53.66 9.14 10.34 79.31 44.51 9.15
TPR 33.33 100.00 86.15 10.16 30.00 100.00 85.98 10.35 37.501 100.00 85.73 10.63 42.86 100.00 86.10 10.39
TNR 5.26 80.00 42.72 11.90 0.00 73.33 28.90 10.68 0.00 70.00 32.39 11.02 0.00 57.14 17.03 9.13
PPV 6.67 84.00 49.91 10.99 8.70 84.00 44.46 10.34 8.70 84.00 45.63 10.59 7.41 83.33 40.73 9.86

Table 5

Detection performance using SVM classifier and different lesion area selection techniques.

Lesion selection Expert Non-expert U-Net Díaz

Index Min. Max. AVG SD Min. Max. AVG SD Min. Max. AVG SD Min. Max. AVG SD

Accuracy 65.52 100.00 86.61 6.65 27.59 96.55 75.77 9.26 24.14 100.00 75.29 9.99 17.24 96.55 72.67 10.97
TPR 33.33 100.00 85.02 12.02 25.00 100.00 85.04 11.97 25.00 100.00 85.10 11.80 30.00 100.00 85.05 12.44
TNR 40.00 100.00 87.62 8.80 0.00 100.00 69.63 15.48 0.00 100.00 68.80 16.30 0.00 100.00 64.45 18.90
PPV 20.00 100.00 82.37 11.62 20.00 100.00 65.95 13.53 18.18 100.00 65.41 13.94 14.29 100.00 62.82 14.24

Table 6

Comparison of related articles for detecting skin cancer using different types of imaging, differentiating the classification problems, where MM: Malignant melanoma; 
Malignant includes MM, Basal-cell carcinomas and Squamous-cell carcinomas.

Reference Methodology Classification 
problem

Dataset Technology Performance

[61] Nasnet Mobile with transfer 
learning

MM vs. non-MM HAM10000 Dermoscopy 97.90% accuracy

[62] MobileNetV2-based transfer 
learning

MM vs. benign ISIC2020 Dermoscopy 98.20% accuracy

[63] CNN DenseNet-121 with 
multi-layer perceptron 
(MLP)

MM vs. non-MM ISIC 2016, ISIC 
2017, PH2 y 
HAM10000

Dermoscopy Accuracy of 98.33%, 80.47%, 
81.16% and 81.00% on PH2, 
ISIC 2016, ISIC 2017 and 
HAM10000 datasets.

Own 
implementation

ResNet152V2-based 
transfer learning

MM vs. benign HAM10000 Dermoscopy 90.63% accuracy

Own 
implementation

ResNet152V2-based 
transfer learning

MM vs. benign UdeC Low-quality visible 
images

72.49% accuracy

[15] Deep learning MM vs.benign Passive IRT 96.91% accuracy

[15] Deep learning Malignant 
vs.benign

Passive IRT 57.58% accuracy

Proposed method 
using automatic 
U-Net segmentation

Machine learning Malignant 
vs.benign

UdeC Active IRT 75.29% accuracy

Proposed method 
using manual expert 
segmentation

Machine learning Malignant 
vs.benign

UdeC Active IRT 86.61% accuracy

Thus, it is important to automate these types of algorithms so that they are not susceptible to the operator. Or, in contrast, utilize 
algorithms that does not use the time difference of the TRCs (or forms of it) as their discriminant factor.

Regarding the proposed modifications to feature extraction techniques and the detection algorithm, it is highlighted that the 
combination of the proposed features along with the SVM classification technique enables an increase in accuracy of 26.58%, 24.14%, 
21.63%, and 28.16% when selecting the lesion area with expert, non-expert, U-Net, and Díaz segmentations, respectively. Thus, these 
modifications make the proposed detection algorithm less sensitive to segmentation differences than the ED algorithm. However, its 
performance suffers if the input segmentation is incorrect.

The presented results seem to be lacking in impact when compared to others that process dermatoscopic images, which achieved 
an accuracy higher than 95%, as shown in Table 6. However, they mainly addressed the classification MM vs. non-MM or MM vs. 
benign. It is important to mention that the proposed approach tackles the problem of detecting benign lesions vs. malignant lesions, 
i.e., all types of cancer are malignant cases for our approach. In this scenario, the detection of skin cancer is not trivial owing to the 
small variability between the two classes.

This was reflected in the work of Magalhaes et al. [15], who obtained 62.81% sensitivity and 57.58% specificity. Their study is one 
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of the most recent approaches in the literature that uses thermography. The performance reported in this manuscript surpasses that 
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of Magalhaes, achieving an 85% sensitivity and 69% specificity when working with automatic segmentation and an SVM classifier, 
respectively.

