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ABSTRACT
Background: Age‐related macular degeneration (AMD) is a major cause of irreversible visual impairment, with dry AMD being

the most prevalent form. Programmed cell death of retinal pigment epithelium (RPE) cells is a central mechanism in the

pathogenesis of dry AMD. Ferroptosis, a recently identified form of programmed cell death, is characterized by iron

accumulation‐induced lipid peroxidation. This study aimed to investigate the involvement of ferroptosis in the progression

of AMD.

Methods: A total of 41 samples of AMD and 50 normal samples were obtained from the data set GSE29801 for differential gene

expression analysis and functional enrichment. Differentially expressed genes (DEGs) were selected and intersected with genes

from the ferroptosis database to obtain differentially expressed ferroptosis‐associated genes (DEFGs). Machine learning algo-

rithms were employed to screen diagnostic genes. The diagnostic genes were subjected to Gene Set Enrichment Analysis

(GSEA). Expression differences of diagnostic genes were validated in in vivo and in vitro models.

Results: We identified 462 DEGs when comparing normal and AMD samples. The GO enrichment analysis indicated sig-

nificant involvement in key biological processes like collagen‐containing extracellular matrix composition, positive cell adhe-

sion regulation, and extracellular matrix organization. Through the intersection with ferroptosis gene sets, we pinpointed 10

DEFGs. Leveraging machine learning algorithms, we pinpointed five ferroptosis feature diagnostic genes: VEGFA, SLC2A1,

HAMP, HSPB1, and FADS2. The subsequent experiments validated the increased expression of SLC2A1 and FADS2 in the

AMD ferroptosis model.

Conclusion: The occurrence of ferroptosis could potentially contribute to the advancement of AMD. SLC2A1 and FADS2 have

demonstrated promise as emerging diagnostic biomarkers and plausible therapeutic targets for AMD.

1 | Introduction

Age‐related macular degeneration (AMD) constitutes a major cause
of irreversible blindness predominantly affecting individuals above
60 years in developed nations [1]. The development of AMD is
influenced by a complex interplay of genetic factors and environ-
mental exposures, including aging, smoking, oxidative stress,
inflammation, sunlight exposure, and genetic predisposition [2].
AMD presents in two primary forms, dry AMD and wet AMD, with

the former accounting for the majority (over 90%) of cases. The
pathogenesis of dry AMD begins with the accumulation of drusen
deposits beneath the retinal layers, leading to degeneration of retinal
pigment epithelium (RPE) cells, impaired photoreceptor function,
and eventual geographic atrophy (GA) [3]. Unfortunately, there are
currently no effective medical or surgical treatments for GA, and the
pathogenesis mechanisms of AMD remain elusive. Overall, AMD is
a severe ocular disease with multifaceted etiology and a complex
pathogenesis that necessitates further research.
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Ferroptosis as a novel mode of regulated cell death relies on
iron and lipid peroxides. Its distinguishing characteristics en-
compass heightened levels of free iron, lipid peroxide accu-
mulation, and a unique cell demise process setting it apart from
other forms of necrosis [4]. Central to this mechanism is the
labile iron pool (LIP), which dynamically houses varying
quantities of free iron. In this context, free iron reacts with
hydrogen peroxide, ultimately yielding hydroxyl radicals and
facilitating lipid peroxide accumulation [5, 6]. Recent investi-
gations have associated ferroptosis with various diseases,
including neurodegenerative disorders, myocardial infarctions,
and ischemia‐reperfusion injuries [7]. Notably, the excessive
accumulation of iron in the retina and choroid has been linked
to AMD [8, 9]. Nevertheless, the precise involvement of
ferroptosis‐associated genes in the diagnosis, prognosis, or
therapeutic strategies for AMD necessitates further elucidation.

