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ABSTRACT
Computational approaches using theoretical calculations and data scientific methods 
have become increasingly important in materials science and technology, with the 
development of relevant methodologies and algorithms, the availability of large materials 
data, and the enhancement of computer performance. As reviewed herein, we have 
developed computational methods for the design and prediction of inorganic materials 
with a particular focus on the exploration of semiconductors and dielectrics. High- 
throughput first-principles calculations are used to systematically and accurately predict 
the local atomic and electronic structures of polarons, point defects, surfaces, and inter-
faces, as well as bulk fundamental properties. Machine learning techniques are utilized to 
efficiently predict various material properties, construct phase diagrams, and search for 
materials satisfying target properties. These computational approaches have elucidated 
the mechanisms behind material functionalities and explored promising materials in 
combination with synthesis, characterization, and device fabrication. Examples include 
the development of ternary nitride semiconductors for potential optoelectronic and 
photovoltaic applications, the exploration of phosphide semiconductors and the optimi-
zation of heterointerfaces toward the improvement of phosphide-based photovoltaic 
cells, and the discovery of ferroelectricity in layered perovskite oxides and the theoretical 
understanding of its origin, all of which demonstrate the effectiveness of our computer- 
aided materials research.
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IMPACT STATEMENT
The developed first-principles and machine-learning approaches in conjunction with experi-
ments accelerate the design and exploration of new semiconductors and dielectrics.

1. Introduction

Inorganic semiconductors and dielectrics are essential 
components of electronic and optoelectronic devices 
in modern society. To meet the demands for further 
improvement of the material and device performance, 
not only the optimization of device structures but also 
the exploration of novel materials with superb proper-
ties is needed, particularly for innovating new applica-
tions [1–8]. However, the search for as-yet-unknown 
or as-yet-unused materials with desired properties and 
sufficient stability is generally challenging. It typically 
requires huge efforts and costs for a series of experi-
ments from synthesis, crystal- and micro-structure 
characterization, and property measurements to 
device fabrication and optimization.

Computational approaches using theoretical calcu-
lations and data scientific methods can be helpful to 
accelerate such materials research if they allow us to 
make reliable predictions. With the development of 
methodologies and algorithms and the enhancement 
of computer performance, theoretical calculations 
such as first-principles calculations are applicable to 
a wider variety of material issues and, therefore, play 
increasingly important roles nowadays [9–13]. Data 
scientific methods such as machine learning are 
being spread in the field of materials science and 
technology, as larger data becomes available [14–16]. 
Several computational databases are already open to 
the public and widely used in materials research. 
Examples include the Material Project [17], AFLOW 
Distributed Materials Property Repository [18], Open 
Quantum Materials Database (OQMD) [19], 
Electronic Structure Project (ESP) [20], Open 
Materials Database [21], Materials Cloud [22], and 

Novel Materials Discovery (NOMAD) Repository 
[23]. Efforts to construct open experimental databases 
for inorganic materials have also been made [24,25].

To deploy such theoretical calculations, machine 
learning, and their combinations in a broader variety 
of materials studies, further development of meth-
odologies and algorithms is desired. In particular, 
high-quality and large datasets are key to the effective 
use of machine learning. First-principles calculations 
are able to generate data on diverse material proper-
ties, including the atomic and electronic structures 
and related properties of perfect crystals, amorphous 
phases, point defects, dislocations, surfaces, grain 
boundaries, and heterointerfaces. However, the pre-
diction accuracy and the computational efficiency of 
first-principles calculations are usually in a trade-off 
relationship. This issue particularly matters when we 
deal with imperfect crystals that require the use of 
large simulation models and the consideration of var-
ious configurations. It is essential to develop accurate 
but efficient computational schemes to overcome this 
situation. Moreover, the development of new materi-
als should be accelerated if reliable computational 
screening of a tremendous number of candidate mate-
rials is doable and combined with experiments 
appropriately.

In this article, we review our combined computa-
tional and experimental approaches to inorganic semi-
conductors and dielectrics. In Sec. 2, we describe the 
first-principles calculation methods that allow for 
accurate and efficient prediction of various material 
properties, not only bulk electronic structures and 
relevant fundamental properties but also the forma-
tion energies, geometries, and electronic structures of 
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polarons, point defects including native defects and 
dopants, surfaces, and interfaces. As a novel machine 
learning approach, we emphasize an efficient con-
struction of phase diagrams with the aid of active 
learning. The applications of these computational 
methods to various materials research issues are also 
shown, where first-principles calculations, machine 
learning techniques, and/or experiments are com-
bined to accelerate the prediction of material proper-
ties, the exploration of materials with desired 
properties, and the suggestion of synthesis conditions. 
In Sec. 3, we discuss the design and exploration of new 
semiconductors and dielectrics by combining experi-
mental and computational approaches. This includes 
the development of nitride and phosphide semicon-
ductors for optoelectronic and photovoltaic applica-
tions, followed by phosphide-based photovoltaic cell 
fabrication, and the discovery of new layered perovs-
kite oxide ferroelectrics. The origins of their function-
alities have been elucidated with the support of 
electronic structure and chemical bonding analyses 
using the first-principles calculations. We then sum-
marize our work and provide an outlook on compu-
ter-aided materials research in Sec. 4.

2. Development and application of 
computational methods for predicting the 
structures, properties, and phase diagrams of 
semiconductors and dielectrics

2.1. First-principles approaches to polarons, 
point defects, surfaces, and interfaces

We have developed computational methods based on 
first-principles calculations to predict the formation 
energies and the local atomic and electronic structures 
of polarons [26–28], point defects [28–39], disloca-
tions [40], surfaces [41–49], and interfaces 
[40,41,44,46,50,51], as well as bulk fundamental prop-
erties and stability [41,44,52–58], accurately and/or 
efficiently. The first-principles calculations are con-
ducted using the projector augmented-wave method 
[59] as implemented in the Vienna Ab initio 
Simulation Package [60,61]. Appropriate corrections 
have been applied to overcome the limitations in the 
description of the electronic structure [26,34,44,62] 
and the restriction in the simulation cell size [30,63]. 
The construction of simulation models and calcula-
tion processes are automated to enable high-through-
put calculations [34,35,42,45,55]. Such approaches are 
briefly described below with an emphasis on the case 
of surfaces.

Inorganic semiconductors and dielectrics, which 
are our main targets, have finite band gaps, as well 
as insulators. It is well known that standard 
exchange-correlation functionals such as the local 
(spin) density approximation (L(S)DA) [64–66] 

and the generalized gradient approximation (GGA) 
[67–70] to density functional theory [71] tend to 
underestimate band gaps of many systems. In addi-
tion, localized states in solids are not well described 
by these approximations [13,52,72,73]. This draw-
back can be concisely remedied using Hubbard 
U corrections, so-called L(S)DA+U and GGA+U, 
when the localized states mainly originate from 
particular atomic orbitals [72,73]. To better describe 
the overall electronic structures of semiconductors, 
dielectrics, and insulators, hybrid functionals that 
partially incorporate the non-local Fock exchange 
are often used nowadays [74–77]. However, the 
results depend on the form and parameters in 
hybrid functionals such as the mixing amount of 
the Fock exchange, the optimal value of which by 
nature depends on the electronic structures of the 
systems of interest because of the system-dependent 
screening behavior [74,78,79]. Dielectric-dependent 
hybrid functionals are often effective in overcoming 
this issue, a concise form of which uses the Fock 
exchange mixing value determined from the elec-
tronic contributions to the dielectric constants cal-
culated for materials of interest [78,80,81]. This 
approach has been reported to well reproduce the 
band gaps of prototypical semiconductors and insu-
lators [78,80,81].

Hybrid functional calculations are computationally 
demanding, particularly when dealing with polarons, 
dislocations, point defects, surfaces, and interfaces 
using supercells. If reasonably applicable, we conduct 
dielectric-dependent hybrid functional calculations 
non-self-consistently on top of the GGA or GGA+U. 
For prototypical materials, we have shown that this 
approach dramatically accelerates electronic structure 
calculations with sufficient accuracy preserved 
[34,44,45,49,82]. Examples of band gap predictions 
for prototypical semiconductors and insulators are 
shown in Figure 1 [44].

The GW [83] and related approximations based on 
many-body perturbation theory enable us to obtain 
quasi-particle band structures. For prototypical sys-
tems with relatively simple band structures, the band 
gaps are well reproduced using standard GW calcula-
tions on top of the GGA, as shown in Figure 1. 
However, the accuracy depends significantly on the 
level of the approximations for other properties such 
as localized semi-core states, ionization potentials 
(IPs), and electronic affinities (EAs) [41,52], as well 
as the case of materials with more complicated band 
structures [84]. Calculations using a high level of the 
GW approximation and beyond are rather computa-
tionally demanding and, therefore, not suited to high- 
throughput data generation. In our study that aims at 
data-driven approaches, we have occasionally used 
GW calculations to check the results of GGA(+U) 
and hybrid functional calculations.
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The non-self-consistent hybrid functional 
approach allows us to make band-edge corrections to 
the GGA(+U) results by utilizing the fact that electro-
static potentials do not change from the input GGA 
(+U) values. This feature is advantageous in the accel-
erated evaluation of the formation energies and elec-
tronic levels of polarons and point defects if the 
polaron and defect states are reasonably described 
using the GGA(+U) [34,85–88]; otherwise, we use 
self-consistent hybrid functional calculations even 
though they are computationally rather demanding.

Surface band-edge positions with respect to the 
vacuum level, namely IPs and EAs, and interfacial 
band offsets are also efficiently evaluated using the 
non-self-consistent hybrid functional approach. In 
typical evaluation procedures for the surface and 
interface band positions, the results for surface or 
interface and bulk models are combined through the 
electrostatic alignment [13]. This is schematically 
shown in Figure 2 [49]. Here, standard self-consistent 
hybrid functional calculations of surfaces and inter-
faces are computationally expensive in many cases. 
Overall computational costs are dramatically reduced 
if the bulk electronic structures are obtained using 
non-self-consistent hybrid functional calculations on 
top of the GGA(+U) and electrostatically aligned with 
the surface or interface results treated using the GGA 
(+U) [44].

