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ABSTRACT: Hybrid nanoplasmonic structures composed of
subwavelength apertures in metallic films and nanoparticles have
recently been demonstrated as ultrasensitive plasmonic sensors.
This work investigates the electrokinetically driven propagation of
the assembly mechanism of the metallic nanoparticles through
nanoapertures. The Debye−Hückel approximation for a symmetric
electrolyte solution with overlapping electrical double layers
(EDLs) is used to obtain an analytical solution to the problem.
The long-term silver nanoparticle concentration response is
derived using the homogenization method and a multiscale
analysis. The results indicate that uncharged nanoparticles will
flow through the nanohole array if the nanochannel height is larger
than the Debye length (h0 > λD), while a trapping mechanism
occurs, due to the overlapping of the EDL, when h0 ∼ 3.8λD. For charged nanoparticles, the response to the electric field occurs
locally with the walls of the nanochannel, regardless of its height. For a critical value of the nanochannel length, the leading order of
the concentration field becomes purely diffusive.

■ INTRODUCTION
Optofluidics, the emergent field arising from the synergistic
combination of photonics and microfluidics, has enabled the
development of ultracompact devices with applications in
different fields, such as label-free sensing.1 Ordered arrays
subwavelength apertures, known as nanohole arrays (NHAs),
have been demonstrated as nanoplasmonic sensors that can be
fabricated with accurate periodicities and aperture shapes due
to recent advances in nanofabrication techniques.2 NHAs
feature relatively long channels (in the order of 101 to 102
nm)3,4 with customizable pore sizes.5,6 These nanoapertures
have been used for fluidic transport of considerably small
volumes, and the enrichment of electrocharged analytes results
in improved sensor response7−12 and controllable nano-
injection across the nanostructured substrate. Unlike micro-
fluidics, nanofluidics involve nanostructures where the solid
boundaries are extremely close, and overlapping of electrical
double layers (EDLs) is possible,13 which invalidates the use of
Boltzmann distribution for ionic charge density.
Recent studies have presented analytical models for

overlapped EDLs. Qu and Li14 derived a model to determine
the electrical potential and ionic concentration distributions
between two infinitely large flat plates, establishing corrected
boundary conditions for these distributions. Golovnev and
Trimper15 obtained an analytical solution for the Poisson−

Nernst−Planck equation when Faradaic processes are
discarded, revealing different ion concentration behaviors in
both the short- and the long-time regimes. Zachariah et al.16

analyzed the repulsive forces that appear during the collapse of
the EDLs using the DLVO theory, concluding that the
hydration force is due to multiple layering of hydrate ions,
which subsequently undergo transitions between different
confined adsorbed ion states. Such a case occurs when a
microchannel is connected to a nanochannel, and a micro−
nano interface is formed, leading to charge transport and ion
concentration polarization (ICP).17 ICP enables the enrich-
ment of charged particles, such as biomarkers and ions, as well
as rectification effects on ionic current.18,19 In this regard, Mani
et al.20 and Yaroshchuk and Bondarenko21 established
transport analytical models considering the area average for
ICP, with emphasis on the dominance of axial diffusion in
determining the extent of diffuse layers at micro-to-nano-
channel interfaces when the ion reservoir is large. In the
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context of sensing, the transport and placement of metallic
nanoparticles within and around NHAs to construct hybrid
nanoplasmonic structures with improved sensitivity have been
demonstrated experimentally.11,22,23 However, the reported
analytical work has focused on ionic concentration and does
not address the transport scenarios with charged colloidal
systems.
In this work, we investigate the role of the EDL overlapping

on both charged and uncharged metallic nanoparticles in
nanoconfinement using an analytical approach. The analysis is
focused on the creation of hybrid nanostructures as surface-
enhanced Raman scattering (SERS) substrates, as previously
reported experimentally.11 The investigation involves flow-
through metallic nanoapertures that support surface plasmon
resonance and metallic nanoparticles that naturally exhibit
localized surface plasmon resonance, within a microfluidic
environment under an applied electric field. We analyze the
significance of the field distribution and the influence of the
overlapping EDL on it, elucidating the critical impact of some
parameters leading to novel perspectives on the physics of
nanoparticle transport.