In this study, the investigation centered on the pathogenesis of
AMD through a comprehensive analysis integrating gene ex-
pression disparities, particularly focusing on ferroptosis‐
associated genes (DEFGs). Leveraging the Gene Expression
Omnibus (GEO) database, a comparative analysis was con-
ducted between normal and AMD samples to discern differen-
tial gene expression patterns. Through the intersection of
differential gene sets with ferroptosis‐associated genes, distinct
DEFGs were pinpointed. Subsequently, machine learning al-
gorithms were employed to discern pivotal differential genes,
enabling the classification of 41 AMD patients into distinct
groups based on their DEFG profiles. In summation, this study
contributes to the understanding of AMD's potential patho-
genesis by elucidating disparities in gene expression, under-
scoring the significance of DEFGs, harnessing machine learning
techniques, and delving into the intricate interplay between
ferroptosis and AMD.

2 | Materials and Methods

2.1 | Databases and Data Collection

In this study, microarray data of the GSE29801 raw data sets [10] in
the GEO database [11] were processed using the R program
“GEOquery.” This data set included gene expression profiles from
142 AMD and 151 normal samples. Subsequently, 91 samples,
comprising 50 normal eye tissues and 41 AMD‐affected eye tissues
specifically from the Macular RPE‐choroid region, were selected for
analysis (Table 1). The acquired microarray data underwent sys-
tematic preprocessing, involving probe‐to‐gene symbol alignment,
removal of non‐matching probes, and application of a log2 trans-
formation to ensure data consistency.

Additionally, a comprehensive set of 259 ferroptosis‐associated
genes was sourced from the FerrDb V2 database [12] (http://
www.zhounan.org/ferrdb/current/).

2.2 | Differential Expression Analysis

First, DEG analysis was carried out on a collection of 41 AMD
and 50 normal ocular samples. This analysis was conducted
using the “limma” package [13] within the R programming

environment. Distinctive gene expression patterns were identi-
fied, employing a dual threshold criterion of p‐value < 0.05 and
|log2FC | > 0.263 (equivalent to a fold change of 1.2). These
differential genes were effectively visualized through the
implementation of volcano plots. Furthermore, to shed light on
the biological significance and associated pathways of these
DEGs, Gene Ontology (GO) enrichment analyses were carried
out, employing the “clusterProfiler” package [14] in R.

Then, a Venn analysis was executed to assess the overlap
between the DEGs and the ferroptosis‐associated genes. The
genes present in the intersection of these two gene sets were
considered as differentially expressed ferroptosis‐related genes
(DEFGs). Box plots were generated to visualize the expression
of DEFGs in the disease and control groups.

2.3 | Machine Learning

We employed three distinct machine learning algorithms to
pinpoint diagnostic genes based on the expression values of the
DEFGs. The LASSO (Least Absolute Shrinkage and Selection
Operator) algorithm was employed for the purpose of feature
selection, with the objective of identifying pertinent genes while
minimizing error rates [15]. Support Vector Machine with
Recursive Feature Elimination (SVM‐RFE) was deployed to
ascertain the optimal gene combination characterized by the
lowest error rates and heightened accuracy [16]. The selection
of the Random Forest (RF) algorithm was underpinned by its
adaptability and accuracy in predicting continuous variables
[17]. These analyses were executed utilizing the R packages
“glmnet” [18], “e1071” [19] and “randomForest” [20] respec-
tively. The genes identified at the intersection of these algo-
rithmic outputs were recognized as crucial ferroptosis‐
signatures diagnostic genes specific to AMD.

Subsequently, a multiple logistic regression was conducted
using the “pROC” R package [21] to calculate the regression
coefficients for each diagnostic gene. We downloaded three data
sets, GSE99248 [22], GSE50195 [23], and GSE125564 [24], from
the GEO database to serve as validation sets. Details of the
genetic risk score are provided in Table 2. The diagnostic score
was determined using the following formula:

βRiskscore = × Exp .gene gene

Among the formula, the symbol βgene signifies the regression
coefficient derived from LASSO regression analysis of corre-
sponding diagnostic gene, while Expgene denotes the expression
of the gene within each distinct sample.

2.4 | GSEA Analysis for Ferroptosis Feature
Diagnostic Genes

Gene Set Enrichment Analysis (GSEA) was conducted using the
MSigDB v7.1 [25] database, specifically employing the
c2.cp.kegg.v7.4.symbols.gmt file as the background for enrich-
ment analysis. The gene expression profiles of AMD patients
were subjected to GSEA to identify KEGG pathways that
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TABLE 1 | Ninety‐one samples from GSE29801.