In combination with an algorithm for automatic 
non-polar surface model generation [42], we have 

conducted first-principles calculations of in total 
about 3000 surface models for non-metallic binary 

Figure 1. Band gaps of prototypical semiconductors and insulators from first-principles calculations using various approximations, 
including non-self-consistent (nsc) dielectric-dependent hybrid functional approaches, compared with reported experimental 
values. Adapted with permission from ref. [44]. Copyright 2017 American physical society.

Figure 2. Schematic showing the computational procedures for 
the evaluation of IPs and EAs of non-metallic solids. Two 
approaches using theoretical (first principles) calculations and 
machine learning (neural network) are illustrated. Reprinted 
from ref. [49] under a creative commons attribution 4.0 interna-
tional license.
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and ternary oxides using the aforementioned non-self- 
consistent dielectric-dependent hybrid functional 
approach [49]. The resultant IPs and EAs for 2195 
binary oxide surfaces are shown in Figure 3 [49]. The 
upper panel includes the results for various poly-
morphs and surface orientations, and the IPs and 
EAs are widely spread even within the common cation 
species. Still, we can see some chemical trends related 
to the group and period of the constituent element 
(cation) in the periodic table. The lower panel shows 
a comparison with reported experimental values. The 
IPs and EAs of solids, by nature, depend on the surface 
atomic structures and, therefore, the surface orienta-
tion, termination plane, reconstruction, adsorption, 
and contamination, all of which affect the surface 
dipole contributions [89–93]. Ideally speaking, identi-
cal surfaces should be considered for the experiments 
and theoretical calculations. However, available 
experimental values are limited for oxides, especially 
for well-characterized surfaces at the atomistic level. 
Nevertheless, reasonable agreement is found between 
theory and experiment overall. Our previous study has 
found that the non-self-consistent dielectric-depen-
dent hybrid functional calculations can reproduce 

experimental values better in the case of prototypical 
semiconductors with surface atomic structures 
reported [44], for which a direct comparison between 
theory and experiment is more straightforward and 
meaningful. In addition, highly accurate prediction of 
the IPs and EAs requires a rather sophisticated 
approximation, for instance, the GWΓ1 approach 
based on many-body perturbation theory [41,52]. 
Given that such calculations are computationally 
demanding even for systems with small unit cells, we 
believe that the non-self-consistent dielectric-depen-
dent hybrid functional approach is a well-balanced 
scheme suited for high-throughput studies.

In the above, we consider the cases where atomic 
relaxation is not significant at the surfaces. In reality, 
however, surfaces often show complicated and dra-
matic structural reconstructions [94–98]. As a case 
study, we have modeled macroscopically stoichio-
metric and nonpolar reconstructed (001) surfaces of 
A(I)B(V)O3 (NaTaO3, KNbO3, and KTaO3), A(II)B 
(IV)O3 (CaTiO3, SrTiO3, BaTiO3, and BaZrO3), and 
A(III)B(III)O3 (YAlO3, LaAlO3, and LaGaO3) perovs-
kites using a combination of first-principles calcula-
tions and an evolutionary algorithm [43,47]. Four 

Figure 3. Theoretical IPs and EAs for 2195 nonpolar surfaces of binary oxides obtained using non-self-consistent dielectric- 
dependent hybrid functional calculations. A comparison with reported experimental values is given in the lower panel, where the 
negatives of the IPs and EAs corresponding to the valence band maxima and conduction band minima against the vacuum level, 
respectively, are plotted. The experimental values are indicated by horizontal solid and broken bars. The theoretical values for 
various polymorphs and surface orientations are included when the experimentally investigated crystal structures and/or surface 
orientations have not been specified. Reprinted from ref. [49] under a creative commons attribution 4.0 international license.
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types of representative reconstructed patterns were 
obtained with diverse atomic arrangements, as illu-
strated in Figure 4(a) [47]; here, the cation exchange 
structure has reproduced the previously predicted one 
for KTaO3 [99]. Significant dependency of the valence 
band maximum (VBM) and the conduction band 
minimum (CBM) relative to the vacuum level (the 
negatives of IPs and EAs, respectively) on both com-
position and reconstructed structure is recognized in 
Figure 4(b), which is explainable in terms of the 
atomic configurations near the surfaces [47]: the 
decrease of the coordination number of cation A (B) 
at the surfaces leads to shallow (deep) VBMs and 
CBMs relative to the vacuum level. This chemical 
trend is clarified using relative coordination number 
ratio nA� O

surf =nA� O
bulk

nB� O
surf =nB� O

bulk
, where nA Bð Þ� O

surf and nA Bð Þ� O
bulk are the 

coordination numbers of cation A (B) at the surface 
and the bulk, respectively.

Other computational methodologies developed 
include those for predicting the band positions at 
polar surfaces and interfaces using slab models with 
appropriate pseudo-hydrogen passivation [46].

2.2. Combination of first-principles calculations 
and machine learning to accelerate 
material-property prediction and materials 
exploration

Needless to say, machine-learning models can be 
effective in accelerating the prediction of various 
material properties, the exploration of target materials 
for diverse purposes, and so forth. Since the assess-
ment of the accuracy and efficiency of the surrogate 

models particularly matters here, we mainly discuss 
the accuracy of our property prediction models in this 
section, as well as the efficiency of our models for 
exploring materials with desired properties and assist-
ing the construction of phase diagrams.

Once a reasonably accurate and large dataset is 
obtained from first-principles calculations, machine 
learning can be powerful if appropriate descriptors 
are available. We have constructed accurate and effi-
cient prediction models using machine learning tech-
niques for bulk fundamental properties such as band 
gaps and dielectric constants [55]. Moreover, point 
defect and surface properties can also be predicted 
with sufficient accuracy using high-throughput first- 
principles calculation datasets [34,49]. Examples 
include the prediction models of the IPs and EAs of 
binary oxide surfaces shown in Figure 5 [49]. An 
artificial neural network with an attention layer is 
constructed for each of the IP and EA cases using the 
smooth overlap of atom positions as structural 
descriptors [100]. Assuming that the atomic relaxation 
does not significantly alter the structures of ideally 
cleaved surfaces, only the information on the bulk 
composition and crystal structure and the surface 
orientation and termination plane, namely the surface 
structure before relaxation, is inputted, as illustrated 
in Figure 2. The coefficients of determination, root 
mean squared errors, and mean absolute errors of 
the test data are given in the caption of Figure 5. All 
the values indicate good prediction accuracy for IPs 
and EAs at relaxed surfaces, despite the fact that IPs 
and EAs are complicated surface structure-dependent 
electronic properties as mentioned above.

Figure 4. (a) Reconstructed structures of macroscopically stoichiometric and nonpolar (001) surfaces of A(I)B(V)O3 (NaTaO3, KNbO3, 
and KTaO3), A(II)B(IV)O3 (CaTiO3, SrTiO3, BaTiO3, and BaZrO3), and A(III)B(III)O3 (YAlO3, LaAlO3, and LaGaO3) perovskites predicted 
using a combination of first-principles calculations and an evolutionary algorithm. Four types of representative reconstructed 
structures are shown: cation-exchange, checker, stripe, and zigzag models, which are labeled with red plus, blue cross, purple 
square, and green diamond marks, respectively. (b) CBM and VBM relative to the vacuum level (εCBM and εVBM, respectively) as 
a function of relative coordination number (see texts for details). Reprinted from ref. [47] under a creative commons attribution 4.0 
international license.
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A combination of first-principles calculations and 
machine learning is also a powerful scheme for mate-
rials exploration. Adaptive sampling or black-box 
optimization methods are widely used, including 
Bayesian optimization to search for the global maxima 
or minima of target material properties [101]. 
However, maximizing or minimizing material proper-
ties is not always required; there are also demands for 
exploring materials whose properties fall in target 
ranges. For this purpose, it is useful to set the acquisi-
tion function based on the probability that a data point 
achieves a target property within a specific range 
(PTR) [102]. We have implemented PTR acquisition 
functions in our material exploration code, including 
their extension to multi-objective ones, and conducted 
extensive performance tests [103]. Figure 6 shows 
examples of materials exploration simulations for 
two kinds of target conditions for the band gap and 
formation energy [103]. In both cases of Figure 6(a,b), 
target materials are quickly found when both the band 

gap and formation energy are considered using the 
multi-objective PTR acquisition function.

It is also interesting to search for exceptional materials 
whose chemical compositions, structures, and/or proper-
ties do not follow typical trends, given that such materials 
may have exceptionally good properties. The Bound 
Objective-free eXploration (BLOX) method has been 
suggested to efficiently identify exceptional materials 
[104]. The effectiveness of BLOX has been demonstrated 
through the exploration simulations of molecules [104] 
and solids [105] with out-of-trend properties.

Understanding the tendency of a large number of 
materials would be helpful in constructing new prin-
ciples for materials design and exploration. 
Interpreting the machine learning prediction models 
in terms of important features is one useful approach. 
Clustering is also widely used to classify materials into 
groups according to particular features, supporting us 
in overviewing large material data. Typical clustering 
approaches consider either target material properties 
or fundamental features related to chemical composi-
tions and crystal structures. The relationships between 
the former and the latter are unclear, preventing us 
from understanding the chemical and structural ori-
gins of the material properties. In this context, we have 
conceived a novel clustering method that simulta-
neously considers target material properties and fun-
damental chemical and structural features, enabling us 
to classify materials depending on the properties of 
our interest [106].

2.3. Prediction of phase diagrams using machine 
learning techniques

We have also developed methods to accelerate the inves-
tigation of phase diagrams and to predict them. 
Although phase diagrams are crucial in materials 
research, suitable machine learning techniques to assist 
with their determination have not been much 
considered.