■ HYDRODYNAMIC FORMULATION
The system used in this study encompasses a microfluidic chip
assembly with an embedded metallic NHA under the influence
of a direct current (DC) electric field applied externally, as
shown in Figure 1a. A Newtonian fluid is assumed to contain
small ions (average size ∼1 Å) and large silver nanoparticles
(Ag NPs), flowing through an NHA. Both the ionic and Ag NP
concentrations are initially uniform throughout the system. An
electroosmotic flow (EF) emerges from an externally imposed
electric field E and the induced field in the EDL. The imposed
external field yields the transference of electrons to particles,
resulting in the acquisition of a net negative surface electric
charge. Some particles may undergo polarization while
retaining their electrical neutrality; in this manner, consid-
eration of both charged and uncharged nanoparticles in the
present analysis is warranted. Figure 1b depicts a cross-
sectional view of a single nanohole within the NHA. Notably,
silver nanoparticles exhibit a distinct Gaussian distribution
concentration close to the nanohole’s entrance, a phenomenon
attributed to the localized enhancement of the electric field.8

The effect of the electric field gradient at the rim of the
nanoholes on both the ions and the Ag NPs is of particular
interest for producing hybrid nanostructures that enable SERS.
This system, along with the assumption of NHA axis symmetry
regarding electrokinetic phenomena, is the main domain for
the analytical solution presented in this work. The nanohole is

modeled as an isothermal flat nanochannel of height h0 and
length L. A 2D Cartesian system of coordinates x y( , ) is
adopted at the nanochannel left inlet, where · indicates that the
variable has dimensional units. The extension of the model to
cylindrical coordinates is trivial, as reported by Pennathur and
Santiago.3

Governing Equations. The governing equations that serve
as a starting point to investigate the EF in this study are the
continuity equation

u 0· = (1)

and the Navier−Stokes equations

t
Pu u u( )m e+ · = + ·

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑ (2)

where ρm is the fluid density, considered constant, u vu ( , )=
is the velocity vector, t is the time, P is the pressure, ∇ is the
Nabla operator defined as x y( / , / ), and is the
stress tensor for a Newtonian fluid, given by

u u( )T= + (3)

where μ is the dynamic viscosity of the fluid. The
hydrodynamic boundary conditions related to the imperme-
ability and no-slip condition at the walls are given by

u n 0· = (4)

and

u u n n( ) 0· = (5)

respectively. n represents the unit vector normal to the
microelectrode surface pointing toward the fluid. The pressure
is P0 at x = 0,L. The electrical body force in eq 2 consists of the
electric charge density ρe and the total electrical potential ,
which is governed by Poisson’s equation

e

m

2 =
(6)

where ϵm denotes the dielectric permittivity of the medium.
Here, is split into the induced nonuniform equilibrium
potential in the EDL, y( ), and the potential describing the
external electric field x xE( ) x= , where Ex = ϕ0/L and ϕ0 is
the voltage provided by the generator. The boundary condition
for at the walls is = ζ, where ζ is the zeta potential. The
electrical charge density ρe is proportional to the local
concentration difference between the cations and anions. For

Figure 1. (a) Schematic representation of the microfluidic chip assembly connected to a DC source containing multiple silver nanoparticles and an
NHA embedded in a gold film. (b) Close-up view of a nanohole from the NHA where silver nanoparticles respond to the induced electrical
potential in the overlapped EDL.
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a symmetric (z/z) electrolyte solution, the charge density can
be defined as

ze n n( )e = + (7)

where z is the valence of the electrolyte, e represents the
fundamental charge of an electron, and n± represents the
concentration of cations and anions, respectively. Transport of
ions in a dilute solution is described by the Nernst−Planck
equation24

u
n
t

n
D ze
k T

D n ni
i

B
=±

± ± ±
i
k
jjjjj

y
{
zzzzz (8)

where Di is the diffusion coefficient of the ions, kB is the
Boltzmann constant, and T is the absolute temperature.
Equation 8 is subject to the following boundary conditions14

n n n n yand at 0c c= = =+ + (9)

The concentration field c of the diffusing charged NPs is
governed by the convective diffusion equation25

u
c
t

c D c
Dze
k T

c2

B
+ · = + ·

(10)

where the molecular diffusion coefficient of nanoparticles,
denoted as D, is determined through the Stokes−Einstein
equation26