Sample GEO accession Ocular disease AMD classification Tissue

GSM738433 Normal Normal Macular RPE‐choroid
GSM738435 Normal Normal Macular RPE‐choroid
GSM738437 Normal Normal Macular RPE‐choroid
GSM738439 Normal Normal Macular RPE‐choroid
GSM738441 Normal Normal Macular RPE‐choroid
GSM738443 Normal Normal Macular RPE‐choroid
GSM738445 Normal Normal Macular RPE‐choroid
GSM738447 Normal Normal Macular RPE‐choroid
GSM738450 Normal Normal Macular RPE‐choroid
GSM738452 Normal Normal Macular RPE‐choroid
GSM738453 Normal Normal Macular RPE‐choroid
GSM738455 Normal Normal Macular RPE‐choroid
GSM738457 Normal Normal Macular RPE‐choroid
GSM738459 Normal Normal Macular RPE‐choroid
GSM738461 Normal Normal Macular RPE‐choroid
GSM738464 Normal Normal Macular RPE‐choroid
GSM738466 Normal Normal Macular RPE‐choroid
GSM738469 Normal Normal Macular RPE‐choroid
GSM738471 Normal Normal Macular RPE‐choroid
GSM738472 Normal Normal Macular RPE‐choroid
GSM738474 Normal Normal Macular RPE‐choroid
GSM738476 Normal Normal Macular RPE‐choroid
GSM738478 Normal Normal Macular RPE‐choroid
GSM738480 Normal Normal Macular RPE‐choroid
GSM738483 Normal Normal Macular RPE‐choroid
GSM738484 Normal Normal Macular RPE‐choroid
GSM738486 Normal Normal Macular RPE‐choroid
GSM738488 Normal Normal Macular RPE‐choroid
GSM738491 Normal Normal Macular RPE‐choroid
GSM738494 Normal Normal Macular RPE‐choroid
GSM738495 Normal Normal Macular RPE‐choroid
GSM738497 Normal Normal Macular RPE‐choroid
GSM738498 Normal Normal Macular RPE‐choroid
GSM738500 Normal Normal Macular RPE‐choroid
GSM738503 Normal Normal Macular RPE‐choroid
GSM738505 Normal Normal Macular RPE‐choroid
GSM738506 Normal Normal Macular RPE‐choroid
GSM738508 Normal Normal Macular RPE‐choroid
GSM738510 Normal Normal Macular RPE‐choroid
GSM738511 Normal Normal Macular RPE‐choroid
GSM738512 Normal Normal Macular RPE‐choroid
GSM738514 Normal Normal Macular RPE‐choroid
GSM738515 Normal Normal Macular RPE‐choroid

(Continues)
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TABLE 1 | (Continued)