As mentioned above, a prominent method for 
optimizing material properties is Bayesian optimiza-
tion in the materials science community [101]. This 
approach effectively suggests new materials with 
tailored properties. However, the direct application 
of Bayesian optimization to phase diagram con-
struction is impossible. Therefore, we have intro-
duced a new machine learning strategy, uncertainty 
sampling [107], which is tailored to study phase 
diagrams in detail. Uncertainty sampling assumes 
that the most uncertain points contain the most 
valuable information. Applied to phase diagram 
construction, it suggests the next experimental con-
ditions for synthesis or measurement, which are 
crucial for an accurate determination. The devel-
oped method is called Phase Diagram 
Construction (PDC) and is outlined in Figure 7 

Figure 5. IPs and EAs of binary oxide surfaces by first-princi-
ples calculations versus those predicted by the artificial neural 
network with an attention layer (ANN w/AL). The coefficients 
of determination, root mean squared errors, and mean abso-
lute errors of the test data are 0.90, 0.29 eV, and 0.21 eV for the 
IPs, and 0.93, 0.27 eV, and 0.19 eV for the EAs, respectively. 
Reprinted from ref. [49] under a creative commons attribution 
4.0 international license.
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[107]. In Sec. 2.3.1, the details of the PDC algorithm 
are introduced. In Sec. 2.3.2, the results of applica-
tions of the PDC algorithm for known and 
unknown phase diagrams are shown. 
Improvements of the PDC algorithm are discussed 
in Sec. 2.3.3. Finally, in Sec. 2.3.4, a complementary 
method to the PDC algorithm is considered, namely 
a machine learning method combined with 
CALPHAD (CALculation of PHAse Diagrams) 
[108] databases to predict unknown phase diagrams.

2.3.1. PDC algorithm
The following is a detailed procedure of the PDC 
algorithm [107].

Step 1: initialization. We define the space where 
the phase diagram is to be constructed and discre-
tize it. Each discretized point in the phase diagram 
serves as candidate experimental conditions. There 
are no restrictions on the dimensions of the phase 
diagram. Let x denote the vector of discretized 
positions, and N candidate points xif gi¼1;...;N are 
prepared. From these, phase equilibria are identi-
fied for M initial points through experiments or 
simulations. These initial points can be chosen 
randomly or according to specific rules (e.g. select-
ing points that are easy to conduct experiment). 
Existing databases can also be utilized. Discrete 

Figure 6. Performance of multi-objective adaptive sampling methods in the search for substances satisfying the respective 
conditions of the band gap (Eg) and formation energy (Ef) given in panels (a) and (b). Lines and shaded regions indicate the 
average and standard deviation of 10 simulations using different initial datasets, respectively. Reprinted from ref. [103] under 
a creative commons attribution 4.0 international license.

Figure 7. Procedure of the PDC algorithm to efficiently construct phase diagrams. Reprinted from ref. [107] under a creative 
commons attribution 4.0 international license.
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indices are assigned to the identified phase regions 
at this stage. For instance, if there are P different 
phase regions identified initially, we prepare indices 
p ¼ 1; . . . ; P and assign these indices as labels to 
each data point. This process prepares the training 
data D ¼ xj; pj

� �

j¼1;...;M .

Step 2: phase diagram estimation. Using machine 
learning techniques such as label propagation (LP) or 
label spreading (LS), we estimate the probabilities 
PðpjxÞ of belonging to each phase region p for all 
points in the phase diagram when D is the training 
data. LP maintains the phase information unchanged 
for the points where phases are already identified, 
whereas LS allows phase information to vary based 
on the surrounding environment. Utilizing these 
probabilities PðpjxÞ, we can predict the phase diagram 
by selecting the phase region with the highest prob-
ability at each point.

Step 3: uncertainty score. We define an uncer-
tainty score u xð Þ using the probabilities PðpjxÞ. We 
choose the next candidate x� where u xð Þ is maximum 
using the following equation: 

In the PDC algorithm, three types of scores are avail-
able for the uncertainty score definition, namely the 
least confident (LC) method, margin sampling (MS) 
method, and entropy-based approach (EA): 

where P p1jxð Þ and P p2jxð Þ represent the highest 
and second highest probabilities of phase regions at 
the point x, respectively.

Step 4: experiment. We perform experiments or 
simulations at the point x� selected in Step 3 where the 
uncertainty score is maximum, and we identify the 
phase region at this point. If a new phase region is 
discovered, the phase index is increased by one as 
p ¼ 1; . . . ; P with P þ 1. This process adds one more 
data point to the training dataset as 

xj; pj
� �

j¼1;...;M;Mþ1. This dataset is utilized to return 
to Step 2.

This iterative process enables the construction of an 
accurate phase diagram with fewer iterations, lever-
aging uncertainty sampling to efficiently guide experi-
mental or simulation efforts toward discovering new 
phases and determining phase boundaries in the phase 
diagram.

2.3.2. Examples of phase diagram constructions
First, to verify the efficiency of the PDC algorithm, 
known phase diagrams were virtually constructed. The 
examples include the low-pressure and high-pressure 
phase diagrams of water, as well as the liquidus pro-
jection of the SiO2-Al2O3-MgO pseudo-ternary sys-
tem [107]. We found that using the PDC algorithm, 
the number of experiments required to determine 
a phase diagram can be reduced by a factor of five 
compared with random sampling. Figure 8 shows the 
results for each sampling method [107]. In this result, 
we utilized the LP method for phase diagram estima-
tion and applied the LC approach for uncertainty 
score evaluation. With the PDC algorithm, the 
selected points were concentrated near phase bound-
aries, demonstrating efficient determination of phase 
boundaries. Moreover, the PDC algorithm found nar-
row phase regions quickly. We confirmed that even 
with a small number of initial data points (when many 
phases are still unidentified), the PDC algorithm effi-
ciently produces phase diagrams. This illustrates that 
PDC is effective for investigating complex unknown 
phase diagrams from scratch.

Next, to verify the efficiency of the PDC algorithm 
for real experiments, the construction of novel phase 
diagrams for Zn – Sn – P film growth using molecular 
beam epitaxy (MBE) was performed using the PDC 
algorithm with LP and LC [109]. The phase diagram 
with varying temperatures of Sn and P evaporation 
sources was focused, and phase regions were identified 
through X-ray diffraction experiments. Starting with 
initial data from seven existing experimental points, 
the PDC algorithm suggested four additional experi-
ments, leading to the discovery of new phase regions 
not identified in the initial dataset. Subsequent to this, 
additional seven experiments guided by PDC recom-
mendations allowed us to construct the detail of the 
phase diagram [109] (see Figure 9). The phase diagram 
represents non-equilibrium phase regions depending 
on device-specific conditions, and it is difficult to 
predict by humans, requiring substantial effort during 
early-stage research. Particularly, the red regions in 
Figure 9 denote film deposition conditions where 
thin films do not grow. PDC effectively treats such 
conditions as distinct ‘phase regions’ enabling efficient 
discovery of new regions and precise determination of 
phase boundaries in non-equilibrium phase diagrams.

2.3.3. Improvements of PDC algorithm
2.3.3.1. Utilizing Gibbs' phase rule. For more effec-
tive construction of phase diagrams, two ingenuities 
are incorporated into the PDC algorithm: preparing 
training data in multiple-phase coexisting regions and 
reducing the search space based on the Gibbs’ phase 
rule [110]. The former can increase the number of 
training data when one experiment is performed. In 
addition, the latter can reduce the number of 
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candidate experimental conditions. We demonstrated 
the effectiveness of our strategy by constructing tern-
ary phase diagrams of alloy systems, incorporating 
these ingenuities. Even with initial knowledge limited 
to single-component systems, our approach signifi-
cantly reduces the number of experiments required 
to construct a phase diagram, achieving approximately 
a 1/8 reduction compared to random sampling. Thus, 
by incorporating scientific knowledge into PDC, 
further acceleration can be achieved.

2.3.3.2. Treatment of high-throughput batch experi-
ments. Recent advancements in laboratory automa-
tion and robotics enable high-throughput batch 
experiments. To leverage this capability, multiple 
experimental conditions must be selected simulta-
neously to effectively construct a phase diagram 
using machine learning techniques. We proposed stra-
tegies to select multiple conditions and compared their 

performance in exploring ternary isothermal sections 
(two-dimensional) and temperature-dependent tern-
ary phase diagrams (three-dimensional) [111]. Our 
results demonstrated that even when exploring several 
suggestions simultaneously instead of one at a time, 
the overall performance does not change significantly. 
Therefore, we concluded that employing the PDC 
algorithm with multiple suggestions is suitable for 
high-throughput batch experiments.

2.3.3.3. Web application. Visualization is important 
for phase diagrams. We released the web application 
version of the PDC algorithm on https://aiphad.org/. 
The corresponding Python code is distributed as 
AIPHAD on https://github.com/NIMS-DA/aiphad. 
Using the web application, PDC can be used directly 
without any programming skills, and the suggestions 
for the next experiments, the uncertainty score map-
ping, and the predicted phase diagram are displayed in 

Figure 8. Sampling results for known phase diagrams: low pressure and high pressure phase diagrams of water, and the liquidus 
projection of the SiO2-Al2O3-MgO pseudo-ternary system. The top panels are the identified phase regions. The middle and bottom 
panels are the sampling results by the PDC algorithm and random sampling, respectively. Reprinted from ref. [107] under 
a creative commons attribution 4.0 international license.
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the browser. We have demonstrated that the phase 
diagrams in the Fe-Ti-Sn system exhibiting a Heusler 
phase can be efficiently constructed using this web 
application [112].