D
k T

R6 p

B=
(11)

where Rp is the hydrodynamic radius of the nanoparticles. In
eq 10, the second right-hand term corresponds to an
electromigration phenomenon, which consists of nanoparticle
motion under the influence of Coulomb force. The Coulomb
force appears between the gradient of the total electrical
potential and the electrically charged NPs. Therefore, this term
should only be considered for charged NPs. The boundary and
initial conditions associated with eq 10 are

D c
y

c y h0 at 0+ = = ±
(12)

c
x

x L0 at 0,= =
(13)

c C f x t( ) at 0= * = (14)

where is the rate of disappearance of NPs due to an
irreversible first-order reaction between the solution and the
walls,27 C* is the initial concentration of NPs,
f x x aL( ) exp ( / )2= [ ], and a is a constant. In boundary
conditions 12 we consider two cases: (i) the nonpenetration
boundary for uncharged nanoparticles and (ii) the so-called
perfect-sink model for charged nanoparticles. The non-
penetration boundary is obtained when = 0, which specifies
that there is no penetration of the particles at the boundary,
ensuring that any change in concentration at the wall is solely
due to diffusion and not advection.28 The boundary acting as a
perfect sink, which is used in theories of diffusion of charged
particles,29 is obtained when h D/0 . This model assumes
that all particles arriving at the wall will be irreversibly
adsorbed immediately and subsequently disappear from the
system.30

Nondimensional Mathematical Model. The governing
equations together with their corresponding boundary
conditions can be written in a nondimensional form by
introducing the dimensionless variables x = x/L, y y h/ 0= ,
u u U/ c= , v vL h U/ c0= , t t D L/ D= , p P P h U( ) / Lc0 0

2= ,
h U/ c0= , ψ = /ζ, / 0= , n n n/=± ± , and c c C/= *.

Here, Uc = ϵmζ2/μL is the characteristic velocity,31 tc = LλD/D
is the harmonic time,32 k T z e n( /2 )D m B

2 2 1/2= is the Debye
length, and n∞ is the ionic number in the concentration in the
bulk solution. When defining the nondimensional pressure p′,
we have introduced the useful definition P = p′ − (1/2)(dψ/
dy)2 introduced by Ajdari,33 which serves to eliminate the
electric terms in the momentum equation in the y direction.
Therefore, the expanded nondimensional forms of the
hydrodynamic, electric, and concentration governing eqs
1−3, 6−8, and 10 are as follows
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In eqs 15−20, ϵ = λD/L, η = h0/L, k = h0/λD, α = −ζ/ϕ0, δ =
−ζze/kBT, DT = D/Di, Pe = UcλD/D is the Pećlet number, and
Re = ρmUch0/μ is the Reynolds numbers. The dimensionless
boundary conditions of eqs 15−20 are

u v y0 at 1= = = ± (21)

P x0 at 0, 1= = (22)

y1 at 1= = ± (23)

n
n
n

n n
n

yand at 0
c c

= = =+
+

(24)

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.4c06715
J. Phys. Chem. C 2024, 128, 20983−20991

20985

pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.4c06715?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


c
y

c y0 at 1+ = = ±
(25)

c
x

x0 at 0, 1= =
(26)

and

c f x t( ) at 0= = (27)

where
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and h D/0= . In conditions 22, the induced potential
gradient is zero at x = 0,1 due to symmetry. In nanofluidic
systems, typical values of the parameters ϵ, DT, and Re are very
small (λD = 10 nm, L = 200 nm, Di = 10−9 m2/s, D = 8.5844 ×
10−12 m2/s, Uc = 0.002 m/s, ϵ = 0.05, DT = 10−3, and Re = 2.5
× 10−4), while η < 1 (η = 0.5). Therefore, a simplified version
of the nondimensional governing equations, as well as a regular
perturbation technique,34 can be used to solve the set of
mentioned equations for small values of the parameter ϵ. Thus,
a regular expansion is proposed for each dependent variable
(say, X) in the following form

X X X ( )0 1
2= + + (29)

where X = u, v, P, ψ. Substituting the expansion eq 29 into the
nondimensional governing eqs 15−19, and collecting terms of

(1), we obtain the following problems
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0, 0= ±
±

±

(34)