Sample GEO accession Ocular disease AMD classification Tissue

GSM738516 Normal Normal Macular RPE‐choroid
GSM738518 Normal Normal Macular RPE‐choroid
GSM738520 Normal Normal Macular RPE‐choroid
GSM738521 Normal Normal Macular RPE‐choroid
GSM738523 Normal Normal Macular RPE‐choroid
GSM738525 Normal Normal Macular RPE‐choroid
GSM738527 Normal Normal Macular RPE‐choroid
GSM738529 AMD Dry AMD Macular RPE‐choroid
GSM738531 AMD Dry AMD Macular RPE‐choroid
GSM738533 AMD MD1 Macular RPE‐choroid
GSM738535 AMD MD1 Macular RPE‐choroid
GSM738537 AMD MD1 Macular RPE‐choroid
GSM738539 AMD Dry AMD Macular RPE‐choroid
GSM738541 AMD GA Macular RPE‐choroid
GSM738543 AMD Dry AMD Macular RPE‐choroid
GSM738545 AMD Dry AMD Macular RPE‐choroid
GSM738547 AMD Dry AMD Macular RPE‐choroid
GSM738549 AMD Dry AMD Macular RPE‐choroid
GSM738551 AMD CNV Macular RPE‐choroid
GSM738553 AMD Dry AMD Macular RPE‐choroid
GSM738554 AMD MD2 Macular RPE‐choroid
GSM738556 AMD Clinical AMD diagnosis Macular RPE‐choroid
GSM738558 AMD CNV Macular RPE‐choroid
GSM738560 AMD GA/CNV Macular RPE‐choroid
GSM738562 AMD MD2 Macular RPE‐choroid
GSM738564 AMD Dry AMD Macular RPE‐choroid
GSM738566 AMD Dry AMD Macular RPE‐choroid
GSM738568 AMD MD1 Macular RPE‐choroid
GSM738570 AMD CNV Macular RPE‐choroid
GSM738572 AMD Clinical AMD diagnosis Macular RPE‐choroid
GSM738574 AMD Clinical AMD diagnosis Macular RPE‐choroid
GSM738576 AMD Dry AMD Macular RPE‐choroid
GSM738578 AMD GA/CNV Macular RPE‐choroid
GSM738580 AMD Dry AMD Macular RPE‐choroid
GSM738582 AMD Dry AMD Macular RPE‐choroid
GSM738584 AMD MD1 Macular RPE‐choroid
GSM738585 AMD Clinical AMD diagnosis Macular RPE‐choroid
GSM738587 AMD CNV Macular RPE‐choroid
GSM738589 AMD Clinical AMD diagnosis Macular RPE‐choroid
GSM738591 AMD GA Macular RPE‐choroid
GSM738593 AMD MD1 Macular RPE‐choroid
GSM738595 AMD Dry AMD Macular RPE‐choroid
GSM738597 AMD MD2 Macular RPE‐choroid
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exhibited significant associations with the diagnostic genes.
Enriched gene sets meeting a p‐value < 0.05 were selected and
presented for further analysis.

2.5 | In Vitro Analyses

To substantiate the diagnostic relevance of five ferroptosis fea-
ture genes in AMD, a combination of in vivo and in vitro ex-
periments was executed. We induced the human RPE cell line
ARPE‐19 using sodium iodate (SI) and ferrous ammonium
citrate (FAC). SI intervention is a classical method for estab-
lishing an AMD model [26], while FAC, an iron‐containing salt,
is used to induce ferroptosis [27]. The FAC group was treated
with 50mg/mL ferric ammonium citrate, and the SI group was
treated with 2.5 mM SI for 48 h. Quantitative polymerase chain
reaction (qPCR) was employed to measure the expressions of
VEGFA, SLC2A1, HAMP, HSPB1, and FADS2 genes. The pro-
cess involved the extraction of total RNA, synthesis of com-
plementary DNA (cDNA), and utilization of SYBR Green
Premix for qPCR analysis. Statistical evaluation was performed
through independent‐sample t‐test at a significance level of
p< 0.05. The primers used in the experiments were synthesized
by Sangon Biotech (Shanghai, China) and are listed as follows:
human GAPDH (F:5′‐GGACCTGACCTGCCGTCTAGAA‐3′;
R:5′‐GGTGTCGCTGTTGAAGTCAGAG‐3′), human VEGFA
(F:5′‐AGGGCAGAATCATCACGAAGT‐3′; R:5′‐AGGGTCTCG
ATTGGATGGCA‐3′), human SLC2A1(F:5′‐GGCCAAGAGTGT
GCTAAAGAA‐3′; R:5′‐ACAGCGTTGATGCCAGACAG‐3′), hu
man HAMP (F:5′‐CTGACCAGTGGCTCTGTTTTC‐3′; R:5′‐
GAAGTGGGTGTCTCGCCTC‐3′), human FADS2 (F:5′‐TGAC
CGCAAGGTTTACAACAT‐3′; R:5′‐AGGCATCCGTTGCATCT
TCTC‐3′), human HSPB1(F:5′‐ACGGTCAAGACCAAGGAT
GG‐3′; R:5′‐AGCGTGTATTTCCGCGTGA‐3′).