2.3.4. Phase diagram prediction by combining 
machine learning and the CALPHAD method
CALPHAD is the most widely used method to model 
and calculate phase diagrams. Combining machine 
learning methods and CALPHAD databases is an 
important future development. As a first step, we 
attempted to estimate unknown phase diagrams from 
known phase diagrams obtained by CALPHAD calcu-
lations using machine learning [113]. We focused on 
predicting the number of coexisting phases in each of 
the ten 800 K isothermal ternary sections within the 
Al-Cu-Mg-Si-Zn system based on the other nine sec-
tions. Using the random forest classifier, we achieved 
an average prediction accuracy of 84% across all ten 
sections, with a standard deviation of 11%. This indi-
cates that the machine learning model can accurately 
predict whether a section contains single-phase, two- 
phase, or three-phase regions most of the time. Here, 
to improve prediction accuracy, we introduced new 
descriptors derived from the thermodynamic proper-
ties of the elements and extrapolations using the 
CALPHAD method. This approach is of general inter-
est to efficiently develop new materials by predicting 
phase equilibria, compounds, and solid and liquid 
solutions in systems where phase diagrams are initially 
unknown. Besides, it can also be used for the initiali-
zation of PDC to select the first experiments where 
three-phase regions that provide a lot of information 
are likely to be found. This work shows that by lever-
aging machine learning and CALPHAD data, we can 
accelerate the discovery and design processes in mate-
rials science.

Phase equilibria with the liquid phase are important 
for the development of all kinds of materials, but 
currently they cannot be predicted from high- 
throughput experiments or simulations. Therefore, as 
a second step, we focused on the prediction of the 
liquidus [114]. We proposed a general framework for 
predicting binary liquidus from the properties of the 
pure elements and thermodynamic properties calcu-
lated using Miedema’s semi-empirical model [115]. 
Our framework combines three machine learning 
models trained and evaluated on liquidus data col-
lected from 466 CALPHAD assessments of binary 
phase diagrams [114] (see Figure 10). The first model 
predicts the presence of liquid miscibility gaps with 
high accuracy (95.3%). The second and third models 
predict the onset temperature of solidification and the 
critical temperature of liquidus miscibility gaps, 
respectively. Using our framework, we successfully 
predicted the liquidus temperatures in 1563 binary 
systems not included in our CALPHAD dataset, 
many of which were previously unknown. An impor-
tant feature of our models is their ability to predict the 
presence of eutectics. This is significant because eutec-
tic alloys have many applications such as brazing, 
coolants in fast-neutron nuclear reactors, or latent 
thermal energy storage.

3. Experimental approaches toward the 
understanding, design, and exploration of 
new semiconductors and dielectrics

3.1. Nitride semiconductors

3.1.1. Earth-abundant nitride, Ca(Mg1−xZnx)2N2 (x  
= 0–1): polycrystalline bulk and epitaxial film
Recent progress in computational materials science 
and materials informatics is remarkably fast and 

Figure 9. Procedures for constructing a phase diagram for the MBE growth of Zn–Sn–P films by the PDC algorithm. For each step, 
sampled points, an estimated phase diagram, and an uncertainty score are shown. Reprinted from ref. [109] under a Creative 
Commons attribution-NonCommercial license.
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leads to important predictions and subsequent experi-
mental verification of novel (i.e. previously unknown) 
functional complex materials [13,116–124]. An earth- 
abundant ternary nitride, CaZn2N2, was proposed 
through computational screening using first-princi-
ples calculations as a promising optoelectronic func-
tional nitride semiconductor with a band gap of 1.8 eV 
because of its small electron and hole effective masses 
and direct transition-type energy band structure [117]. 
It was also predicted that the band gap could be widely 
tuned from the ultraviolet region to the red – infrared 
one by simple element-substitutions such as Mg or Cd 
substitution at the Zn site and Sr substitution at the Ca 
site [117,122], suggesting that this nitride would be 
a promising host candidate of a light-emitting semi-
conductor and/or a photovoltaic semiconductor 
devices with appropriately tuned band gaps.

Based on the prediction, polycrystalline samples of Ca 
(Mg1−xZnx)2N2 (x = 0–1) were successfully synthesized 
via a solid-state reaction using binary nitride precursors 
at ambient pressure or an extremely high pressure (5 
GPa) [125]. It is experimentally validated that the optical 
band gap can be continuously tuned from 3.2 eV to 1.8  
eV (i.e. the ultraviolet-to-red region) and the corre-
sponding band-to-band photoluminescence (PL) is 
observed even at room temperature [125] 
(Figure 11(a)). In the entire x range, the observed band 
gaps are close to those predicted by first-principles cal-
culations [117,125] (Figure 11(b)). Additionally, hetero-
epitaxial growth of a CaZn2N2 (i.e. x = 1) thin film was 
demonstrated by MBE with precise optimization of 
growth conditions [126] (Figure 11(c,d)). Three key fac-
tors for heteroepitaxy were found: (i) the precise tuning 
of the individual flux rate of Knudsen cells for Ca and Zn, 
(ii) the use of GaN template layer on c-plane sapphire as 
a substrate, and (iii) the application of MBE with an 
active nitrogen radical source because other attempts at 
physical vapor deposition and thermal annealing 

processes did not produce pure CaZn2N2 films. Since 
the GaN template layer exhibits non-negligible n-type 
conduction, reliable carrier transport measurement was 
difficult. Thus, the electronic transport properties of 
CaZn2N2 films deposited on a yttria-stabilized zirconia 
(YSZ) single-crystal and a silica glass were evaluated by 
Hall-effect measurements at room temperature. It was 
clarified that the dominant carrier types were p- (holes) 
and n-type (electrons) for the films on YSZ and silica 
glass, respectively. This ambipolar carrier-doped state 
was unintentionally formed, while would be an advanta-
geous dopability to fabricate a pn homojunction. The 
estimated carrier densities of both the films were as low 
as 1013 cm−3 order, which implies that CaZn2N2 has 
potential for controlling carriers over a wide range 
from intrinsic (i.e. close to insulating), semiconducting, 
through to degenerate states by impurity doping. Despite 
the theoretically predicted small effective masses [117], 
the carrier mobilities were as low as 0.3 cm2/(V·s) for 
holes (YSZ) and 4.3 cm2/(V·s) for electrons (silica glass) 
due probably to the poor crystallinity of the films. These 
studies on polycrystalline bulks and epitaxial films 
experimentally clarified that the earth-abundant nitride, 
Ca(Mg1−xZnx)2N2 (x = 0–1), can be a promising semi-
conductor material that plays an emitting layer in a wide- 
range wavelength-tunable light-emitting diode or a light 
absorber layer in a photovoltaic cell. However, to achieve 
superior carrier transport, different nitridization pro-
cesses must be essential to overcome a dilemma; i.e, 
high nitrogen chemical potential requires low substrate 
temperature, but high crystallinity usually does high 
substrate temperature.

Similar to the discovery of CaZn2N2 by computa-
tional screening [117], the exploration of new func-
tional ternary nitrides has been actively performed by 
considering thermodynamic stability/metastability 
and predicting functionality [118,120,127]. Even 
though nitrides particularly remain unexplored 

Figure 10. Framework for predicting binary liquidus. (a) Training data of 466 binary systems for three models. (b) Three machine 
learning models and procedures for predicting binary liquidus from any two elements. Reprinted from ref. [114] under a creative 
commons attribution 4.0 international license.
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mainly due to difficulty in synthesis, it has recently 
become to overcome the difficulty owing to advancing 
various synthetic techniques [128]. A representative 
demonstration would be a successful synthesis of new 
ternary perovskite-type nitrides and II-IV-N2 type 
ones. Although nitride perovskites, excluding 
TaThN3 [129] and anti-perovskite-type nitrides 
[130], had not been reported due to the synthesis 
difficulty, first-principles studies have proposed unre-
ported but thermodynamically stable perovskite-type 
nitrides as well as their electronic structures [131]. 
After that, among the predicted ternary nitrides, 
LaReN3 (in 2021) [132] and LaWN3 (in 2021–2023) 
[133–136] have been experimentally synthesized. 
Recently, novel ternary II-IV-N2 compounds such as 
AeTmN2 (Ae = Ca, Sr, Ba; Tm = Ti, Zr, Hf) [137,138] 
have also been successfully synthesized. Therefore, 
a large research platform on ternary nitrides may be 
about to expand more actively and rapidly.

3.1.2. Thin-film growth of perovskite-type LaWN3: 
toward ferroelectric semiconductor applications
Ferroelectric photovoltaic cells are expected to offer 
highly efficient electric power generation owing to 
their extremely high operating voltages [3]. The ferro-
electric photovoltaic effect has been examined mainly 

in perovskite-type oxides such as BiFeO3. However, 
the conversion efficiency of ferroelectric photovoltaic 
cells based on the related oxides remains low (~8%) 
[139]. One of the origins seems to be its low sunlight 
absorption efficiency originating from the wide band 
gap of ~2.7 eV for BiFeO3 [140].

Under such a circumstance, a perovskite-type 
nitride, LaWN3, has been expected to have potential 
as a rare and new ferroelectric semiconductor because 
it is predicted to exhibit ferroelectricity with a high 
spontaneous polarization of ~ 60 μC/cm2 [141] and 
have a narrower band gap of approximately 1.6 − 1.8  
eV according to first-principles calculations [134,142]. 
These characteristics may make it more suitable for 
applications as the light-absorbing layer of ferroelec-
tric photovoltaic cells than the perovskite-type oxides. 
However, the ferroelectric properties of LaWN3 have 
yet to be experimentally confirmed: only 
a piezoelectric response was reported for a sample 
synthesized [133]. In addition, the LaWN3 samples 
reported so far are crystallographically non-oriented 
polycrystalline [133,134], which hinders the predicted 
ferroelectric polarization. Thus, it was strongly 
required to fabricate a highly oriented epitaxial film, 
especially the c-axis, which is a polar direction of 
LaWN3 with a rhombohedral R3c space group.