From eq 32, P0 = P0(x) should be determined as a part of
the hydrodynamics problem together with u0 and v0. The
solution of Nernst−Planck eq 34 is given by14
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where ψc is the unknown electrical potential at the center of
the nanochannel. In eqs 35 and 36 it is assumed that the
concentrations of cations and anions at the center are the same
(n0,+ = n0,− = 1 at y = 0). Further applying the Debye−Hückel
approximation yields

n 1 c
0, 0= ++

i
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jjjj

y
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zzzz (37)

and

n 1 c
0, 0=
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y
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zzzz (38)

Substituting eqs 37 and 38 in 33 returns

d
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The (1) solution of Poisson eq 39, considering the
boundary conditions [eq 23], is given by

ky
k

1
cosh( )
cosh( )

c c
0 = +

i
k
jjjj

y
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zzzz (40)

To recover the Boltzmann equation (ψ = 0 at y = 0 and k ≫
1), we have assumed that ψc = ζ/k, obtaining the following
simplification

k
k

k
ky
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1 1 cosh( )
cosh( )0 = + i

k
jjj y

{
zzz

(41)

The general hydrodynamic solution of eq 31 is obtained by
substituting eq 41 in the momentum equation and integrating
the result twice with respect to y; considering eq 21 as the
boundary condition, we obtain that the velocity profile in the
lowest order is given as

u
P
x

y
d
d

( 1)
1

(1 )0
0 2

0= +
(42)

In the above equation, the pressure gradient is unknown and
can be obtained using the continuity equation, eq 30. The
suggested procedure is to substitute eqs 42 into 30, obtaining a
solution for v0 and P0. However, one should find that the
leading order for the variables v0 and P0 is zero. Therefore, the
above physically means that there are no induced pressure
terms in this order and that the velocity field is hydrodynami-
cally developed. Therefore, substituting eqs 41 in 42 yields

u k
k

ky
k k
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The next step is to assess the ( ) solutions for ψ1, u1, v1,
and P1. In this order, the ion concentration does not get
affected by convection, thus making the ( ) Poisson equation
to yield ψ1 = 0, leading to u1 = v1 = P1 = 0 due to its role as the
primary force in the momentum equations.
Homogenization Method. To obtain an analytical

solution for the concentration field of Ag NPs, the
homogenization method35 is proposed to derive an expression
that allows us to solve the convective diffusion equation. Thus,
three distinct time scales are involved in the analysis of Ag
NPs, which are as follows: the harmonic time,32 t0 ∼ LλD/D,
the transverse diffusion time, t1 ∼ 4h02/D, and the longitudinal
diffusion time, t2 ∼ L2/D.
From typical values of the previous times (L = 200 nm, h0 =

100 nm, t0 = 2 × 10−4 s, and t1 = t2 = 4 × 10−3 s), the following
two time scales can be introduced

t t t t t,0 1 2= = = (44)

and using eq 29 to expand for the dimensionless concentration
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c c c c ( )0 1
2

2
2= + + + (45)

where cj = cj(x,y,t0,t2) and j = 0,1,2. The original time derivate
becomes, according to the chain rule

t t t0 2
+

(46)

Substituting eqs 45 and 46 in 20 yields
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At order (1), the governing equation is given by

c
y y

c
y

d

d
0

2
0

2
0 0+ =

(48)

To obtain a solution for eq 48, we consider two cases:
uncharged nanoparticles, which neglect the electromigration
term (second left-hand term) in eq 48, and charged
nanoparticles. In addition, both cases must satisfy the following
boundary condition due to the symmetry of the nanochannel

c
y

y0 at 00 = =
(49)

In both cases, the solution at (1) is c0 = Cx(x,t0,t2). The
procedure that determines the function Cx is given in the lines
below. Taking the ( ) from eq 47 yields the governing
equation for c1
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The next step is to take the cross-sectional average of eq 50,

defined as f f yd1
2 1

1= for any function f, where · will
indicate the averaged function. In this context, the first right-
hand term in eq 50 becomes zero as a consequence of its
symmetry with respect to the y-axis, which is known from the
inflection point at y = 0 [eq 49]. Similarly, the second right-
hand term becomes zero due to the product of two odd
functions. Thus, the cross-sectional average of eq 50 is
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Substituting eqs 51 into 50 yields
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Considering the linearity of eq 53, the solution c1 can be
expressed as

c k Pe
C
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1
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(54)

and its substitution in eq 53 leads to a second-order ordinary
differential equation for B(y) as follows
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First, eq 55 is solved for uncharged nanoparticles using
boundary condition 25 considering β = 0 as follows

dB
dy

y0 at 1= = ±
(57)