Additionally, Western Blot analysis was conducted to validate the
gene expression levels. Following PBS washing, cells were lysed
with RIPA buffer containing a protease inhibitor cocktail (Sigma
Aldrich). Standard procedures were adhered to during subse-
quent protein extraction. Each channel of 12.5% polyacrylamide
gels received 30 μg of protein extracts. Post‐electrophoresis,
proteins were transferred to nitrocellulose membrane
(Whatman, UK). Subsequently, the membrane was blocked
using 5% nonfat milk or 5% BSA. Following blocking, the
membrane was subjected to overnight incubation with the
primary antibody FADS2 (Proteintech, 28034‐1‐AP) and
SLC2A1 (Proteintech, 21829‐1‐AP) at 4°C and later exposed to a
specific secondary antibody at room temperature for 1 h.
Finally, protein bands were scanned using the Odyssey imaging
system (LICOR). Band intensities were quantified utilizing the
Image Studio System (Version 5.2.5).

2.6 | In Vivo Analyses

C57BL/6J male mice aged 6 to 8 weeks were sourced from
Beijing Vital River Laboratory Animal Technology for experi-
mental purposes. SI was administered intraperitoneally at a
dose of 40mg/kg to establish a mouse model of AMD [26]. After
7 days, mice were humanely euthanized, and their eyes were
carefully extracted for subsequent RPE flatmount and eye sec-
tion preparation. Immunofluorescence staining using ZO‐1
antibody (Proteintech, 21773‐1‐AP), was applied to RPE flat-
mount sections. Further analyses involved paraffin embedding,
hematoxylin and eosin (HE) staining, and immunofluorescence
(IF) staining on eye specimens. The animal experiments
adhered to the ARRIVE guidelines and received ethical
approval from the Ethics Committee of Shanghai Tenth People's
Hospital (Approval No. SHDSYY‐2023‐1902).

TABLE 1 | (Continued)

Sample GEO accession Ocular disease AMD classification Tissue

GSM738599 AMD GA/CNV Macular RPE‐choroid
GSM738601 AMD Clinical AMD diagnosis Macular RPE‐choroid
GSM738603 AMD MD2 Macular RPE‐choroid
GSM738605 AMD Dry AMD Macular RPE‐choroid
GSM738607 AMD Dry AMD Macular RPE‐choroid

TABLE 2 | Genetic risk scores for diagnostic genes.

name OR (univariable) OR (multivariable) OR (final)

VEGFA 1.88 (1.36–2.61, p< 0.001) 1.95 (1.21–3.14, p= 0.006) 1.80 (1.16–2.79, p= 0.009)

SLC2A1 1.64 (1.24–2.17, p< 0.001) 0.69 (0.43–1.11, p= 0.128) 0.71 (0.45–1.11, p= 0.135)

HAMP 1.50 (1.17–1.92, p= 0.001) 1.34 (0.99–1.82, p= 0.060) 1.34 (0.99–1.81, p= 0.054)

HSPB1 0.72 (0.58–0.88, p= 0.002) 0.68 (0.43–1.08, p= 0.102) 0.60 (0.44–0.82, p= 0.001)

XBP1 0.64 (0.48–0.85, p= 0.002) 0.98 (0.60–1.60, p= 0.939)

HERPUD1 0.66 (0.51–0.86, p= 0.002) 0.95 (0.58–1.55, p= 0.841)

FADS2 1.57 (1.18–2.10, p= 0.002) 2.00 (1.06–3.77, p= 0.032) 2.26 (1.53–3.34, p< 0.001)

ATF3 0.82 (0.69–0.98, p= 0.028) 0.87 (0.66–1.15, p= 0.327)

SCD 1.25 (1.01–1.55, p= 0.038) 1.09 (0.71–1.67, p= 0.703)
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2.7 | Statistical Analysis

The experimental procedures were replicated on a minimum of
three separate occasions to ensure the robustness of the find-
ings. For statistical assessments, R version 4.21 and GraphPad
Prism 8 were employed. Two‐group comparisons were sub-
jected to Student's t‐test, while more than three groups were
analyzed using one‐way ANOVA. The significance threshold
was set at p< 0.05, aligning with accepted standards for statis-
tical significance in the field.