Figure 11. Optical and structural characteristics of Ca(Mg1−xZnx)2N2. (a) Photoluminescence (PL) and absorption (αhν/s)2 spectra of 
polycrystalline samples at room temperature. (b) Optical band gaps (Exp.) estimated from (a). The calculated ones (Calcd.) are 
shown for comparison. (c, d) X-ray diffraction profiles of an epitaxial CaZn2N2 (i.e. x = 1) thin film with ~50 nm thickness, optimally 
grown by MBE, on a GaN template layer on c-plane sapphire substrate. (c) Out-of-plane 2θ scan. (d) In-plane ϕ scan. Adapted with 
permission from refs. [125,126]. Copyright 2019 American chemical society.
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LaWN3 epitaxial films with ~65 nm thickness were 
grown on c-plane α-Al2O3 substrates with the multi- 
cathode rf magnetron sputtering guns and nitrogen 
gas [135]. A substrate temperature (Ts) higher than 
1000°C and optimization of rf power densities of the 
La and W cathodes were essential for heteroepitaxial 
growth (Figure 12(a)). The heteroepitaxial relation-
ship between the film and the substrate is LaWN3 
[0001] || α-Al2O3 [0001] for out-of-plane and 
LaWN3 [10�10] || α-Al2O3 [11�20] for the in-plane; i.e. 
c-axis of LaWN3 is oriented perpendicular to the 
c-plane of α-Al2O3 substrate and the in-plane domain 
of LaWN3 is rotated by 30° with respect to that of α- 
Al2O3 (Figure 12(b)). Electronic transport measure-
ments for the obtained epitaxial film revealed that the 
film exhibited no temperature dependence of n-type 
electrical conductivity (σ) (i.e. a heavily electron- 
doped degenerate semiconductor) (Figure 12(c)). 
Because the carrier density was as high as 2 × 1022 

cm−3 and the corresponding sample resistance was 
too low (<1 kΩ), the predicted ferroelectricity was 
not observed as also reported in Ref. [133]. Optical 
measurements indicated that the high-density carriers 
induced free carrier absorption over near-infrared 
wavelengths and widened the optical band gap to 
1.83 eV owing to the band-filling effect 
(Figure 12(d)). Moreover, the film exhibited 

superconductivity at 0.7 K (inset of Figure 12(c)). 
The degenerate state and superconductivity are attrib-
uted to the high-density electron carriers that resulted 
from the unavoidable off-stoichiometry (excess of 
W and/or N deficiency) to achieve heteroepitaxial 
growth.

Reports on successful synthesis of LaWN3 sam-
ples are still scarce because extremely high external 
pressure or precise control of film-growth condi-
tions is necessary for polycrystal powders [134,136] 
or for thin films [133,135], respectively. However, 
fundamental researches on LaWN3 have been gra-
dually progressing. A recent research on neutron 
diffraction reveals that the nitrogen vacancy stabi-
lizes an orthorhombic structure, not rhombohedral 
R3c, with a polar symmetry (Pna21) that possesses 
a unique atomic polarization along the c-axis [136]. 
Additionally, a recent research on thin films clari-
fies that the electrical resistivity of LaWN3 is quite 
sensitive to La/(W+La) in the films (i.e. cation 
ratio) [143]. Thus, different growth processes that 
realize a higher nitrogen chemical potential will be 
required to achieve a stoichiometric chemical com-
position for the realization of lower carrier density 
and observation of the predicted ferroelectricity. 
Because this perspective is almost the same as the 
case of CaZn2N2 in the former section, the 

Figure 12. Heteroepitaxial growth and optoelectronic properties of perovskite-type LaWN3 thin films. (a) Optimization of film- 
growth conditions: Ts and PW denote substrate temperature and rf power density of a tungsten cathode, respectively. The 
optimum region for epitaxial growth is indicated by red. (b) Epitaxial relationship of the optimally grown film. (c) Temperature 
dependence of the electrical conductivity (σ) of the epitaxial film. The inset shows resistivity (ρ = 1/σ) in an extremely low 
temperature region of ≤0.9 K under external magnetic fields. (d) The optical absorption coefficient (α) spectrum of the epitaxial 
film. The inset is a sample picture. Adapted with permission from ref. [135]. Copyright 2023 American chemical society.
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development of a new active nitrogen source appa-
ratus alongside a new concept would be a critical 
issue to advance research on these nitride 
semiconductors.

3.2. Phosphide semiconductors for photovoltaic 
applications

Recently, some novel semiconductors for photovol-
taics have been investigated with the aid of theoretical 
calculations and/or machine learning. We focused on 
ternary zinc phosphides because they have suitable 
electronic structures and phosphorus vacancies are 
less likely to form mid-gap states considering the 
behavior reported for the binary zinc phosphide 
[144]. In particular, ZnSnP2 (ZTP) with 
a chalcopyrite structure is an emerging absorber in 
view of its light-absorption and electric characteristics. 
To achieve higher energy conversion efficiency in ZTP 
solar cells, the suppression of the recombination of 
photo-generated carriers is a key issue. Point defects in 
bulk regions and heterointerfaces in devices can be 
sites of carrier recombination. Therefore, we explored 
ways to understand and improve the carrier recombi-
nation properties through a combination of experi-
mental and theoretical studies as described below. In 
addition, new materials for photovoltaic applications 
were investigated.

3.2.1. Evaluation and control of native point 
defects in phosphide semiconductors
Identifying deep and shallow levels in ZTP is the first 
step to understand the carrier recombination properties 
in absorber materials. Deep level transient spectroscopy 
(DLTS) is well known to be a technique to detect trap 
levels in semiconductors and has also been applied to 
recent state-of-the-art devices. A discussion based on 
the formation energies and energy levels of point defects 
derived from first-principles calculations is fruitful for 
conventional materials of thin-film solar cells and even 
for emerging absorber materials. Actually, it was clearly 
shown for some absorber semiconductors that 

emissions observed in PL spectra consist of some 
recombination processes related to shallow and deep 
levels. In this study, ZTP bulk crystals obtained by 
a conventional solution growth were characterized by 
DLTS and photoluminescence (PL) for discussion on 
levels related to point defects in conjunction with the 
results of first-principles calculations by Kumagai 
et al. [145].

A conventional DLTS measurement and theoreti-
cal calculations revealed two shallow trap levels com-
ing from antisite defects and a deep trap state [146], 
but detailed properties were still unknown. 
Therefore, advanced DLTS and minority carrier 
transient spectroscopy (MCTS) using the correlation 
function method were carried out in cooperation 
with Ceramicforum Co. Ltd. [147]. Figure 13(a) 
shows the Arrhenius plot for the time constant t of 
hole or electron emission obtained from DLTS and 
MCTS spectra, and five (H1–H5) and two (E1, E2) 
traps were evaluated for hole and electron, respec-
tively [147]. The capture cross section and the acti-
vation energy corresponding to a trap level can be 
evaluated by analyzing the plot based on the 
Shockley – Read – Hall model, and the trap density 
was obtained from the capacitance measurements. 
The trap density is in the range of 1014–1015 cm−3 

in all traps, whereas the capture cross section of trap 
E1 is 4.0 × 10−11 cm−2 which is 2–5 orders of mag-
nitude larger than others, resulting in the much 
shorter time constant. This means that trap E1 
might have a dominant contribution to the capture 
of electrons from the CBM. The theoretical calcula-
tions suggest that trap E1 originates from the Sn 
antisite defect on the Zn site, SnZn in the viewpoints 
of the activation energy and thermodynamic transi-
tion level.

Next, we attempted to suppress the formation of 
SnZn antisites by controlling the chemical potentials 
during crystal growth. According to the theoretical 
calculations, the formation energy of SnZn is higher 
under the conditions of higher chemical potential of 
Zn. Conventionally, ZTP crystals were prepared with 

Figure 13. (a) Arrhenius plot of time constant from DLTS and MCTS. (b) TRPL spectra of ZTP crystals. (c) Chemical potentials of Zn, 
Sn, and P in equilibrium of ZTP and liquid solution. Reproduced from ref. [147] with the permission of AIP publishing.
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the composition of the Sn-ZTP pseudo-binary system. 
We prepared crystals with various initial compositions 
such as Zn-rich, P-rich, and Sn,P-rich in addition to 
the conventional composition. Time-resolved photo-
luminescence (TRPL) spectra of ZTP crystals shown in 
Figure 13(b) revealed that the TRPL lifetime is longer 
for crystals in the Zn-rich condition, which is consis-
tent with the decrease in the concentration of SnZn 
[147]. However, the actual defect formation behavior 
depends on the chemical potentials of constituent ele-
ments, and then they were evaluated using a sub-reg-
ular solution model under the condition in 
equilibrium ZTP solid and liquid solution, in other 
words, precipitation from liquid. Figure 13(c) clarifies 
that the chemical potential of Zn in the Zn-rich con-
dition is higher than those in other conditions and 
suggests the suppression of the Sn antisite forma-
tion [147].

As seen in the above, a fusion of experiments and 
calculations is effective in the discussion of defect 
formation based on chemical potentials. It is desired 
that a more quantitative discussion will be developed 
in the future.

3.2.2. Interfaces for phosphide solar cells
In thin-film solar cells with compound semiconduc-
tors, there are some heterointerfaces because of the 
multilayer structure with various materials. As men-
tioned above, interfaces can be carrier recombination 
sites and the effect appears in the resistance. Since ZTP 
is an emerging absorber, every interface should be 
examined and controlled in addition to the pn junc-
tion. We first focused on the interface between the 
ZTP absorber and the back electrode.

In solar cells consisting of sulfide or selenide absor-
bers, Mo is conventionally used as a back electrode to 
obtain ohmic contact. However, our previous work 
clarified that the series resistance of ZTP solar cells 
could be reduced by applying Cu to the electrode rather 
than Mo [148]. The Cu/ZTP interfacial structure and its 
impact on carrier transport behavior are discussed here. 

Annealing experiments of Cu-deposited ZTP crystals 
revealed the formation of a copper phosphide, Cu3P, at 
the interface, leading to the reduction of the resistance. 
In this case, selected area electron diffraction (SAED) 
suggested Cu3P epitaxially formed on ZTP crystals with 
the relationship of Cu3P[1100](0001)//ZTP [110](112). 
Additionally, it was revealed that the IP of ZTP and the 
work function of Cu3P are comparable by photoelec-
tron yield spectroscopy (PYS). These results indicate 
that the heterostructure with lattice-matched and band- 
aligned is required for the suppression of carrier recom-
bination at interfaces. This interface structure was 
applied to solar cells. In particular, the insertion of 
Cu3P before annealing enhanced the solar cell perfor-
mance, as shown in Figure 14, and consequently, the 
best energy conversion efficiency of 3.87% was 
achieved [149].