Solving eq 55 for uncharged NPs, neglecting the electro-
migration term (second left-hand term) in eq 55, yields
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For charged nanoparticles (β ≫ 1), eq 55 was solved using
the fourth-order Runge−Kutta method with the aid of the
shooting approach together with the following boundary
condition [eq 25]

B y0 at 1= = ± (59)

The ( )2 from eq 47 is given by
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Substituting eqs 51 and 54 in 60 returns
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Taking the cross-sectional average of eq 61, the following
governing equation is obtained

C
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where
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For uncharged nanoparticles, was calculated by
substituting eqs 56 and 58 in 63, obtaining the following
equation
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For charged nanoparticles, was calculated by using
numerical methods. Finally, eq 51 is added to 62, where the
artifice of two times is no longer needed and can be removed35
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where

Peu 1
0=

(66)

The second right-hand term in eq 66 is part of electro-
migration and should only be considered for charged
nanoparticles. First, we propose a solution for Cx that
eliminates the convective term in eq 65, i.e., the first right-
hand term, as follows
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Substituting eqs 67 into 65 yields

w
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The initial and boundary conditions of eq 68 are taken from
eqs 26−28 as follows

w
x

x0 at 0, 1= =
(69)

and

C f x t( ) at 0x = = (70)

The general solution for the leading order, using the Fourier
method for eqs 68 and substituting 67, is
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■ RESULTS AND DISCUSSION
In the Nondimensional Mathematical Model and Homoge-
nization Method sections, the nondimensional potential in the
EDL, velocity vector, and concentration field of silver
nanoparticles, subjected to the electromigration effect, were
calculated. To estimate the values of dimensionless parameters
involved in the analysis, we consider values of physical and
geometrical parameters that have been reported in previous
work:11 h0 = 100 nm, L = 200 nm, Rp = 25 nm, T = 293 K, ϵm
= 7.8 × 10−10 C/V m, ρm = 997 kg/m3, μ = 1 × 10−3 kg/ms, ϕ0
= 3 V, ζ = −25.4 × 10−3 V, z = 1, n∞ = 6.022 × 1023 m−3, λD =
10 nm, Uc = 2.5 × 10−3 m/s, D = 8.58 × 10−12 m2/s, and Di =
1.65 × 10−9 m2/s. With the previous physical domain, the
dimensionless parameters for the calculations assume the
following values: ϵ = 0.05, k = 10, η = 0.5, α = 8.4 × 10−3, δ =
1, Re = 2.5 × 10−4, Pe = 2.93, and u 95.680 = . For the
analytical process, we consider uncharged and charged Ag NPs,
obtaining 2 102× and 1.8 104× at k = 10.

Figure 2. Nondimensional concentration field c for uncharged nanoparticles at k = 10, evaluated at the nondimensional time (a) t = 0 and (b) t =
10−5. Nondimensional concentration field c for charged nanoparticles at k = 10 and (c) t = 0 and (d) t = 10−5.
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Besides, the nondimensional concentration field is governed by
the following equation

c C x t k Pe
C
x

B y( , ) ( ) ( )x
x2 2= + +

(72)

In Figure 2c, the nondimensional concentration field [eq 72]
is shown for both charged and uncharged Ag NPs at k = 10.
The selected times are determined using the time-dependent
diffusive component in eq 71 to counteract the condition