3 | Results

3.1 | Identification of DEGs and Functional
Enrichment Analysis

A total of 462 DEGs were identified between AMD and normal
samples using the GSE29801 data set, with 211 genes upregu-
lated and 251 genes downregulated in the disease condition.
Visual representation of DEG distribution was achieved
through a volcano plot (Figure 1A). Subsequent to conducting
GO enrichment analyses, facilitated by the cluster Profiler
software package within the R environment, the foremost Gene
Ontology categories within biological processes (BPs), cellular
components (CCs), and molecular functions (MFs) were dis-
cerned as encompassing the promotion of cell adhesion,
collagen−containing extracellular matrix, and transmembrane
transporter activity, respectively (Figure 1B). Moreover, we also
demonstrated positive regulation of cell adhesion, female
pregnancy, extracellular matrix organization, extracellular
structure organization are the top 4 terms according to p‐values,
and their corresponding pathways and genes association were
visualized in a network graph (Figure 1C). These insightful
findings provide enhanced understanding into the functional
implications of the DEGs in the context of AMD.

3.2 | Identification of the Ferroptosis‐
Related DEGs

A Venn analysis was conducted to assess the overlap between
the DEGs and ferroptosis‐related genes. This analysis identified
10 genes referred to as differentially expressed ferroptosis‐
related genes (DEFGs). These DEFGs encompass VEGFA,
SLC2A1, HAMP, HSPB1, XBP1, HERPUD1, FADS2, SLC2A14,
ATF3, and SCD (Figure 2A). The differential boxplots visually
represent the expression levels of these DEFGs in both the
disease and control groups, offering a concise portrayal of the
gene expression disparities between these two groups
(Figure 2B). These results identified the involvement of
ferroptosis‐associated genes in the pathogenesis of AMD.

3.3 | Identification of the Diagnostic Ferroptosis
Feature Genes Via Machine Learning

Using the gene expression profiles of the 10 DEFGs, a combi-
nation of LASSO regression, SVM‐RFE, and RF algorithms was
employed to identify ferroptosis feature genes in AMD samples

(Figure 3A–C). Nine genes (VEGFA, SLC2A1, HAMP, HSPB1,
XBP1, HERPUD1, FADS2, ATF3 and SCD) were selected as the
feature genes (Figure 3D). Subsequently, a multivariable logistic
regression analysis model was conducted for diagnostic pur-
poses, ultimately comprising five key genes (HAMP, HSPB1,
VEGFA, SLC2A1, and FADS2). Evaluation of the model using
ROC curve analysis revealed an AUC value exceeding 0.7,
indicating favorable predictive performance for the disease
(Figure 3E). Box plots were generated to visualize the distri-
bution of RiskScores in the normal and AMD groups, demon-
strating significantly higher RiskScores in the AMD group
compared to the normal group, thus reinforcing the accuracy of
the model (Figure 3F). The results indicated that VEGFA,
SLC2A1, HAMP, and FADS2 were upregulated, while HSPB1
was downregulated in AMD compared to control samples
(Figure 3G). Additionally, a heatmap further visualized distinct
gene expression patterns across individual samples (Figure 3H).

3.4 | GSEA Analysis for Five Diagnostic
Ferroptosis Feature Genes

The GSEA algorithm was employed to ascertain the differential
regulatory pathways between the high and low expression
groups of the final five diagnostic genes, aiming to identify the
activated signaling pathways in AMD by selecting pathways
that exhibited a close association with the elevated expression
of hub genes. Gene sets exhibiting enrichment with a
p‐value < 0.05 were selected, and a ridge plot was generated to
display the top ten pathways, ordered by their respective
p values (Figure 4A–E). The results indicate that the diagnostic
genes are predominantly enriched in the focal adhesion path-
way and NOD‐like receptors (NLRs), which are involved in
inflammation and immune‐related signaling pathways.

3.5 | Validation of DEGs In Vitro

The RT‐qPCR analysis revealed upregulation of FADS2 and
SLC2A1 in both the FAC and SI experimental groups
(Figure 5A). Considering this finding, we selected these two
genes for further experimental validation. The Western blot
results corroborated the RT‐qPCR findings, indicating congru-
ency between the two techniques (Figure 5B).