Next, turning to the pn junction, an n-CdS/p-ZTP 
structure was adopted in the solar cell with the best 
efficiency. CdS is a conventional n-type layer for com-
pound thin-film solar cells, but the large CBM offset at 
the n-CdS/p-ZTP interface was suggested by X-ray 
photoelectron spectroscopy (XPS) [150]. Considering 
the discussion on the Cu3P/ZTP interface, CdSnP2 
(CTP) is a candidate as an n-type partner with ZTP. 
The crystal structure of CTP is also chalcopyrite and 
the first-principles calculations suggest a smaller CBM 
offset in the n-CTP/p-ZTP junction compared to CdS/ 
ZTP [151]. Samples including a CTP/ZTP interface 
were prepared by phosphidation of Cd-Sn precursor 
films on ZTP crystals [152,153] and the current-vol-
tage curve was measured. The epitaxial relationship 
between the deposited CTP and ZTP crystals is clearly 
confirmed from the scanning transmission electron 
microscope (STEM) dark-field (DF) image and 
SAED patterns in Figure 15 and a good rectification 
was obtained in the n-CTP/p-ZTP junction [153]. 
A higher performance of ZTP solar cells is expected 
by adopting this junction. Our work means that the 
research assisted by theoretical calculations is also 
effective in the interface design in devices.

Figure 14. Current density-voltage characteristics of ZTP solar cells (a) without and (b) with insertion of Cu3P. Created based on ref. 
[149]. Copyright 2020 Elsevier B.V. All rights reversed.
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3.2.3. Novel materials for photovoltaic applications
We also tried to develop novel materials with the 
assistance of theoretical calculations. Among ternary 
compounds containing Zn and P, compounds includ-
ing alkaline earth elements were suggested for poten-
tial photovoltaic applications from the viewpoints of 
semiconductor properties such as the band gap and 
effective mass.

For X-Zn-P compounds (X: group II elements), 
we investigated MgZn2P2 formed at the Mg/Zn3P2 
junctions in Zn3P2-based solar cells. The detailed 
nature of this device had been controversial for 
a long period, but we have recently revealed that 
this is a heterojunction of semiconductors between 
Zn3P2 and Mg(MgxZn1−x)2P2 formed through the 
reaction at the Mg/Zn3P2 interface [154]. The lat-
tice mismatch between Mg(MgxZn1−x)2P2 and 
Zn3P2 is 0.5% at most and, thus, is favorable for 
carrier transport. Mg(MgxZn1−x)2P2 can be 
regarded as a solid solution of MgZn2P2. 
Therefore, our work provided the preparation of 
MgZn2P2 although there was no report on its 
synthesis. Theoretical calculations have suggested 

that the stable crystal structure of Mg(MgxZn1 

−x)2P2 is the trigonal CaAl2Si2-type shown in 
Figure 16(a). Inspired by this compound, we 
focused on a series of compounds, CaZn2P2 
(CZP), SrZn2P2 (SZP), and BaZn2P2 (BZP), which 
are classified as Zintl compounds and still in an 
undeveloped group. A synthesis route using Sn 
solution as a solvent was adopted to suppress the 
reactivity of group II elements. Figure 16(b) shows 
XRD profiles of samples after the heat treatment to 
obtain compounds [155]. The trigonal CaAl2Si2- 
type phases were identified in the profiles of CZP 
and SZP although they include diffractions from Sn 
and secondary phases, while the profile for BZP 
was assigned to a tetragonal ThCr2Si2-type struc-
ture. The unidentified phase was observed in the 
CZP-Sn sample, but it might be the products by 
the decomposition of calcium phosphides and not 
affect the later evaluation of optoelectronic proper-
ties. The UV-vis diffuse reflectance analyses evalu-
ated the indirect (1.7–1.85 eV) and direct band 
gaps (1.9–2.05 eV) for CZP and SZP, whereas it 
was difficult to evaluate for BZP because its band 

Figure 15. (a) STEM-DF image of CTP/ZTP interface and corresponding SAED patterns of (b) CTP, (c) interface, and (d) ZTP regions. 
(e) Current density-voltage curve for n-CTP/p-ZTP junction. Reproduced from ref. [153] with permission. Copyright IOP publishing. 
All rights reserved.

Figure 16. (a) Structure of Mg(MgxZn1−x)2P2 (trigonal CaAl2Si2-type). (b) XRD profiles for CaZn2P2, SrZn2P2, and BaZn2P2. (c) 
Relationship between the nearest-neighbor pnictogen–pnictogen distance and fundamental band gap for pnictide semiconduc-
tors. Reprinted with permission from ref. [154]. Copyright 2018 American chemical society and from ref. [155] under a creative 
commons attribution 4.0 international license.
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gap may be much narrower. The theoretical calcu-
lations also confirmed the crystal structures and 
the trend that their direct band gaps are slightly 
larger than the indirect band gaps.

The evaluated direct band gaps for CZP and SZP 
are somewhat too large for application to absorbers, 
but they can be applied to buffer layers like Mg 
(MgxZn1−x)2P2 in Zn3P2 solar cells. PYS measure-
ments provided that the IPs for CZP and SZP are 
similar to those of ZTP and Zn3P2, leading to their 
small CBM offset within 0.2 eV. On the other hand, 
Figure 16(c) summarizes the relationship between 
fundamental band gap and nearest neighbor pnicto-
gen – pnictogen distance, which is an index for lattice- 
matching, for various pnictide semiconductors. The 
dotted lines indicate the range of 1% lattice mismatch-
ing with ZTP and Zn3P2, and especially it is found that 
CZP is well-matched with phosphide absorbers. 
Consequently, CTP would be an appropriate partner 
material in Zn3P2- and ZTP-based solar cells from the 
viewpoints of lattice and band matching.

In previous works, the calculation-assisted develop-
ments of materials for photovoltaic applications are 
focused mostly on absorbers. However, lack of investiga-
tion of n-type buffer materials also limits the develop-
ment of novel solar cells. This work indeed suggests that 
the investigation of such materials would be required.

3.3. Layered perovskite dielectrics

Ferroelectric oxides are fascinating targets for the 
exploration of functional materials due to their diverse 
properties, which make them valuable for various 
applications such as non-volatile memories and high- 
performance piezoceramics. Traditionally, ferroelec-
tric oxides have been developed in perovskite-type 
compounds with the composition ABO3, exemplified 
by BaTiO3 and Pb(Zr,Ti)O3 (PZT). Extensive experi-
mental and theoretical studies have established several 
guiding principles for designing ferroelectric perovs-
kite-type compounds. These principles include 
the second-order Jahn-Teller (SOJT) effect [156– 
162], the tolerance factor [163], and the stereochemi-
cal activity of lone-pair electrons [164,165].

The field of exploration for ferroelectric materials is 
expanding beyond perovskite-type compounds to 
include non-perovskite types such as fluorite-type 
[166–169], layered-silicate-type [170–172], and alumi-
nate-sodalite-type compounds [173–175]. Moreover, 
the concept of hybrid improper ferroelectricity (HIF) 
has recently inspired renewed interest in layered-per-
ovskite-type compounds [176–180]. HIF can be 
understood as ferroelectricity induced by a special 
combination of lattice instabilities at finite wave vec-
tors [177]. Specifically, in layered perovskite-type 
compounds, the rotation of corner-shared oxygen 
octahedra contributes to the emergence of 

ferroelectricity [179,181–184]. This contradicts the 
conventional understanding that non-polar lattice 
vibrations do not result in spontaneous polarization 
when they freeze. This discovery has underscored the 
significance of octahedral rotation in the design of 
ferroelectric materials within layered-perovskite-type 
compounds.

There are three typical structures in layered perovs-
kite-type compounds: Aurivillius-type, Dion- 
Jacobson-type (DJ-type), and Ruddlesden-Popper- 
type (RP-type) phases. Li2SrNb2O7 crystallizes in 
a similar structure but slightly different from the RP- 
type. As shown in Figure 17, an ‘n = 2’ RP-type struc-
ture of Ca3Mn2O7 consists of perovskite-type building 
blocks and rocksalt-type CaO layers, which stack 
along the [001] direction. In the pseudo-RP-type 
structure of Li2SrNb2O7, however, Li2O layers are 
inserted instead of rocksalt-type layers, reducing the 
distance between perovskite-type building blocks. 
This section presents our finding that the close com-
petition between the SOJT effect and the octahedral 
rotation in Li2SrNb2O7 creates a fertile ground for 
designing various dielectric properties, including fer-
roelectricity and also antiferroelectricity [185–188].

Figure 18(a) presents the temperature dependence 
of complex dielectric permittivity for a Li2SrNb2O7 
polycrystalline sample over a temperature range from 
4.2 K to 300 K [185]. The top and bottom panels show 
the real (ϵ’) and imaginary (ϵ’’) parts, respectively. As 
shown in the figure, ϵ’ increases upon cooling from 
300 K, reaching a maximum value of approximately 
210 around 220 K. Upon further cooling, it decreases, 

Figure 17. Crystal structures of (a) ruddlesden-popper and (b) 
pseudo-ruddlesden-popper phases. Adapted with permission 
from ref. [185]. Copyright 2019 American chemical society.
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exhibiting a cusp-like anomaly that indicates a phase 
transition. A corresponding anomaly in ϵ’’ is also 
observed around 220 K. The inset in the top panel, 
which magnifies the temperature region where the 
anomaly occurs, shows slight differences between the 
results measured during cooling and heating, suggest-
ing a weak first-order phase transition.

Figure 18(b) plots the electric-field-induced polari-
zation of Li2SrNb2O7 under various maximum applied 
electric fields [185]. When an electric field of 120 kV is 
applied, a slim but clear double hysteresis loop appears, 
demonstrating the antiferroelectric property of 
Li2SrNb2O7. Notably, a weak polarization remains at 
zero electric field and gradually increases as the applied 
electric field rises. Since the polarization measurement 
was performed at 80 K, where the sample exhibits 
sufficiently high insulating properties, the influence of 

leakage current can be ruled out. This result suggests 
that a ferroelectric component coexists in Li2SrNb2O7.