By implementing our own classifier based on a ResNet152V2 network, which was trained using the HAM10000 dataset in con-
junction with the U-Net network, the ResNet152V2 achieved an accuracy of 90.63% on the HAM10000 test set and 72.49% on the 
UdeC visible image test set. This result demonstrates the great potential of transfer learning techniques. However, their performance 
declines by almost 20% when processing poorer quality data, obtained in a clinical environment with limited resources. This result is 
concordant with the study by Akilandasowmya et al. [35], which showed high variability in the performance of systems processing 
transfer learning-based dermoscopy images by varying the training set sizes.

4. Conclusions

This study presents two improvements to a previously published detection algorithm, resulting in the first automatic skin cancer 
detection algorithm that processes active thermography. The first improvement involved automating the lesion area selection stage 
using U-Net CNN. The second improvement involves a new selection of features to be classified, which are processed using an SVM-
based algorithm.

Regarding the lesion segmentation algorithm, training was performed using a set of dermoscopic images with the aim of segmenting 
lower-quality images, which were acquired with standard smartphone cameras under varying degrading conditions. The algorithm 
presented a Jaccard index of 0.79 using dermoscopic images, a value similar to that reported by other authors. As expected, when 
evaluating a set generated with a smartphone camera under varying acquisition conditions, the performance dropped to 0.60. The 
performance on the target image set is considered satisfactory because it achieved 0.07 Jaccard points lower than that obtained 
using non-expert segmentation, which is based on pigmentation. It is consistent with the fact that the training dataset (HAM10000) 
considers pigmented pixels as lesions. This drop was consistent with the degraded resolution, lower illumination, and blurred areas 
of the test dataset. Even though this drop is significant, the segmentation result that can be performed without the training of a 
dermatologist.

The performances of both detection algorithms were evaluated using expert, non-expert, and Díaz (semi-automatic algorithm) 
segmentation. Considering a sensitivity of 85%, both detection algorithms showed their best performance with expert segmentation 
and the worst with Díaz segmentation, whereas U-Net segmentation provided a detection performance similar to that of non-expert 
segmentation.

The use of machine learning in classification increased the detection accuracy, reaching values of 86.61%, 75.77%, 75.29%, and 
72.67% when using expert, non-expert, U-Net, and Díaz lesion selection, respectively. All of these results outperformed the original 
detection algorithm, which achieved an accuracy of 60.03%.

When comparing the performance of the automatic detection system with that of the ResNet152V2 network on the UdeC visible 
image set, the thermography-based approach demonstrated a 3% increase in the accuracy. However, when using expert segmentation, 
the thermography system outperformed it by nearly 14 percentage points in accuracy. These results indicate that the proposed 
automatic detection system has significant potential for further improvement.

This leads to the conclusion that the main problem with the proposed automatic algorithm is that the automatic segmentation 
fits the pigmented area of the skin very well, which is correct according to the HAM10000 set. However, there are differences with 
the expert criterion, which considers knowledge of the nature of the lesion, such that sometimes the lesion area does not necessarily 
match only the pigmented area, meaning that the actual lesion may be larger or smaller than the pigmented area. Thus, the pigmented 
area is only a projection of the lesion over the skin surface, and its malignancy may spread below the surface in a random fashion.

The difference between selecting only the pigmented area with respect to the expert criterion implies a low accuracy of the 
detection algorithm of approximately 11%, owing to the manner in which the classifiers were designed. This implies the detection 
of more benign and malignant cases, that is, when using the automatic segmentation, more biopsies would be requested than when 
using the segmentation performed by an expert. To improve this aspect, it is necessary to teach the segmentation network about 
segmentations performed using expert criteria, which is the main limitation of the proposed algorithm. As there is no set of hundreds 
of lesions labeled with expert criteria, it is not yet possible to teach this knowledge to the network, but we are currently working on 
it.

We consider that skin cancer detection using active thermography is still relatively unexplored, possibly due to the challenges 
involved in addressing the detection problem with this technology, such as the high cost that this technology implied some years 
ago, and the knowledge required to successfully process active thermography data. Regarding processing, we consider the judicious 
selection of TRCs crucial for more successful discrimination between benign and malignant cases. Therefore, this study proposes 
a generic framework for skin cancer detection using active thermography. Owing to the high cost of IR technology, in the last 
decade, low-cost microbolometer technology has emerged, which may have lower image quality, but makes it feasible to transfer the 
technology developed for skin cancer detection.

It is expected that by using more robust detection algorithms, such as deep-learning algorithms over dynamic infrared imagery, 
their performance will be less affected by the lesion area selection stage. This is an ongoing research by our group, and we expect to 
report a novel detection algorithm that uses only deep-learning techniques within a few months. The purpose of this novel algorithm 
12

is to work with lower-quality IR images acquired using low-cost equipment.
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