3.6 | Expression of FADS2 and SLC2A1 in an
AMD Animal Model

After intraperitoneal injection of SI for 7 days, retinal‐RPE tis-
sues were collected for HE and ZO‐1 staining. HE results
showed significant retinal degenerative changes, including a
marked thinning of the outer nuclear layer, atrophy of the
photoreceptor inner and outer segments, and obvious dis-
organization of the RPE layer (Figure 6A). ZO‐1 staining indi-
cated morphological alterations in RPE cells, characterized by
increased cell area and disrupted hexagonal structure, with
evidence of tight junction breakdown in some areas (Figure 6B).
These observations indicate that SI successfully induced an
AMD mouse model. Furthermore, IF analysis demonstrated
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elevated expression levels of FADS2 and SLC2A1 in the RPE
region of the SI group compared to the control group
(Figure 6C,D).

4 | Discussion

The multifaceted nature of AMD contributes to its challenging
curability. The molecular mechanisms underlying this affliction
remain complex and not completely understood. Presently,
treatment for wet AMD involves intravitreal administration of

anti‐VEGF agents, while effective diagnostic and therapeutic
strategies for dry AMD are yet to be established. Ongoing en-
deavors for dry AMD treatment encompass corticosteroids,
antioxidants, and neuroprotective agents, however, these mod-
alities are still in their preliminary stages and have some
adverse effects [28]. Therefore, there is a pressing need to
investigate novel avenues for diagnosing and managing AMD.
Our investigation establishes a correlation between ferroptosis
and AMD pathogenesis, employs bioinformatics analyses to dis-
cern potential key genetic determinants, and explores potential
therapeutic targets.

FIGURE 1 | Identification and enrichment analysis of DEGs. (A) The volcano plot illustrating the 462 DEGs. (B) The GO barplot enrichment

analysis of DEGs. (C) The GO network enrichment analysis of DEGs.
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We investigated the gene expression profiles of both normal
controls and individuals with AMD using the GEO database,
identifying 462 DEGs. The GO enrichment analysis highlighted
significant involvement in biological processes such as collagen‐
containing extracellular matrix composition, positive regulation
of cell adhesion, and extracellular matrix organization. The
extracellular matrix (ECM) is a network of proteins, fibers, and
molecules that supports cells and provides signaling [29]. It
serves as a foundation for RPE adherence and interaction,
maintaining integrity and function. Within the retinal region,
the ECM influences RPE processes such as adhesion, migration,
and nutrient exchange with nearby blood vessels, crucial for
retinal health [30]. Previous research has provided evidence
demonstrating that perturbations in the integrity and organi-
zation of the ECM within the retinal region correlate with
compromised RPE function observed in AMD [31]. This path-
ological process is further exacerbated by factors such as
inflammation, complement activation, and the participation of
immune cells [32, 33].

Several studies have indicated heightened apoptotic cell death
among individuals with AMD [34]. Meanwhile, ferroptosis, a
novel programmed cell death mechanism [6, 7], necessitates
further exploration into its regulatory implications across vari-
ous disorders and underlying mechanisms. Consequently, we
aimed to enhance our comprehension of ferroptosis‐related

gene functions in AMD phenotyping. An initial step involved
comparing regulatory expressions of DEFGs in ocular tissues
from healthy individuals and AMD patients. The down-
regulated DEFGs in AMD patients compared to healthy con-
trols underscored their pivotal role in AMD pathogenesis.
Employing machine learning classifiers and multivariable
logistic regression, we identified five key genes (HAMP, HSPB1,
VEGFA, SLC2A1, and FADS2). Correlations among these hub
DEFGs were examined, revealing compelling evidence of syn-
ergistic or antagonistic interactions in AMD patients. Impor-
tantly, VEGFA contributes to abnormal vascular growth and
retinal leakage, exacerbating AMD progression [35]. FADS2
influences lipid metabolism and lipid‐related processes relevant
to AMD [36]. SLC2A1 modulates glucose availability in the
RPE, influencing oxidative stress‐mediated AMD pathology
[37]. HAMP, encoding hepcidin, impacts iron regulation and
AMD‐associated inflammation [38]. HSPB1's role in cellular
stress responses and oxidative damage protection has implica-
tions for retinal health and disease trajectory [39]. However,
documentation of these genes' significance in AMD is limited,
necessitating further research.