Synchrotron X-ray diffraction measurements of 
Li2SrNb2O7 have clarified appearance of superlattice 
reflections in the low-temperature region (Figure 19(a, 
b)), indicating that the structural phase transition 
between Cmcm and P21cn symmetries occurs around 
220 K during cooling [185]. The polar structure of 
P21cn in the low-temperature phase is consistent 
with the presence of remanent polarization at zero 
electric field. As presented in Figure 19(c–f), structural 
analyses reveal that the P21cn structure of Li2SrNb2O7 
consists of in-plane antipolar displacements and out- 
of-plane polar displacements of Nb atoms along the 
[001] and [100] directions, respectively, indicating the 
coexistence of antiferroelectricity and ferroelectricity 
in the system [185]. In the high-temperature Cmcm 
phase, the Sr and Nb atoms are located on a mirror 
plane normal to the [001] direction. In the low-tem-
perature P21cn phase, on the other hand, the mirror 
plane disappears due to the relative displacements of 
the Sr and Nb atoms along the [001] direction, indu-
cing a local electric dipole moment within the perovs-
kite-type block. While all local dipoles are parallel 
within the perovskite-type building block, they align 
antiparallel between adjacent building blocks, forming 
an antipolar configuration along the [001] direction. 
Furthermore, the local dipoles slightly tilt to the [100] 
direction, which cooperatively generates the sponta-
neous polarization.

Figure 18. (a) Temperature dependences of the real and ima-
ginary parts of the complex (relative) permittivity of Li2SrNb2O7, 
measured at a frequency of 100 kHz. (b) p–E hysteresis loops of 
Li2SrNb2O7, measured at a frequency of 10 hz at 80 K. Adapted 
with permission from ref. [185]. Copyright 2019 American che-
mical society.

Figure 19. X-ray diffraction patterns of Li2SrNb2O7 observed at 
(a) 240 K and (b) 100 K. The crystal structures in the high- and 
low-temperature phases are illustrated in panels (c) and (e) 
and panels (d) and (f), respectively. Adapted with permission 
from ref. [185]. Copyright 2019 American chemical society.
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First-principles calculations play a key role in eluci-
dating the driving force behind the long-range ordering 
of local dipoles. Figure 20 presents the phonon disper-
sion curves of Li2SrNb2O7 calculated for the Cmcm (top 
panel) and P21cn (bottom panel) structures [185]. Data 
points plotted below the origin of the vertical axis in the 
top panel indicate an imaginary frequency, where the 
corresponding oscillation is unstable in the given sym-
metry. As shown in the top panel, there are two ima-
ginary frequency modes at the Γ and Y points in the 
high-temperature Cmcm phase. These modes are 
known as ‘soft modes’, and their freezing induces 
a displacive-type phase transition. In a second-order 
phase transition, the displacement pattern of the soft 
mode corresponds to the change in crystal structure 
through the transition. Although Li2SrNb2O7 under-
goes a first-order phase transition, as mentioned earlier, 
the displacement pattern of the soft mode provides 
insight into the mechanism of the phase transition due 
to its sufficiently weak first-order nature manifested by 
the subtle thermal hysteresis in the temperature depen-
dence of the dielectric permittivity. Our first-principles 
calculations clarified that the most unstable phonon 
mode is at the Γ point [187]. When the Γ2

− soft mode 

freezes, a polar structure of Cmc21 is generated, as 
shown in Figure 21(b), where spontaneous polarization 
appears along the [001] direction. However, the Cmc21 
structure is found to be incompatible with the structure 
determined experimentally by structural analyses. On 
the other hand, the freezing of the Y2

− soft mode results 
in a Pmcn structure. Although this Pmcn structure is 
non-polar, it exhibits antipolar ordering of the Nb dis-
placements along the [001] direction, which aligns with 
the results of the structural analyses. Therefore, it is 
reasonable to attribute the origin of the long-range 
ordering of local dipoles to freezing of the Y2

− soft 
mode, despite it being slightly less imaginary than the 
Γ2

− soft mode, likely due to the accuracy of the calcula-
tion. The bottom panel in Figure 20 shows the phonon 
dispersion curves of Li2SrNb2O7 with the P21cn struc-
ture [185]. There is no soft mode in the system, con-
firming that the P21cn structure is the ground state of 
Li2SrNb2O7, from a computational perspective as well.

The displacement pattern of the Y2
− soft mode 

consists of the relative displacement of Nb and the 
rotation of oxygen atoms, as shown in Figure 21(d). 
The origin of the Nb displacement can be understood 
within the framework of the SOJT effect, as visualized 

Figure 20. Calculated phonon bands of Li2SrNb2O7 in the paraelectric Cmcm phase (top) and the weak-ferroelectric P21cn phase 
(bottom). The reciprocal points Γ and Y with softmodes are indicated in red and blue circles, respectively. Adapted with permission 
from ref. [185]. Copyright 2019 American chemical society.
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in Figure 22. Figure 22 shows the crystal orbital 
Hamilton population (COHP) [189–193] and sche-
matics of energy-level diagrams calculated for 
Li2SrNb2O7 in Cmcm and Pmcn symmetries [186]. 
The horizontal axis in panels (a) and (b) represents 
negative COHP (−COHP), with positive and negative 
values indicating bonding and antibonding states, 
respectively. As indicated by the arrow in panel (b), 
the bonding interaction between Nb 4d and O 2p 
orbitals is enhanced during the transformation from 
the Cmcm structure to the Pmcn structure due to the 
freezing of the Y2

− soft mode, demonstrating that the 
Nb atom is attracted toward the ligand oxygen due to 
the SOJT effect. Panels (e-h) in Figure 22, on the other 
hand, present COHP and energy-level diagrams for 
Li2SrTa2O7. In marked contrast to Li2SrNb2O7, the 
COHPs for the Cmcm and Pmcn structures overlap 

each other, indicating that the enhancement of the 
bonding interaction due to the transformation to the 
Pmcn structure is absent. This result shows that the 
SOJT effect is suppressed by substituting Nb with Ta. 
Figure 23 shows the temperature dependence of the 
dielectric permittivity in Li2Sr(Nb1-xTax)2O7 with 
varying Ta content x [186]. As shown in the figure, 
the cusp anomaly due to the phase transition shifts to 
lower temperatures as x increases, demonstrating that 
Ta substitution suppresses the emergence of the low- 
temperature structure. The variation of the phase tran-
sition temperature (Tc), plotted as a function of x in 
panel (b), shows that the phase transition disappears 
for x greater than 0.4. It would thus be reasonable to 
conclude that the phase transition of Li2SrNb2O7 is 
driven by the SOJT effect between the Nb and ligand 
O atoms.

As shown in Figure 21(c), the Y2
− soft mode 

includes not only the Nb displacements but also the 
rotational distortions of oxygen octahedra around the 
principal axis of the crystal. Similar to the case of 
Ca3Mn2O7, the Cmcm phase of Li2SrNb2O7 originally 
contains the tilting distortions around the axis per-
pendicular to the [100] axis (see Figure 21(c)). 
Therefore, the rotational distortions of octahedra 
would activate HIF through its combination with the 
tilting rotations, in analogy with ‘n = 2’ RP-type oxides 
such as Ca3Mn2O7. To clarify this hypothesis, phase 
instability was examined in Li2(Sr1-xCax)Nb2O7. 
According to the concept of the tolerance factor for 
the perovskite-type structural unit, a reduction in the 
size of the A-site cation enhances the magnitude of the 
octahedral rotation. Therefore, substituting Ca for Sr 
provides a good test for the role of HIF in the ferroe-
lectricity of Li2(Sr1-xCax)Nb2O7, since Ca has 
a Shannon ionic radius of 1.00 Å in six coordination, 
which is smaller than 1.18 Å for Sr. Figure 24 presents 
the electric-field-induced polarization measured in Li2 
(Sr1-xCax)Nb2O7 with compositions of x = 0 and 0.1 
[187]. As shown in the figure, the remanent polariza-
tion increases with Ca substitution. This result 
strongly supports the hypothesis that HIF also contri-
butes to the ferroelectricity in Li2SrNb2O7.

The HIF also plays a role in the onset of the phase 
transition, in addition to the SOJT effect, by stabilizing 
the P21cn structure. Figure 25 presents the effect of Ca 
substitution on the phase transition temperature of Li2 
(Sr1-xCax)Nb2O7, which was examined through the 
temperature dependence of dielectric permittivity 
[187]. As shown in the figure, the cusp-like anomaly 
around 220 K in the composition of x = 0 gradually 
shifts to higher temperatures as the Ca content 
x increases. The variation of Tc is plotted in the inset 
as a function of x, indicating that Tc increases by more 
than 100 K with the substitution of 20% of Sr with Ca.

First-principles calculations provide further insight 
into the mechanism behind the elevation of Tc due to 

Figure 21. Crystal structures of Li2SrNb2O7: (a) in the para-
electric Cmcm phase, and (b, c) the phonon modes transform-
ing as irreducible representations (b) Γ2

– and (c) Y2
–, leading to 

the Cmc21 and pmcn phases, respectively. Schematics of (d) 
the antiferroelectric pmcn and (e) weak ferroelectric P21cn 
phases. The mirror symmetry perpendicular to the a axis is 
preserved in the pmcn phase, whereas it is broken in the P21cn 
phase. Adapted with permission from ref. [187]. Copyright 
2021 American chemical society.
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Figure 22. Averaged negative-signed COHPs in (a) Li2SrNb2O7 and (e) Li2SrTa2O7 for all atom pairs with bond lengths less than 3 Å. 
(b) Negative-signed COHPs between Nb 4d and O 2p states for Li2SrNb2O7 and (f) those between Ta 5d and O 2p states for 
Li2SrTa2O7 in the cmcm and pmcn phases. Schematic energy level diagrams for the (c) cmcm and (d) pmcn phases of Li2SrNb2O7 as 
well as the (g) cmcm and (h) pmcn phases of Li2SrTa2O7 are described. Adapted with permission from ref. [186]. Copyright 2020 
American chemical society.