1. As t increases beyond these selected values, the
nondimensional concentration field converges to a constant
value, i.e., c a /2= . The first noticeable effect in Figure 2a
is the propagation of NPs from their initial concentration at t =
0, which occurs rapidly throughout the entire system. This
phenomenon is primarily attributed to diffusion, and notably, it
conserves the original distribution of NPs but elongates along
the system. The concentration distribution at x = 0.2 at this
initial time is exclusively influenced by the initial boundary
condition [eq 70]. Figure 2b shows the concentration field for
uncharged nanoparticles at t = 10−5, where a distinctive
negative concentration is observed at the walls of the
nanochannel. This negative concentration indicates a deficit
of nanoparticles close to the walls. On the other hand, positive
concentration values at the entrance, middle, and exit of the
nanochannel indicate that uncharged nanoparticles, initially
located near the entrance, are driven toward the center of the
channel, flow through it, and are eventually expelled at the
opposite end. Figure 2d shows that the concentration field for
charged nanoparticles is presented at t = 10−5. In this case, a
concentration value of c = 0 indicates the occurrence of the
reaction of NPs with the walls, as can be appreciated from eqs
13 and 59. This outcome suggests that most charged NPs react
primarily at the entrance and exit regions of the nanochannel,
while the excess of NPs that cannot react at the walls is
concentrated at the central region. Furthermore, the coefficient
, as defined in eq 66, may become zero for charged

nanoparticles implying that, under certain nanochannel
dimensions, no convective transport can take place for the
leading order of the concentration field. An analytical
expression for the critical nanochannel length, denoted as
Lcrit, is derived by eq 66, yielding Lcrit = 12πRpλD3n∞ f(k),
where f k u( ) 0= [eq 52]. For instance, at k = 10, this results
in Lcrit = 474 nm. However, it is noteworthy to mention that
for the current ratio / 1, no significant changes in the
concentration fields are discernible even at the critical
length Lcrit. To improve the concentration field with

convection, it is necessary to increase the / ratio. Our
analysis, using eqs 64−66, reveals that this can only be
achieved by increasing the parameter α and/or decreasing k =
h0/λD. The parameter α = −ζ/ϕ0 can be increased by
subjecting the system to an external heat flux,36 or by reducing
the applied voltage from the generator. Caution must be
exercised when decreasing ϕ0 since this would cause a
quadratic reduction in the dielectrophoretic force and thus is
not recommended. Considering the reduction of h0, a lower
limit of k = 2.5 is deduced. This requirement ensures that the
height of the nanochannel allows the passage of at least one
nanoparticle through it, i.e., h0 = Rp = 25 nm.
In Figure 3, the nondimensional concentration field at k =

2.5 is shown. In Figure 3a, a pronounced trapping mechanism
for uncharged nanoparticles is evident, whereby a significant
quantity of Ag NPs becomes trapped near the center of the
nanochannel. This change in behavior is governed by the
variable B(y), which, in return, is a consequence of the overlap
within the EDL. This phenomenon can be elucidated by
considering the representation of eqs 58 with 39 and 42, as
follows
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The trapping mechanism is observed to manifest when
tanh(k) < 0.999 which is obtained when k = 3.8. In Figure 3b,
the concentration field for charged Ag NPs is depicted, where
it is observed that these nanoparticles undergo electrical
reactions predominantly at the exit of the nanochannel while
filling the nanohole in a counter-flow manner. For the specified
value of k = 2.5, the critical length is calculated to be Lcrit = 212
nm.

■ CONCLUSIONS
Propagation of uncharged and charged nanoparticles due to an
EF and electromigration in a nanochannel with overlapping
EDLs has been studied by deriving an analytical expression for
the ionic distribution, hydrodynamic forces, and Ag NP
concentration. From the current analysis, the following major
points are obtained: (i) for charged nanoparticles, colloidal
transport convection is countered by electromigration, where a
critical length of the nanochannel will produce a pure diffusion
process for the leading concentration field solution; (ii) for
uncharged nanoparticles, a trapping mechanism can be
achieved due to overlapping of the EDL at k = 3.8; and (iii)

Figure 3. Nondimensional concentration field c at the nondimensional time t = 10−4 and k = 2.5 for (a) uncharged nanoparticles and (b) charged
nanoparticles.
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in addition to modifying the nanochannel dimension, the
propagation of colloids can be achieved by increasing the
surface potential ζ through an external heat source. This last
finding requires that the energy equation be coupled with the
governing equations. Further studies on the propagation of
colloids in nanoconfinement would be required to investigate,
experimentally, the nanoaperture dimension and the variation
in zeta potential. The latter could be achieved by using an
external heat source36 or by modifying the ionic concentration
of the solvent,14 as both approaches invalidate the Debye−
Hückel approximation.
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