Previous studies have reported that SI intervention exerts
ferroptotic effects in AMD models [26], and FAC has also been
used to induce ferroptosis [27]. The RT‐qPCR results demon-
strated an upregulation of both FADS2 and SLC2A1 in both the

FIGURE 2 | Identification of DEFGs. (A) The Venn diagram illustrates the genes that are common between DEGs and ferroptosis‐related genes.

(B) Box plots provide an overview of the expression levels of DEFGs in AMD patients.
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FAC and SI cell models. This observation was further validated
by IF analysis. FADS2's involvement in iron‐induced cell death
is through its regulation of lipid peroxide accumulation. Its
function in lipid metabolism, particularly the conversion of
polyunsaturated fatty acids (PUFAs) into bioactive lipid medi-
ators, suggests a potential influence on cellular membrane lipid
composition and oxidative stress, consequently affecting sus-
ceptibility to ferroptosis [40]. This connection becomes more
relevant in conditions like cancer [41] and neurodegenerative
disorders [42], where FADS2's interaction with altered lipid
profiles and oxidative stress aligns with the initiation of fer-
roptosis. In parallel, SLC2A1's role in glucose uptake, especially
in glucose‐sensitive tissues like the retina, holds significance
due to its effects on energy metabolism and NADPH generation,

critical for oxidative stress mitigation. This connects SLC2A1 to
ferroptosis through metabolic and redox pathways [43]. How-
ever, the precise regulatory roles of FADS2 and SLC2A1 in
ferroptosis and their implications in the context of AMD
necessitate further investigation to provide comprehensive in-
sights. Our experimental validation has shown elevated ex-
pression of FADS2 and SLC2A1 in the RPE of AMD mouse
models, potentially offering novel therapeutic targets for future
AMD treatment strategies.

It is imperative to acknowledge the limitations of this study.
Firstly, most of our findings are based on comprehensive bio-
informatics analyses, highlighting the need for further confir-
mation through clinical trials. Additionally, the validation

FIGURE 3 | Machine learning in the identification of ferroptosis‐signatures diagnostic genes. (A–C) identify ferroptosis feature genes using

LASSO regression, SVM, and RF algorithm. (D) The Venn diagram shows the overlap of candidate genes between the above three algorithms. (E)

ROC curve of ferroptosis‐signatures in AMD diagnosis. (F, G) Box plots of RiskScores in the Normal and AMD groups. (H) Clustered heatmap of

ferroptosis‐signatures diagnostic genes expression levels.
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FIGURE 4 | GSEA and small molecule drug prediction analysis. (A–G) GSEA investigation of FADS2, HAMP, HSPB1, SLC2A1, and VEGFA.

FIGURE 5 | Expression levels of ferroptosis‐signature diagnostic genes in the ARPE‐19 cell line (A) mRNA expression of FADS2, HAMP, HSPB1,

SLC2A1, and VEGFA. (B) Protein expression of FADS2 and SLC2A1.ns, no significance; *p< 0.05; **p< 0.01; ***p< 0.001.
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FIGURE 6 | Validation of FADS2 and SLC2A1 expression in an AMD animal model. (A) HE staining shows disruption of the outer nuclear layer

and loss of the RPE layer. (B) ZO‐1 staining indicates damage to the tight junctions of RPE cells. (C, D) IF staining shows high expression of FADS2

and SLC2A1 in the RPE area (indicated by arrowheads).
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studies were conducted in cell cultures and SI models, the rel-
evance of which to human AMD pathogenesis remains unclear.
In future studies, we will utilize ocular tissues from donor eyes
with and without the disease for further verification. Further-
more, while we identified ferroptosis‐related diagnostic genes
involved in AMD progression, whether these diagnostic genes
influence susceptibility to ferroptosis requires additional
investigation. Although this study provides valuable insights,
addressing these limitations is crucial. Incorporating clinical
validation, expanding sample sizes, and conducting in‐depth
mechanistic studies will significantly enhance the robustness
and impact of the findings.
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