Figure 23. (a) Temperature dependences of relative dielectric permittivity in Li2Sr(Nb1–xTax)2O7 with various x, which were 
measured at 100 kHz. The inset indicates a magnified view focused on the low-temperature range in the case of x = 0.4. (b) Ta- 
content dependence of ferroelectric phase transition temperatures in Li2Sr(Nb1–xTax)2O7. Adapted with permission from ref. [186]. 
Copyright 2020 American chemical society.
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Ca substitution. Figure 26 presents the COHP and the 
schematic energy level diagram of Li2CaNb2O7, with 
the results for Li2SrNb2O7 shown for comparison 
[187]. The calculations were performed with the 
Cmcm and Pmcn symmetries, similar to the case of 
the Ta-substitution effect discussed earlier. Note that 
the Pmcn structure of Li2CaNb2O7 is obtained by the 
freezing of the Y2

− soft mode (Figure 21(c)) in the 
Cmcm structure (Figure 21(a)), which was also found 
to be unstable in the Cmcm structure of Li2CaTa2O7 
[188,194]. As shown in Figure 26, the positive – COHP 
is enhanced by the transformation to the Pmcn struc-
ture in Li2CaNb2O7, demonstrating that Ca substitu-
tion encourages the instability of the Y2

− soft mode. It 
should be noted that, in contrast to Li2SrNb2O7, a σ- 

bonding state is markedly enhanced in the Pmcn 
structure of Li2CaNb2O7. This suggests that the octa-
hedral rotation enhances the overlap between the Nb 
4d states and the O 2p states, further motivating the 
displacement of Nb and leading to the increase of Tc.

The preceding discussion has clarified that both the 
SOJT effect and the HIF coexist in the system of 
Li2SrNb2O7, where Ta-substitution for Nb and Ca- 
substitution for Sr are capable of tuning the SOJT 
effect and the HIF, respectively. This paragraph 
explores the co-substitution effect of Nb and Ca in 
Li2(Sr1-xCax)(Nb1-xTax)2O7. Figure 27 presents 
a phase diagram of Li2(Sr1-xCax)(Nb1-xTax)2O7, deter-
mined through a combination of dielectric measure-
ments, x-ray diffraction, and second-harmonic 
generation measurements [188]. While the end-mem-
ber composition Li2SrNb2O7 undergoes successive 
phase transitions from I4/mmm to Cmcm and finally 
to P21cn, the counterpart Li2CaTa2O7 exhibits an anti-
ferroelectric Pmcn structure between the Cmcm and 
P21cn phases. The ground state throughout the entire 
composition range is characterized by the P21cn struc-
ture, which features in-plane antipolar and out-of- 
plane polar configurations of the off-center displace-
ment of Nb within the NbO6 octahedron.

One intriguing trend in the phase diagram is that 
the increase in Tc is significantly weaker compared to 
the case of single Ca substitution for Sr. This suggests 
a close competition between the suppression of the 
SOJT effect due to Ta substitution and the enhance-
ment of the HIF due to Ca substitution. To examine 
this competition in detail, the magnitude of the SOJT 
effect (δl) and HIF ( cj j= bj j � 1j j) has been quantified, 
where δl represents the displacement of the B-site 
cation along the c-axis, and cj j= bj j � 1j j denotes the 
scale of anisotropy induced by octahedral rotation as 
shown in Figure 28(a,b) [188]. Figure 28(c) shows the 
relationship between δl and cj j= bj j � 1j j across differ-
ent compositions. It is evident from the figure that the 
structural instability in Li2SrNb2O7 is primarily gov-
erned by the SOJT effect. However, the co-substitution 
of Ca and Nb enhances the effect of HIF, eventually 
surpassing the SOJT effect around the composition of 
x = 0.7. In the end-member composition of 
Li2CaTa2O7, the HIF becomes dominant in the struc-
tural phase transition. The phase diagram’s correspon-
dence with the structural analysis in panel (c) strongly 
supports the conclusion that the close competition 
between the SOJT effect and the HIF provides a rich 
phase instability in the pseudo-RP-type structure.

Combining all the discussions, we can conclude 
that Li2SrNb2O7 has two coexisting mechanisms: the 
SOJT effect and the HIF. The SOJT effect is the origin 
of the Ti displacement for the proper ferroelectrics, 
such as in BaTiO3 and PbTiO3 [196], whereas the HIF 
mechanism is triggered by the two octahedral rota-
tional distortions like in Ca3Ti2O7 and Sr3Sn2O7 

Figure 24. p–E hysteresis loops of Li2SrNb2O7 (red dashed line) 
and Li2Sr0.9Ca0.1Nb2O7 (orange solid line), measured at a test 
frequency of 10 Hz and a temperature of 80 K under an 
applied electric field of 130 kV/cm. Adapted with permission 
from ref. [187]. Copyright 2021 American chemical society.

Figure 25. Temperature dependence of the relative permittiv-
ity for Li2Sr1–xCaxNb2O7 measured at a frequency of 100 kHz. 
The inset shows the Ca-content dependence of the ferroelec-
tric phase transition temperature Tc. Adapted with permission 
from ref. [187]. Copyright 2021 American chemical society.
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[179,183]. Li2SrNb2O7 is a unique ferroelectric mate-
rial that has two ‘switches’ to trigger the phase transi-
tion, which is confirmed by partially substituting Ta 
and/or Ca in Li2SrNb2O7 from the experiments and 

the calculations. It is noteworthy that these results 
were reproduced from the synthesis of a single crystal 
performed by Cheong’s group [197], although our 
experimental and computational results were partly 
in contrast to the previous reports [198].

Our study exemplifies how effective collaboration 
between computational modeling and experimental 
techniques helps the investigation of ferroelectric 
materials. Particularly for displacive-type ferroelec-
trics driven by lattice instability, we have demon-
strated that first-principles calculations provide 
valuable guidelines for the rational design of composi-
tions. These calculations visualize the displacement 
pattern of the soft mode and reveal corresponding 
variations in chemical bonding states, offering insights 
crucial for the systematic development of new materi-
als. This integrated approach not only enhances our 
understanding of ferroelectric mechanisms but also 
facilitates targeted material design with enhanced 
functional properties.

Figure 26. Averaged negative-signed COHPs in (a) Li2SrNb2O7 and (e) Li2CaNb2O7 for all atom pairs with bond lengths less than 3 
Å. Negative-signed COHPs between Nb 4d and O 2p states for (b) Li2SrNb2O7 and (f) Li2CaNb2O7 in the cmcm and pmcn phases. 
Schematic energy level diagrams for the cmcm and pmcn phases of (c, d) Li2SrNb2O7 and (g, h) Li2CaNb2O7 are described. Adapted 
with permission from ref. [187]. Copyright 2021 American chemical society.

Figure 27. Phase diagram of Li2Sr1–xCax(Nb1–xTax)2O7. The 
abbreviations PE, AFE, and FE denote paraelectricity, antifer-
roelectricity, and ferroelectricity, respectively. The open circle 
data for x = 1 is referred to in ref. [194]. Adapted with permis-
sion from ref. [188]. Copyright 2022 American physical society.
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4. Summary and outlook

We have reviewed selected examples of our com-
bined computational and experimental approaches 
to inorganic semiconductors and dielectrics, cover-
ing topics from methodology development to mate-
rials design, prediction, and exploration. High- 
throughput first-principles calculations of polarons, 
point defects, surfaces, and interfaces enable sys-
tematic and accurate predictions of their structures 
and properties, and the generated data are effec-
tively used for machine learning, as well as the 
cases of bulk fundamental properties. The con-
structed machine learning models allow us to pre-
dict various material properties and search for 
promising materials much more quickly than the 
use of direct theoretical calculations. A great 
advantage is that a tremendous number of candi-
date materials can, therefore, be considered, sub-
stantially widening the materials search space. 

However, we need to care about prediction accu-
racy associated with regression errors, as well as 
errors inheriting from first-principles calculations. 
The validation of the machine learning prediction 
by theoretical calculations and experiments should 
be important.

To show the effectiveness of the combined computa-
tional and experimental approaches in materials research, 
we have discussed the cases of ternary nitride semicon-
ductors for potential optoelectronic and photovoltaic 
applications, phosphide-based photovoltaic cells and 
their constituent phosphide semiconductors, and layered 
perovskite oxide ferroelectrics. In addition, we have 
demonstrated the efficient construction of phase dia-
grams using active learning in conjunction with experi-
ments. This scheme has been applied to the 
determination of experimental conditions for phosphide 
film growth.

The combination of theory, computation, and 
experiment is also useful for unveiling the mechan-
isms behind material functionalities, which is an 
important step toward the construction of materials 
design principles. This is exemplified by the case of 
the layered perovskite oxide ferroelectrics, where 
theoretical phonon and chemical bonding analyses 
help us elucidate the unique origin of their 
ferroelectricity.

Given the recent worldwide interest in materials 
informatics, we surely expect that the methodologies 
and algorithms for theoretical calculations and data 
scientific methods will be continuously improved and 
more powerful in materials research. Further develop-
ment of supercomputers will allow us to generate 
more accurate and abundant computational materials 
data, with which machine learning becomes more 
effective and useable in a wider variety of materials 
studies. In addition, current trends toward open 
science will make more computational and experi-
mental materials databases freely available. Effective 
use of such publicly open data, as well as in-house 
closed ones, will be a key to conducting cutting-edge 
data-centric research in the rapidly growing materials 
informatics field.
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Figure 28. Schematics of (a) the displacement of B-cation in an 
octahedron, (b) the in-plane lattice anisotropy induced by 
octahedral rotation. The blue vector in (a) shows the 
B-cation displacement along the c axis (δl). (c) The x-depen-
dence of δl and lattice anisotropy at 100 K. The open square 
data for x = 1 is evaluated from room temperature data in 
tables 1 and 2 in ref. [195] (the two Ta-sites are averaged). 
Adapted with permission from ref. [188]. Copyright 2022 
American physical society.
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